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CEDAR: A Core-Extraction Distributed
Ad Hoc Routing Algorithm

Raghupathy Sivakumar, Prasun Sinha, and Vaduvur Bharghavan

Abstract—In this paper, we present CEDAR, a core-extraction
distributed ad hoc routing algorithm for quality-of-service (QoS)
routing in ad hoc network environments. CEDAR has three key
components: a) the establishment and maintenance of a self-
organizing routing infrastructure called the core for performing
route computations; b) the propagation of the link state of high
bandwidth and stable links in the core through increase/decrease
waves; and c) a QoS-route computation algorithm that is exe-
cuted at the core nodes using only locally available state. Our
performance evaluations show that CEDAR is a robust and adap-
tive QoS routing algorithm that reacts quickly and effectively
to the dynamics of the network while still approximating the
performance of link-state routing for stable networks.

Index Terms—Ad-hoc routing, mobile networking, quality-of-
service (QoS) routing.

I. INTRODUCTION

A N ad hoc network is a dynamic multihop wireless net-
work that is established by a group of mobile nodes

on a shared wireless channel by virtue of their proximity
to each other. Such networks find applicability in military
environments, wherein a platoon of soldiers or a fleet of
ships may establish an ad hoc network in the region of their
deployment, as well as in nonmilitary environments, such as
classrooms and conferences. Military network environments
typically require quality-of-service (QoS) for their mission-
critical applications. In nonmilitary environments, multimedia
applications also require routes satisfying QoS requirements.
Hence, the focus of this paper is on providing QoS routing in
ad hoc networks.

In particular, we seek to compute unicast routes that satisfy
a minimum bandwidth requirement from the source to the
destination. Of course, since the network is highly dynamic
and transmissions are susceptible to fades, interference, and
collisions from hidden/exposed stations, we cannot provide
bandwidth guarantees for the computed routes. Rather, our
goal is to provide routes that are highly likely to satisfy the
bandwidth requirement of a route [1].

The core-extraction distributed ad hoc routing algorithm
(CEDAR) dynamically establishes a core of the network and
then incrementally propagates the link state of stable high
bandwidth links to the nodes of the core. Route computation
is on demand and is performed by core nodes using only local
state. We propose CEDAR as a QoS routing algorithm for
small to medium size ad hoc networks consisting of tens to
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hundreds of nodes. The following is a brief description of the
three key components of CEDAR.

• Core extraction: A set of nodes is distributedly and
dynamically elected to form the core of the network by
approximating a minimum dominating set of the ad hoc
network using only local computation and local state.
Each core node maintains the local topology of the nodes
in its domain and also performs route computation on
behalf of these nodes.

• Link state propagation: QoS routing in CEDAR is
achieved by propagating the bandwidth availability
information of stable high bandwidth links to core nodes
far away in the network, while information about dynamic
links or low bandwidth links is kept local. Slow-moving
increase waves and fast-moving decrease waves, which
denote corresponding changes in available bandwidths
on links, are used to propagate nonlocal information over
core nodes.

• Route computation: Route computation first establishes
a core path from the dominator (see Section II) of the
source to the dominator of the destination. The core path
provides the directionality of the route from the source
to the destination. Using this directional information,
CEDAR iteratively tries to find a partial route from the
source to the domain of the furthest possible node in the
core path (which then becomes the source for the next
iteration) that satisfies the requested bandwidth, using
only local information. Effectively, the computed route
is a shortest-widest-furthest path1 using the core path as
the guideline.

The rest of this paper is organized as follows. Section II
describes the network model, terminology, and the goals of
CEDAR. Section III describes the computation and dynamic
management of the core of the network. Section IV describes
the link state propagation through the core using increase and
decrease waves. Section V describes the route computation al-
gorithm of CEDAR and puts together the algorithms described
in the previous sections. Section VI analyzes the performance
of CEDAR through simulations. Section VII compares
CEDAR to related work, and Section VIII concludes the paper.

II. NETWORK MODEL AND GOALS

In this section, we first describe the network model, then
the terminology used in this paper, and finally the goals of
CEDAR.

1A shortest-widest path is the maximum bandwidth path. If there are
several such paths, it is the one with the least number of hops. We define
a shortest-widest-furthest path in Section V.
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A. Network Model

We assume that all the nodes communicate on the same
shared wireless channel. For frequency hopping spread spec-
trum, this implies that all nodes have the same frequency hop-
ping pattern, while for direct sequence spread spectrum, this
implies that all nodes have the same pseudorandom sequence.
We assume that each transmitter has a fixed transmission
range and that neighborhood is a commutative property (i.e.,
if can hear , then can hear ). Because of the
local nature of transmissions, hidden and exposed stations
are typically present in an ad hoc network. We assume the
use of a CSMA/CA-like algorithm such as MACAW [2] for
reliable unicast communication and for solving the problem
of hidden/exposed stations. Essentially, data transmission is
preceded by a control packet handoff, and the sequence
of packets exchanged in a communication is the following:
request to send from sender to receiver (RTS)—clear to
send from receiver to sender (CTS)—Data (from sender to
receiver)—Ack (from receiver to sender).

We assume small to medium size networks ranging between
tens to hundreds of nodes. For larger networks, we propose a
clustering algorithm in a related work [3] and apply CEDAR
hierarchically within each cluster, for a cluster of clusters, etc.

We assume that the MAC-link layer can estimate the avail-
able link bandwidth. We assume a close coordination between
the MAC layer and the routing layer. In particular, we use
the reception of RTS and CTS control messages at the MAC
layer in order to improve the behavior of the routing layer, as
explained in Section III.

Finally, bandwidth is the QoS parameter of interest in
this paper. When an application requests a connection, it
specifies the required bandwidth for the connection. The goal
of CEDAR is then to find a short stable route that can satisfy
the bandwidth requirement of the connection.

