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For fixed quality-of-service constraints and varying channel interference, how should a mobile node in a wireless network adjust its
transmitter power so that energy consumption is minimized? Several transmission schemes are considered, and optimal solutions are
obtained for channels with stationary, extraneous interference. A simple dynamic power management algorithm based on these solutions
is developed. The algorithm is tested by a series of simulations, including the extraneous-interference case and the more general case
where multiple, mutually interfering transmitters operate in a therefore highly responsive interference environment. Power management
is compared with conventional power control for models based on FDMA/TDMA and CDMA cellular networks. Results show improved
network capacity and stability in addition to substantially improved battery life at the mobile terminals.

1. Introduction

Whereas overcoming interference has always been a cen-
tral concern in the design of wireless networks, doing so
while conserving energy is important for a growing class
of users. Today’s first and second generation networks are
seeing rapid growth in the use of devices such as personal
digital assistants (PDAs), palm-top and notebook comput-
ers, and lightweight mobile phones, while future micro-cell
and personal communication services (PCS) networks are
being designed for very low power and very high mobility.
For users of battery-powered communication equipment it
is advantageous – or necessary – to minimize energy con-
sumption, provided, of course, that quality-of-service re-
quirements are met. For example, it may be desirable to
suspend transmission at moments when interference is un-
usually high. How to autonomously determine when, and at
what power, a mobile terminal should attempt transmission
is the subject of the present article.

By contrast, existing power control schemes generally
focus on capacity and quality issues. Power control is
employed as a means of balancing received power levels
[7,10,16,22,31,32]; or balancing or guaranteeing signal-to-
interference ratios (SIRs) [1–5,8,12–14,18–20,23,33,35,37–
39], typically at the maximum possible common SIR; and
it is sometimes integrated with other network management
tasks such as base or channel assignment [9,15,26,36].
For cellular systems in particular, the point has been to
minimize co-channel interference (as, for example, under
TDMA, FDMA, PRMA, or related protocols1) and/or near-
far effects (as under spread-spectrum schemes such as code-
division multiple access (CDMA)).

Here we consider a transmitter sending data to a remote
terminal or base station via a communication channel sub-
ject to time-varying interference. The goal is to guarantee
quality of service (expressed as an information transmis-

1 TDMA = time-division multiple access, FDMA = frequency-division
multiple access, PRMA = packet-reservation multiple access.

sion rate or average delay) while conserving energy, in or-
der to extend the life of the battery [28]. Transmitting at a
higher power yields a higher SIR and thus a higher success
rate, but at the cost of more rapidly exhausting the energy
supply – not to mention causing increased interference to
other users. This idea translates directly to the optimization
problem discussed in section 2. We first solve this problem
under the assumption that interference is extraneous (i.e.,
unresponsive to the user’s own transmissions) and time-
stationary. We compare the optimal power management
results to constant-SIR and constant-power solutions.

Then in section 3 we discuss the relationship between
rates and delays in the context of random data arrival
streams. Simple analysis of a special case provides us
with a baseline for determining delays in complicated op-
erating regimes. In section 4 we use the aforementioned
extraneous-interference results as the basis for a distributed
power management algorithm which dynamically selects
power levels, and which works in responsive interference
environments. In section 5 we test this algorithm, and ver-
ify our analysis, by simulation. Concluding remarks and
future research directions are discussed in section 6.

2. Power management amidst stationary, unresponsive
interference

Consider a single network node attempting to send in-
formation to another node at a particular rate while min-
imizing energy consumption. Its communication channel
is subject to time-varying interference. If the received sig-
nal power is p during a time slot when received interfer-
ence power is i then successful reception of the data occurs
with probability s(i, p), and failure occurs with probability
e(i, p) = 1−s(i, p). Success or failure is denoted by χt = 1
or 0, respectively, at discrete time t.

Unless otherwise noted we shall equate the transmitted
and received power p, i.e., normalize so the desired link has
gain 1, as shown in figure 1. The SIR at the receiver is de-
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Figure 1. Illustration of transmitted and received powers before and after
normalization.

Table 1
Some frequently used notation.

e bit error probability function
γ signal to interference ratio (SIR)
It interference power at time t
i value of interference power
p transmitted or received signal power
r target transmission rate
r̄ actual transmission rate
s instantaneous transmission rate (1− e)
θ threshold; p = 0 when It > θ

noted by γ = p/i, assuming interference power i > 0. For
concreteness we shall call these “per-bit” quantities, though
in practice it is likely that the quantity of interest will be
a larger unit of data (e.g., byte, packet). We assume er-
rant bits are simply retransmitted. The interference power,
which is for now assumed to be unresponsive to our trans-
mitter power (i.e., generated extraneously), is modeled as
a stationary, ergodic stochastic process {It: t = 1, 2, . . .}.
Note that, in accord with the normalization illustrated in
figure 1, when the desired link gain varies with time (as for
fast-moving mobiles) the time variation must be accounted
for in the process {It}. Please refer to table 1 for a sum-
mary of our notation.

2.1. Power management problem formulations

In general we seek a rule p = p(i) which minimizes
energy consumption subject to maintaining a transmission
rate r̄ > r for some fixed r, 0 < r < 1. The quantity r̄ is
defined by

r̄ = lim
n→∞

1
n

n∑
t=1

χt,

when the limit exists. Since interference is stationary and
ergodic, and p is a function of i, we know the limit exists
with probability one and r̄ = E[χ1] (where E denotes ex-
pectation with respect to an underlying probability measure
P ). But E[χ1] = E[s(I1, p(I1))], which in turn equals∫ ∞

0
s
(
i, p(i)

)
dP (I1 6 i)

(the latter is a Lebesgue–Stieltjes integral; see, e.g., [17,
27]). So our optimization problem takes the form

min
p>0

∫ ∞
0

p(i) dP (I1 6 i), (1)

∫ ∞
0

s
(
i, p(i)

)
dP (I1 6 i) > r. (2)

The function p which solves this problem will be referred to
as the (relatively) unrestricted power management function.

Before proceeding let us note an important assumption
underlying this formulation: that signal processing at the
receiver is sufficient to provide an accurate estimate of the
interference power. In practice the interference power may
need to be estimated from other parameters such as total
received power, SIR, or recent error frequencies. Also, we
assume network signaling makes this estimate available to
the transmitter as needed, and the update cycles are shorter
than the time over which interference power changes sub-
stantially. In other words, interference should not vary too
much over a round-trip time for data, which, for example,
in a cellular network is typically on the order of 10−5 to
10−6 seconds [11].

Although solving (1) and (2) yields our optimal power
management solution, we would like to gauge system per-
formance and energy savings relative to conventional power
control. Moreover, not all practical transmitters will have
complete freedom to select power levels. For these two
reasons we consider “constant-SIR” and “constant-power”
power management schemes below. Constant-SIR solutions
are obtained by solving (1) and (2) subject to the additional
constraint that p(i) must be a constant multiple of i, i.e.,

p(i) = γ̂i,

where γ̂ > 0 is a parameter of the minimization. Like-
wise we obtain “constant-SIR with threshold” solutions by
solving (1), (2), and

p(i) =

{
γ̂i, if i 6 θ,
0, if i > θ,

(3)

where θ is the interference power threshold beyond which
transmission is suspended.

Analogous to the constant-SIR solutions are “constant-
power” solutions to (1), (2), and

p(i) = p̂, (4)

for p̂ > 0. Finally, we also consider “constant-power with
threshold” solutions, which satisfy (1), (2), and

p(i) =

{
p̂, if i 6 θ,
0, if i > θ.

(5)

2.2. Optimal power management solutions

It remains to consider the forms of s and P (I1 6 ·). The
appropriate choice for s will generally depend on physical
conditions: the topology of the network, the type of pro-
tocol employed, the modulation scheme, the environment,
etc. Consider the curves in figure 2, which show typical bit
error rates versus SIR (e = 1−s versus γ) for different dig-
ital modulation schemes [25,34]. For example, the formula
for the “NC-FSK, fade” curve is 1/(γ+ 2); for “DPSK, no
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Figure 2. Bit error rates (BERs) versus bitwise signal to interference ratio.
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Figure 3. Optimal unrestricted transmitter power functions.

fade” we have e = a exp{−bγ}; and for “BPSK, no fade”,
e = a erfc{

√
bγ } (a = 1/2 and b = 1, as shown).2

We shall assume throughout section 2.2 that e = 1/(γ+
1), so

s(i, p) =
p

p+ i
=

γ

γ + 1
, (6)

and that interference is uniformly distributed, i.e.,

P (I1 6 i) =
i

I
, 0 6 i 6 I , (7)

for some I > 0. We will eventually see that our most
important conclusions are independent of the distribution
of the interference process (see section 2.3).