B. Graph Terminology

We represent the ad hoc network by means of an undirected
graph , where is the set of nodes in the graph
(hosts in the network), and is the set of edges in the graph
(links in the network). Theth deleted neighborhood of
node is the set of nodes whose distance fromis not greater
than , except node itself. The th neighborhood of
node is .

A dominating set is a set such that every node in
is either in or is a neighbor of a node in. A dominating
set with minimum cardinality is called a minimum dominating
set (MDS). A virtual link between two nodes in the
dominating set is a path in from to .

Given an MDS of a graph , we define a core of the
graph , where

. Thus, the core graph consists of the MDS
nodes and a set of virtual links between every two nodes
in that are within a distance 3 of each other in. Two
nodes and , which have a virtual link in the core, are
said to be nearby nodes (see Fig. 1).

For a connected graph, consider any dominating set.
If the diameter of is greater than two, then for each node

Fig. 1. An example showing a network with a possible set of core nodes
and the corresponding core graph.

, there must be at least one other node ofin
(otherwise there is at least one node inwhich is neither in

nor has a neighbor in ). From the definition of the core,
if is connected, then a core of must also be connected
(via virtual links).

In the CEDAR algorithm, each node picks up a node in
as its dominator (based on criteria discussed later),

denoted as ; is the node which then is called
a core node.

C. Goals of CEDAR

Ad hoc networks are typically dynamic, and hence, routing
in ad hoc networks has the following goals.

• Route computation must be distributed, because central-
ized routing in a dynamic network is impossible even for
fairly small networks.

• Route computation should not involve the maintenance of
global state or even significant amounts of volatile non-
local state. In particular, link state routing is not feasible
because of the enormous state propagation overhead when
the network topology changes.

• As few nodes as possible must be involved in state
propagation and route computation, since this involves
monitoring and updating at least some state in the net-
work. On the other hand, every node must have quick
access to routes on demand.

• Each node must only care about the routes corresponding
to its destination and must not be involved in frequent
topology updates for parts of the network to which it has
no traffic.

• Stale routes must be either avoided or detected and
eliminated quickly.

• Broadcasts must be avoided as far as possible because
broadcasts are highly unreliable in ad hoc networks.

• If the topology stabilizes, then routes must converge to
the optimal routes.

• It is desirable to have a backup route when the primary
route has become stale and is being recomputed.

QoS routing in ad hoc networks is relatively unchartered
territory. We have the following goals for QoS routing in ad
hoc networks.

• Applications provide a minimum bandwidth requirement
for a connection, and the routing algorithm must effi-
ciently compute a route that can satisfy the bandwidth
requirement with high probability, if such a route exists.
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• The amount of state propagation and topology update
information must be kept to a minimum. In particular,
every change in available bandwidth should not result in
updated state propagation.

• Unstable or low bandwidth links must not cause state
propagation throughout the network. Only stable high
bandwidth link information must be propagated to distant
nodes that are involved in route computation.

• As the network becomes stable, the routing algorithm
should start providing near-optimal routes.

• The QoS route computation algorithm should be simple
and robust. Robustness, rather than optimality, is the key
requirement.

In summary, our goal is to compute good routes quickly and
react to the dynamics of the network with only small amounts
of state propagation. As a result, we sacrifice optimality of
routes. However, we show in Section VI that by virtue of our
algorithm design, CEDAR is able to approximate the state-
intensive shortest-widest path algorithm in the average case,
though it still adapts efficiently to the network dynamics.

III. CEDAR ARCHITECTURE AND THE CORE

In this section, we first describe the motivation for choosing
a core-based routing architecture, then describe a low overhead
mechanism to generate and maintain the core of the network
and finally describe an efficient mechanism to accomplish
a “core broadcast” using unicast transmissions. The core
broadcast is used both for the propagation of increase/decrease
waves and for the establishment of the core path in the route
computation phase.

A. Rationale for a Core-Based Architecture in CEDAR

Many contemporary proposals for ad hoc networking re-
quire every node in the ad hoc network to perform route
computations and topology management [4]–[6]. In contrast,
the spine architecture [3] only involves the nodes of an
approximate minimum connected dominating set of the ad
hoc network. Similarly, CEDAR also uses only the core
nodes for state management and route computation. Moreover,
we believe that the core provides the benefits of the spine
architecture without incurring the high maintenance overhead
of the spine. Following are the reasons for using a core-based
infrastructure in CEDAR.

1) QoS route computation involves maintaining local and
some nonlocal link state and monitoring and reacting
to some topology changes. Clearly, it is beneficial to
have as few nodes in the network performing state
management and route computation as possible.

2) Local broadcasts are highly unreliable in ad hoc net-
works due to the presence of hidden and exposed sta-
tions. Route probes [4] are inevitable in order to establish
routes and will, of necessity, need to be broadcast
if every node performs route computation. While the
adverse effects of unreliable broadcasts are typically not
considered in most of the related work on ad hoc routing,
we have observed that flooding in ad hoc networks is
highly lossy. On the other hand, if only a core subset

of the nodes in the ad hoc network perform route
computations, it is possible to set up reliable unicast
channels between nearby core nodes and accomplish
both the topology updates and route probes much more
effectively.

The issues with having only a core subset of nodes performing
route computations are threefold. First, nodes in the ad hoc
network that do not perform route computation must have easy
access to a nearby core node so that they can quickly request
routes to be setup. Second, the establishment of the core must
be a purely local computation. In particular, no core node must
need to know the topology of the entire core graph. Third, a
change in the network topology may cause a recomputation
of the core graph. Recomputation of the core graph must only
occur in the locality of the topology change and must not
involve a global recomputation of the core graph.

B. Generation and Maintenance of the Core in CEDAR

Ideally, the core consists of the nodes in a minimum
dominating set of the ad hoc network .
However, finding the MDS is an NP-hard problem that is also
hard to approximate. The best-known distributed algorithm for
MDS approximation [7] is a greedy algorithm that requires

steps and has a competitive ratio of log , where
is the diameter of the network. However, this algorithm

requires global computation (i.e., the result of stepat node
can affect the computation of step at node ). While

we can use the greedy algorithm to generate the best-known
approximation for the MDS, we have chosen to use a robust
and simple constant time algorithm that requires only local
computations and generates good approximations for the MDS
in the average case.

Consider a node , with first deleted neighborhood ,
degree , dominator , and effective
degree , where is the number of its neighbors
who have chosen as their dominator. The core computation
algorithm works as follows at node.

1) Periodically, broadcasts a beacon which contains the
following information pertaining to the core computa-
tion: ( ).

2) If does not have a dominator, then it sets ,
where is the node in with the largest value for
( ), in lexicographic order. Note that may
choose itself as the dominator.

3) then sends a unicast message including the
following information: ( ).
( ). then increments

.
4) If , then joins the core.

Essentially, each node that needs to find a dominator selects the
highest degree node with the maximum effective degree in its
first neighborhood. Ties are broken by node ID. The previous
algorithm for core computation results in a core which has the
following properties.

• Since the core computation algorithm approximates the
minimum dominating set for the nodes, the size of the
core is minimal. As the route computation is done by



SIVAKUMAR et al.: CEDAR: A CORE-EXTRACTION DISTRIBUTED AD HOC ROUTING ALGORITHM 1457

the core nodes, minimizing the number of core nodes is
desirable.

• Core computation is local. This property makes core
computation in CEDAR scalable, as the core can be
computed in a constant amount of time.

• When a node is electing a dominator, it gives preference
to core nodes already present in its neighborhood (includ-
ing itself). This provides stability to the core computation
algorithm, though it might have implications on the
optimality of the number of core nodes.

When a node joins the core, it issues a piggybacked
broadcast in . A piggybacked broadcast is accom-
plished as follows. In its beacon, transmits a message:
( _ null). denotes the ID
of ’s dominator. When node hears a beacon that contains
a message ( _ ), it piggybacks the
message ( _ ) in its own
beacon if . Thus, the piggybacked broadcast of a
core node advertises its presence in its third neighborhood.
As shown in Section II, this guarantees that each core node
identifies its “nearby” core nodes and can set up virtual links
to these nodes using the _ field in the broadcast
messages. The state that is contained in a core nodeis
the following: its nearby core nodes (i.e., the core nodes in

); , the nodes that it dominates; for each node
( ). Thus, each core

node has enough local topology information to reach the
domain of its nearby nodes and set up virtual links. However,
no core node has knowledge of the core graph. In particular,
no nonlocal state needs to be maintained by core nodes for
the construction or maintenance of the core.

Maintaining the core in the presence of network dynam-
ics is simple. Consider that due to mobility, a node loses
connectivity with its dominator. After listening to beacons
from its neighbors, the node either finds a core neighbor that
it now nominates as its dominator, or nominates one of its
neighbors to join the core, or itself joins the core. If a node
loses connectivity with all its dominated nodes, or discovers
(by monitoring the beacons of its dominated nodes) that its
effective degree has become zero, it leaves the core by tearing
down virtual links with its neighbors and finds a dominator
in the core.

C. Core Broadcast and Its Application to CEDAR

As with most existing ad hoc networking protocols, CEDAR
requires the broadcast of route probes to discover the location
of a destination node and the broadcast of some topology infor-
mation (in the form of increase/decrease waves). While most
current algorithms assume that flooding in ad hoc networks
works reasonably well, our experience has shown otherwise.
In particular, we have observed that flooding probes, which
causes repeated local broadcasts, is highly unreliable because
of the presence of hidden and exposed stations. Thus, we
provide a mechanism for “core broadcast” based on reliable
unicast (using RTS-CTS, etc.). Note that it is reasonable to
assume a unicast based mechanism to achieve broadcast in the
core, because each core node is expected to have few nearby

core nodes. Besides, our core broadcast mechanism ensures
that each core node does not transmit a broadcast packet to
every nearby core node. CEDAR uses a close coordination
between the medium access layer and the routing layer in order
to achieve efficient core broadcast. Our goal is to use the MAC
state in order to achieve efficient core broadcast using
messages, where is the number of nodes in the network.

In order to achieve efficient core broadcast, we assume that
each node temporarily caches every RTS and CTS packet that
it hears on the channel for core broadcast packets only. The
purpose of caching RTS/CTS is to use them for the elimination
of duplicate packet reception for broadcasts. Since RTS/CTS
packets are much smaller compared to the data packets, and
the core broadcasts would typically arrive from the neighbors
in a small period of time, we believe that caching of RTS/CTS
packets (only for core broadcasts) for a few seconds is justified.
Each core broadcast messagethat is transmitted to a core
node has the unique tag . This tag is put into the RTS
and CTS packets of the core broadcast packet and is cached for
a short period of time by any node that receives (or overhears)
these packets on the channel. Consider that a core nodehas
heard a CTS ( ) on the channel. Then, it estimates that its
nearby node has received and does not forward to
node Now suppose that and are a distance 2 apart, and
the virtual channel passes through a node. Since is
a neighbor of , hears CTS ( ). Thus, when sends a
RTS( ) to , sends back a NACK back to. If and
are a distance 3 apart, using the same argument, we will have
at most one extra message transmission. Essentially, the idea is
to monitor the RTS and CTS packets in the channel in order
to discover when the intended receiver of a core broadcast
packet has already received the packet from another node and
suppress the duplicate transmission of this packet.

In the ad hoc network shown in Fig. 2, when node 1 is
the source of the core broadcast, 10 would not be sending a
message to 11, as it would have heard a CTS from 11 when
11 was receiving the message from 3. Similarly, 8 would not
be sending on the tunnel to 10, as 9 would have heard the
CTS from 10, and hence would send a NACK when 8 sends
an RTS to 9. Also, on the tunnel from 6 to 3, the message
would be sent to 5, but 5 would not be able to forward it
any further because of 4 having heard CTS from 3 and hence
5 receiving NACK from 4. Thus, the example illustrates that
a duplicate message can be avoided on tunnels of length 1
and 2, but a duplicate message will travel one extra hop for
tunnels of length 3.

Core broadcast in CEDAR has the following features.

1) The core nodes do not explicitly maintain a source-
based tree. However, the core broadcast dynamically
(and implicitly) establishes a source-based tree, which
is typically a breadth-first search tree for the source of
the core broadcast.

2) The number of messages is in the worst case and
in the average case. In particular, the only case

we transmit extra data messages is when two nearby
core nodes are a distance 3 apart.

3) Since the trees are not explicitly maintained, differ-
ent messages may establish different trees. Likewise,
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Fig. 2. Example of a core broadcast. Nodes in black are core nodes. Solid lines denote links in the ad hoc network. Dotted pipes denote virtual
links in the core graph.

changes in the network topology do not require any
recomputation. However, the coordination of the MAC
layer and the routing layer ensures that the core broad-
cast establishes a tree and that a core node typically does
not receive duplicates for a core broadcast.

While our approach for the core broadcast is low overhead and
adapts easily to topology changes, the RTS and CTS packets
corresponding to a core broadcast need to be cached for some
time after their reception.

Core broadcast finds applicability in two key aspects of
CEDAR: discovery of the core path and propagation of in-
crease/decrease waves. The discovery of the core path is
broadcast because the sender may not know the location of
the receiver. It initiates a core broadcast to find the location
of the receiver and simultaneously discover the core path.

IV. QoS STATE PROPAGATION IN CEDAR

As far as the nature of state maintained at each core node
is concerned, at one extreme is the minimalist approach of
only storing local topology information at each core node.
This approach results in a poor routing algorithm (i.e., the
routing algorithm may fail to compute an admissible route
even if such routes exist in the ad hoc network) but has a
low overhead for dynamic networks. At the other extreme is
the maximalist approach of storing the entire link state of the
ad hoc network at each core node. This approach computes
optimal routes for stable networks, but incurs a high state
management overhead for dynamic networks and potentially
computes stale routes based on an out-of-date cached state
when the network dynamics are high. Fundamentally, each
core node needs to have the up-to-date state about its local
topology and also the link state corresponding to relatively
stable high bandwidth links further away.

CEDAR achieves this goal using increase and decrease
waves. A slow-moving increase wave denotes an increase
of bandwidth on a link, and a fast-moving decrease wave
denotes a decrease of bandwidth on a link. For unstable
links that come up and go down frequently, the fast-moving
decrease wave quickly overtakes and stops the slower-moving
increase wave from propagating, thus ensuring that the link

state corresponding to dynamic links is kept local. For stable
links, the increase wave gradually propagates through the core.
Each increase wave also has a maximum distance it is allowed
to propagate. Low bandwidth increase waves are allowed only
to travel a short distance, while high bandwidth increase waves
are allowed to travel far into the network. Essentially, the
goal is to propagate only stable high bandwidth link state
throughout the core, and keep the low bandwidth and unstable
link state local.

We first describe the mechanics of the increase and decrease
waves, and then we discuss some issues related to their
implementation.

A. Increase and Decrease Waves

For every link , the nodes and are responsible
for monitoring the available bandwidth onand for notifying
the respective dominators for initiating the increase and de-
crease waves, when the bandwidth changes by some threshold
value. These waves are then propagated by the dominators
(core nodes) to all other core nodes via core broadcasts. Each
core node has two queues: the increase-to (ito) queue that
contains the pending core broadcast messages for increase
waves and the decrease-to (dto) queue that contains the pend-
ing core broadcast messages for decrease waves. For each link

about which a core node caches link state, the core node
contains the cached available bandwidth .

The following is the sequence of actions for an increase-
wave.

1) When a new link comes up or when the
available bandwidth increases beyond a threshold value,
then the two end points ofinform their dominators for
initiating a core broadcast for an increase wave:

(
where denotes the type of the wave, iden-

tifies the link, denotes the dominator of,
denotes the dominator of, denotes the

available bandwidth on the link, and is a “time-to-
live” field that denotes the maximum distance to which
this wave can be propagated as an increase wave. The
ID’s of the dominators of the link end points are required
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by the routing algorithm; is an increasing function of
the available bandwidth, as described in Section IV-B.

2) When a core node receives an ito wave
:

a) if has no state cached for and ( ),

if then
add
to the ito queue.

b) else if has cached state for and ( ),

delete any pending ito/dto message for
from the ito queue and dto queue.

if ( )
add

to the ito queue.
else if ( ),

add
to the dto queue.

c) else if has cached state for and ( ),

delete any pending ito/dto message for
from the ito queue and dto queue.

add to the dto
queue.

3) The ito queue is flushed periodically, depending on the
speed of propagation of the increase wave.

The following is the sequence of actions for a decrease wave.

1) When a link goes down, or when the available
bandwidth decreases beyond a threshold value,
then the two end points of inform their dominators
for initiating a core broadcast for a decrease wave:

, where de-
notes the type of the wave, and the other parameters are
as defined before.

2) When a core node receives a dto wave

a) if has no state cached for
and ( ),

the wave is not propagated any further.
b) or else it is processed in the same way as the ito

wave is processed above.

3) The dto queue is flushed whenever there are packets in
the queue.

There are several interesting points in the previous
algorithm. First, the way that the ito queue and the dto queue
are flushed ensures that the decrease waves propagate much
faster than the increase waves and suppress state propagation
for unstable links. Second, waves are converted between ito
and dto on-the-fly, depending on whether the cached value
for the available bandwidth is lesser than the new update
(ito-wave generated) or not (dto-wave generated). Third, after
a distance of (which depends on the current available
bandwidth of the link), the
message ensures that all other core nodes which had state
cached for this link now destroy that state. However, the

wave does not propagate

throughout the network—it is suppressed as soon as it hits
the core nodes which do not have link state for cached.
As we have noted before, the increase/decrease waves use the
efficient core broadcast mechanism for propagation.

B. Issues with Implementing Increase/Decrease Waves

We have looked at how the waves are propagated, but there
are several implementational issues which are worth exploring.

Clearly, a wave should not be generated for every incremen-
tal change in the available bandwidth of the link. In CEDAR,
we only generate a wave when the bandwidth has changed by a
threshold value since the last wave was generated. Effectively,
the range of available bandwidth is divided into equal intervals,
and a wave is initiated only when a new interval in entered.
A logarithmic scale, where the size of the interval is not a
constant, but increases with bandwidth, has been proposed in
[8]. This might be used as an alternative method for deciding
when a wave needs to be initiated.

Our goal is to propagate information about stable high
bandwidth links throughout the network and localize the state
of the low bandwidth links. This is because every core node
that caches information corresponding to a link can potentially
use the bandwidth of the link, and the contention for a link is
dependent on the number of core nodes caching the state of
the link. For low bandwidth links, it makes sense to have as
few nodes as possible contending for the link, while for stable
high bandwidth links, it makes sense to have as many core
nodes as possible to know about the link in order to compute
good routes. In order words, the maximum distance that the
link state can travel (i.e., the field) is an increasing function
of the available bandwidth of the link. Our current CEDAR
simulation uses a linear function for computing the.

As discussed earlier, the decrease-waves travel faster than
the increase waves. The time intervals for which these waves
are buffered at a node are another set of parameters which
need to carefully studied.

V. QOS ROUTING IN CEDAR

It is possible to use any of the well-known ad hoc routing
algorithms such as DSR [4], TORA [5], AODV [6], ZRP
[9], [10], etc. in the core graph. CEDAR has its own QoS
route computation algorithm, which consists of three key
components: a) discovery of the location of the destination
and establishment of the core path to the destination; b)
establishment of a short stable admissible QoS route from the
source to the destination using the core path as a directional
guideline; and c) dynamic reestablishment of routes for on-
going connections upon link failures and topology changes in
the ad hoc network.

Briefly, QoS route computation in CEDAR is an on-demand
routing algorithm which proceeds as follows: when a source
node seeks to establish a connection to a destination node

, provides its dominator node with a ( )
tuple, where is the required bandwidth for the connection.
If can compute an admissible available route to
using its local state, it responds toimmediately. Otherwise, if

already has the dominator ofcached and has a core
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path established to , it proceeds with the QoS route
establishment phase. If does not know the location of

, it first discovers , simultaneously establishes a core
path to , and then initiates the route computation phase. A
core path from to results in a path in the core graph from

to ; then tries to find the shortest-
widest-furthest admissible path along the core path. Based on
its local information, picks up the farthest reachable
domain until that which it knows is an admissible path. It then
computes the shortest-widest path to that domain, ending at a
node say , once again based on local information. Once the
path from to is established, then uses its local state
to find the shortest-widest-furthest admissible path toalong
the core path, and so on. Eventually, either an admissible route
to is established, or the algorithm reports a failure to find
an admissible path. As we have already discussed in previous
sections, the knowledge of remote stable high bandwidth links
at each core node and significantly improves the probability
of finding an admissible path, so long as such a path exists
in the network.

In the following sections, we describe the three key com-
ponents of QoS routing in CEDAR.

A. Establishment of the Core Path

The establishment of a core path takes place whenrequests
to set up a route to (say with required bandwidth

), and does not know the identity of or does
not have a core path to . Establishment of a core path
consists of the following steps.

1) initiates a core broadcast to set up a core path
with the following message: ( null),
where is the path traversed by this message so far,
and is initialized to null.

2) When a core node receives the core path request mes-
sage ( ), it appends to , and forwards
the message to each of its nearby core nodes (according
to the core broadcast algorithm).

3) When receives the core path request message
( ), it sends back a source routed unicast
core path ack message to along the inverse path
recorded in . The response message also contains,
the core path from to .

Upon reception of the core_path_ack message from ,
completes the core path establishment phase and

enters the QoS route computation phase.
Note that by virtue of the core broadcast algorithm, the

core path request traverses an implicitly (and dynamically)
established source rooted tree from , which is typically
a breadth-first search tree. Thus, the core path is approximately
the shortest admissible path in the core graph from to

and hence provides a good directional guideline for
the QoS route computation phase.

B. QoS Route Computation

Recall from Sections III and IV that has a partial
knowledge of the ad hoc network topology, which consists

of the up-to-date local topology and some possibly out-of-
date information about remote stable high bandwidth links in
the network. The following is the sequence of events in QoS
route computation.

1) Using the local topology, tries to find a path
from to the domain of the furthest possible core node
in the core path [say ] that can provide at least
a bandwidth of (bandwidth of the connection request).
The bandwidth that can be provided on a path is the
minimum of the individual available link bandwidths on
the path.

2) Among all the admissible paths (known using local state)
to the domain of the furthest possible core node in
the core path, picks the shortest-widest path
using a two phase Dijkstra’s single source shortest path
algorithm [11].

3) Let be the end point of the chosen path.
sends the following message to :

( ), where , , and are
the source, destination, and intermediate node in the
partially computed path, is the required bandwidth,

is the core path, and is the partial route
computed so far.

4) then performs the QoS route computation using
its local state identical to the computation described
previously.

5) Eventually, either there is an admissible path toor
the local route computation will fail to produce a path
at some core node. The concatenation of the partial
paths computed by the core nodes provides an end-to-
end path that can satisfy the bandwidth requirement of
the connection with high probability.

The core path is computed in one round trip, and the QoS
route computation algorithm also takes one round trip. Thus,
the route discovery and computation algorithms together take
two round trips if the core path is not cached and one round
trip otherwise.

Note that while the QoS route is being computed, packets
may be sent from to using the core path. The core path
thus provides a simple backup route while the primary route is
being computed. Also note that CEDAR uses source routing
for both control as well as data packets. As source routing has
an overhead, modifying CEDAR for next hop routing is part
of our ongoing work.

C. Dynamic QoS Route Recomputation
for Ongoing Connections

Route recomputations may be required for ongoing connec-
tions under two circumstances: when the end node moves and
when there is some intermediate link failure (possibly caused
by the mobility of an intermediate router). End node mobility
can be thought of as a special case of link failure, wherein the
last link fails. CEDAR has the following two mechanisms to
deal with link failures.

1) QoS route recomputation at the failure point: consider
that a link fails on the path of an ongoing
connection from to The node nearest to the sender
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then initiates a local route recomputation similar
to the algorithm in Section V-B. Once the route is
recomputed, updates the source route in all packets
from to accordingly. If the link failure happens
near the destination, then dynamic route recomputation
at the intermediate node works well because the route
recomputation time to the destination is expected to be
small, and packets in flight are rerouted seamlessly.

2) QoS route recomputation at the source: consider that a
link fails on the path of an ongoing connection
from to . The node nearest to the senderthen
notifies that the link has failed. Upon receiving
the notification, stops its packet transmission, initiates
a QoS route computation as in Section V-B, and resumes
transmission upon the successful reestablishment of an
admissible route. If the link failure happens near the
source, then source-initiated recomputation is effective
because the source can quickly receive the link-failure
notification and temporarily stop transmission.

We use source-initiated recomputation as the long-term so-
lution to handling link failure, while the short-term solution to
handle packets in flight is through the dynamic recomputation
of routes from the intermediate nodes. Recomputation at the
failure point is not really effective if the failure happens close
to the source, but in this case, the number of packets in flight
from to is small. Note that update of source routes at
intermediate nodes might have implications on authentication
and security.

VI. PERFORMANCE EVALUATION

We have evaluated the performance of CEDAR via both
implementation and simulation. Our implementation consists
of a small ad hoc network consisting of six mobile nodes that
use a Photonics (data technology) 1 Mbit/s infrared network.
We have customized the Linux 2.0.31 kernel to build our ad
hoc network environment (written partly in user mode and
partly in kernel mode). While the testbed shows a proof of
concept and has exposed some of the practical difficulties
in implementing CEDAR, our detailed performance evalua-
tion has been using a simulator that faithfully implements
CEDAR.

For our simulations, we make the following assumptions
about the network environment: a) the channel capacity is 1
Mbit/s; b) it takes time for a node to successfully transmit
a message over a single link, whereis the degree of the
node; c) the dynamics of the topology are induced either
by link failure or mobility; d) packets are source routed;
e) the transmission range for each node is a 1010 unit
square region with the node at the center of this region (we
generate our test graphs by randomly placing nodes in a 100

100 square region); and f) each CEDAR control packet
transmission slot has a period of 2 ms.

We present three sets of results from our simulations. The
first set of results characterizes the performance of CEDAR
in a best-effort service environment. The goal is to isolate the
characterization of the basic routing algorithm from the effects
of QoS routing for this set of results. The second set of results

TABLE I
PERFORMANCE OFCEDAR COMPARED TO AN OPTIMAL APPROACH

TABLE II
PERFORMANCE OFCEDAR COMPARED TO AN OPTIMAL

APPROACH (n;m;C;diamC , Avgdeg)=(20, 56, 6, 5, 5)

evaluates the performance of QoS routing in CEDAR. The
third set of results evaluates the performance of CEDAR for
ongoing connections in the presence of mobility. Essentially,
the first two sets of results evaluate the performance of
CEDAR in coming up with new routes in an ad hoc network,
while the third set of results evaluates how CEDAR copes
with link failures for ongoing connections.

In the first set of results, presented in Tables I–II, we
compare CEDAR to an optimal shortest path routing algo-
rithm in a best-effort service environment. Our performance
measures are the following: i) average path length (APL); ii)
message complexity for route computation (MC); and iii) time
complexity for route computation (TC). In addition, we present
the core usage (CU), which is the average number of virtual
links used in a route. Note that for the best effort environment,
we do not have a concept of QoS for connections, and the
increase/decrease waves essentially carry only link up/down
information.

In the second set of results, presented in Tables III–IV,
we evaluate the QoS routing algorithm of CEDAR. We use
bandwidth as the QoS parameter. Table III compares the
performance of CEDAR against the performance of an op-
timal shortest-widest path algorithm in terms of the the path
length (hops) and the maximum available bandwidth () for
computed routes. Table IV compares the accept/reject ratio for
CEDAR (with and without increase/decrease waves) and an
optimal shortest-widest path algorithm.

In the third set of results, presented in Tables V and VI, we
evaluate the performance of CEDAR for ongoing connections
upon topology change (induced by link failures and node
mobility). We consider the following parameters: i) location
of the link failure relative to the source [relative link position
(RLP)]; ii) number of packets sent; iii) number of packets
received; iv) number of packets lost; v) number of packets
rerouted; and vi) minimum delay experienced by packets in
the flow once the source receives notification about the link
failure.
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TABLE III
PERFORMANCE OFCEDAR COMPARED TO AN OPTIMAL APPROACH

TABLE IV
PERFORMANCE IMPROVEMENT OF CEDAR WITH THE ADVENT OF ito
AND dto WAVES. THE ACCEPTREJECT RATIO FOR OPTIMAL. CEDAR

WITH WAVES AND CEDAR WITHOUT WAVES ARE 9 : 1, 9 : 1 AND

6 : 4, RESPECTIVELY. (n;m;C;diamC , Avgdeg)=(30, 79, 11, 7, 5)

TABLE V
PERFORMANCE OFCEDAR’S RECOVERY MECHANISM ON

A LINK FAILURE. (n;m;C;diamC , Avgdeg)= (30, 79, 11, 7, 5)
WITH LINK FAILURE ON PATH FOR FLOW FROM NODE 24 TO 20

(a)

(b)

In all our simulations, the notation CEDARstands for a
simulation run of CEDAR at time (increase/decrease waves
would have thus been propagated up to time).

A. Performance of CEDAR Without QoS Routing

We use three randomly generated graphs for the results in
this section. The graphs are of sizes 9, 15, and 20, respectively.
The significant parameters for the graph—number of nodes
( ), number of edges (), number of core nodes (), diameter
of the core ( ), and average degree ()—are shown in
the caption of the table containing the results for that particular
graph. For each graph, we measure as mentioned earlier, the
APL in number of hops, MC, TC in seconds, and the CU,
also in number of hops. These measurements are taken for

TABLE VI
PERFORMANCE OFCEDAR’S RECOVERY MECHANISM ON

A LINK FAILURE. (n;m;C; diamC , Avgdeg)=(30, 79, 11, 7, 5)
WITH LINK FAILURE ON PATH FOR FLOW FROM NODE 16 TO 24

(a)

(b)

both optimal shortest path routing and CEDAR. For CEDAR
we measure these parameters at different points of time to
study the impact of the propagation of ito waves. The time

used in the tables is the constant time for which ito waves
are delayed at each hop. The source and destination pairs are
chosen randomly.

As can be seen from the results, CEDAR performs rea-
sonably well before the introduction of ito/dto waves, but
converges very fast to a near optimal performance once these
waves are introduced. The tables show the different measures,
APL, MC, TC, and CU at various time instants, until CEDAR
converges. The ideal value for the CU should be zero, as we
seek to avoid using the virtual tunnels for data flow in order to
prevent it from becoming a bottleneck. CEDAR exhibits a low
CU because we preferentially avoid using the virtual tunnels;
a virtual tunnel edge is chosen only if the local state at the
core node performing the route computation is inadequate to
forward the probe into a farther domain toward the destination.

The counterintuitive increase in APL, MC, and TC with
increase in time in these simulations are due to the fact that
we are able to preferentially bypass the core (as indicated by
the decrease in CU) as more topology information becomes
available. Thus, the results shown in Tables I and II indicate
the near optimal nature of CEDAR with increase in network
stability.

B. Performance of QoS Routing in CEDAR

Bandwidth is the QoS parameter of interest in CEDAR.
We first compare QoS routing in CEDAR with an optimal
shortest widest path algorithm with respect to two parameters:
the available bandwidth ( ) along the computed path, and the
path length (in number of hops). The time field in Table III
represents the time at which the QoS route request was issued.
Once the route is computed, each link locks the specified
amount of resources along that route before processing the next
connection request, i.e., we assume instantaneous reservation.

Next, we present the improvement in the performance of
CEDAR with the advent of the ito and dto waves. We use
the constant threshold approach to decide when to generate a
wave. The field in a wave is set using a linear function
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Fig. 3. Graph used for performance evaluation simulations (n;m;C; diamC ;Avgdeg) = (30, 79, 11, 7, 5).

(of the advertised bandwidth) and while ito waves travel
from one hop to another with a constant delay, dto waves
travel are propagated from one hop to another with no delay.
The parameter we use to evaluate the performance is the
accept/reject ratio for connection requests. As can be seen,
once the ito/dto waves are introduced, the performance of
CEDAR is close to that of an optimal algorithm.

For the results in this section, we use the 30 node graph
in Fig. 3 with link bandwidths randomly set to either 50 units
or 100 units. In the column headers in Table III,
and stand for the hop count and available bandwidth
of routes computed by CEDAR and the optimal algorithm,
respectively. Note from Table III that CEDAR approximates
the optimal algorithm for the scenarios simulated. Further,
from Table IV, we can see the utility of the ito and dto waves
to CEDAR. In this table, the column headers , , and

represent whether the connection request was accepted
in the optimal algorithm, CEDAR with waves and CEDAR
with no waves, respectively; and denote the start and
end times for the connection andand denote the source
and the destination, respectively.

C. Effect of Link Failures on Ongoing Flows in CEDAR

While the previous sets of results evaluated the performance
of CEDAR in terms of generating initial routes, we now turn
our attention to the ability of CEDAR to provide seamless
connectivity in ad hoc networks in spite of the dynamics of
the network topology.

The following is the sequence of events that occurs on a
link failure.

• Link fails on path from to .
• sends back notification to source and starts recomputa-

tion of route from to .

• For each subsequent packet thatreceives, it drops the
packet if the recomputation of the previous step is not
yet completed. Otherwise, forwards the packet along
the new route with the modified source route.

• Upon receiving a link failure notification, stops sending
packets for that flow immediately and starts recomputa-
tion of the route from to .

• Once the recomputation of the previous step is complete,
the source once again starts sending packets for that flow
along the new route.

This sequence of events is also illustrated in Fig. 4.
Fig. 3 shows a 30 node graph that is used for evaluating the

performance of CEDAR in the presence of link failures. For
an arbitrary flow that transmits 1 KB packets at a mean rate of
500 Kbit/s with Poisson and MMPP (on/off ) traffic
source, we bring down links that are progressively farther away
from the source, and we show the impact of that link failure in
terms of number of packets lost, number of packets rerouted,
and delay for subsequent packets.

As can be observed from Tables V and VI, the relative
location of the link failure with respect to the source has a
significant impact on the previously mentioned parameters.

• If the link failure is very close to the source, the recom-
putation time at the node before the failure is large, and
hence a considerable number of packets can potentially be
lost. But the source notification message, described earlier
in Section V, reaches the source almost immediately, and
hence it prevents a large number of packets from getting
dropped.

• If the link failure is very close to the destination, the
recomputation time at the node before the failure is
small, and hence few packets get dropped. But the source
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Fig. 4. Effect of a link failure on an ongoing flow.

notification message reaches the source with some delay
and hence the number of packets that get rerouted is large.

• If the link failure is somewhere midway between the
source and destination, both mechanisms (route recompu-
tation and source notification) fail to react fast enough to
prevent loss of packets and hence the number of packets
lost and rerouted is relatively large.

VII. RELATED WORK

We present a brief survey of related work in two areas:
routing in ad hoc networks, and QoS routing in wireline
networks. QoS routing in ad hoc networks is still relatively
unchartered territory.

A. Routing in Ad Hoc Networks

Most ad hoc routing algorithms that we are aware of
generously use flooding or broadcast for route computation.
As we have mentioned before, our experience has been that
flooding in ad hoc networks does not work well due to the
presence of hidden and exposed stations.

Ad hoc routing algorithms that provide a single route in
response to a route query from a source ([4], [12], [13]),
have low overhead but sometimes use suboptimal and stale
routes. Brochet al. [4] use flooding in the worst case for
finding routes. Dubeet al. [12] consider signal strength as a
metric for routing. Toh [13] uses additional criteria to judge
routes: the relaying load, or number of existing connections
passing through an intermediate node, and location stability,
as measured in associativity ticks. Sivakumaret al. [3] use
a spine structure for route computation and maintenance. It
provides optimal or near optimal routes, depending upon the
nature of information stored in the spine nodes, but incurs a
large overhead for state and spine management.

Previous work on tactical packet radio networks had led to
many of the fundamental results in ad hoc networks. Jubin
and Turnow [14] use minimum-hop distance-vector routing.
To extend routing to larger networks, hierarchical routing has
been proposed [15], with either distance-vector routing [16] or
link-state routing [17] used within each cluster.

Other shortest-paths routing algorithms incorporate mea-
sures of delay or congestion into the path weights [18], but
these algorithms usually have some centralized computation
of the delay and congestion metrics.

The multipath routing algorithms are more robust than the
single route on-demand algorithms, at a cost of higher memory
and message requirements. In [5], a source may learn of more
than one route to a destination, hence the routing decision
is flexible and fault tolerant. The hybrid routing algorithm in
[19] combines the robustness of multipath routing with the low
overhead of a single route on demand: when node mobility is
high, [4] is used; when node mobility is low, [5] is used.

Currently, the IETF-MANET working group is considering
several ad hoc routing proposals, such as AODV [6], DSR [4],
TORA [5], and ZRP [9], [10], etc.

As is apparent from our work, we have used many of the
results from contemporary literature. The notion of on-demand
routing, use of stability as a metric to propagate link-state
information, clustering, and the use of cluster heads for local
state aggregation have all been proposed in previous work in
one form or the other. The core architecture is similar to the
Landmark Hierarchy [16] and also the Viewserver Hierarchy
[20]. We believe that our contribution in this paper is to
propose a unique combination of several of these ideas in
conjunction with the novel use of the core, increase/decrease
waves, core broadcast, and local state-based routing in the
domain of QoS routing. Consequently, we are able to compute
good admissible routes with high probability and still adapt
effectively with low overhead to the dynamics of the network
topology.

B. QoS Routing

QoS routing algorithms can be mainly classified into two
categories: distributed ([11], [21]–[23]) and centralized ([11],
[24], [25]).

Wang and Crowcroft [21] show that if the total number
of independent additive and multiplicative QoS constraints
is more than one, then the QoS routing problem is NP
complete. Assuming that all routers are using weighted fair
queuing (WFQ) scheduling, Ma and Steenkiste [11] and Por-
navalaiet al. [22] show that the relationships between various
QoS parameters (bandwidth, delay, delay-jitter, and buffer
space) can be utilized to find QoS routes in polynomial
time. Wang and Crowcroft [21] propose shortest-widest path.
A comparison of shortest-widest, widest-shortest, dynamic
alternative, and the shortest distance path is presented in [11].
A distributed algorithm for finding delay constrained routes
has been proposed by Sun and Langendoerfer [23].

Ma and Steenkiste [11] propose a centralized algorithm for
finding the fair share of a best effort flow, which can be used
for shortest-widest path, widest-shortest path, or any other
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algorithm for routing the best effort traffic. Effects of uncertain
parameters on QoS routing with end-to-end delay requirements
is discussed in [24]. For a wide class of probability distribu-
tions, Lorenz and Orda [24] and Guerin and Orda [25] propose
efficient exact solutions to optimal delay partition problem
(OP) and a pseudo polynomial solution to optimally partitioned
most probable path (OPMP). This work is currently being
applied in order to extend the CEDAR approach to support
delay as a QoS parameter in ad hoc network environments.

A simulation-based study of the relationship between rout-
ing performance and the amount of update traffic is reported
by Apostolopouloset al. [26].

VIII. C ONCLUSION

In this paper, we have presented CEDAR, a routing al-
gorithm for providing QoS in ad hoc network environments.
CEDAR has three key components: a) the establishment and
maintenance of the core of the network for performing the
route computations; b) propagation and use of bandwidth and
stability information of links in the ad hoc network; and c) the
QoS route computation algorithm. While the core provides an
efficient and low-overhead infrastructure to perform routing
and broadcasts in an ad hoc network, the increase/decrease
wave-based state propagation mechanism ensures that the
core nodes have the important link state they need for route
computation, without incurring the high overhead of state
maintenance for dynamic links. The QoS routing algorithm
is robust and uses only local state for route computation at
each core node.
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