Let us start by finding the solution to the relatively un-
constrained problem defined by (1) and (2). Using calculus

2 NC-FSK, fade = non-coherent frequency-shift keying over a fading
channel; DPSK, no fade = differential phase-shift keying over a non-
fading channel; BPSK, no fade = binary phase-shift keying over a non-
fading channel.

of variations we find that the solution is a stationary point
of the associated Lagrangian functional [6,30]

F = p− λ
p

i+ p
, (8)

for some constant (Lagrange multiplier) λ > 0. The sta-
tionary point satisfies

0 =
∂F

∂p
= 1− λ

i

(i+ p)2
.

Taking the positive of two solutions we get

p(i) =
√
λi− i. (9)

First let λ 6 I; substituting (9) into, and taking equality
in, eq. (2), yields λ = 3Ir, and hence λ 6 I ⇒ r 6
1/3. On the other hand, taking λ > I yields, by the same
procedure, λ = 4I/[9(1−r)2], and r > 1/3. Summarizing,

p(i) =


√

3Iri− i, if r 6 1/3 and i 6 3Ir,
0, if r 6 1/3 and i > 3Ir,

2
√
Ii

3(1−r) − i, if r > 1/3.
(10)

This solution is shown in figure 3 for various values of r,
using I = 10. Notice that when r 6 1/3 we effectively
use a threshold of θ = λ = 3Ir, whereas for r > 1/3 we
have θ = I .

To better understand the form of this solution, let us con-
trast it with one obtained for an instantaneous transmission
rate function such as

s(i, p) =
p

p+ 1
1

i+ 1
.

Note that this s cannot be expressed strictly a function of
constants and the SIR p/i. Omitting the details, we obtain
p(i) =

√
λ/(i+ 1) − 1 which, unlike (10), is strictly de-

creasing in i. Whereas (10) indicates that transmitter power
should go to 0 (p ∼

√
λi ) as interference i → 0, here we

have p(i) ↑
√
λ− 1 > 0. This is because here, for small i,

s is approximately p/(p+1), so p must be large in absolute
terms to obtain a large s; whereas in our analysis above
s = p/(p+ i) ≈ 1 as long as p is a sufficiently large rela-
tive to i. Since error probabilities are usually (decreasing)
functions of the SIR, we expect the form shown in figure 3
to serve as a useful indicator of general minimum-energy
operation.

Using (10), the average energy consumption per unit
time, or average transmitter power, is

E[p] =

{
3
2Ir

2, if r 6 1/3,

I
( 4/9

1−r − 1/2
)
, if r > 1/3.

We wish to compare this to the case of constant-SIR (with-
or without-threshold) transmission. In the threshold case
we solve (1) subject to (2) and (3). We immediately find
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Figure 4. Percent increase in useful battery life using unrestricted power
management versus best-case constant-SIR operation.

γ̂ = Ir/(θ − Ir), and consequently that the solution calls
for γ̂ = 1 if r 6 1/2 and γ̂ = r/(1− r) otherwise, i.e.,

p(i) =


i, if r 6 1/2 and i 6 2Ir,
0, if r 6 1/2 and i > 2Ir,
ri

1−r , if r > 1/2.

Notice that we have θ = 2Ir when r 6 1/2, and otherwise
θ = I .

The average power in this case is

E[p] =

{
2Ir2, if r 6 1/2,
Ir

2(1−r) , if r > 1/2.

Since useful battery life is inversely proportional to E[p],
we find for example that at r = 0.25 or r = 0.99 the
optimal power management scheme provides a 33% or 13%
increase, respectively, in the useful life of the battery versus
best-case constant-SIR-with-threshold operation.

The constant-SIR (without threshold) solution may be
obtained from the above by taking θ = I . This yields

p(i) =
ri

1− r
.

This solution will be used later as a basis for comparing
unrestricted power management in a variety of interference
environments. The average power is

E[p] =
Ir

2(1− r)
.

Figure 4 shows the expected extension of useful battery life
to be obtained by switching from constant-SIR to the unre-
stricted scheme in the stationary, unresponsive interference
case.

For the constant-power scheme (the solution to eqs. (1)
and (2) with (4) if a threshold is allowed, or (5) if not), we
use equality in (2) to find

θ = p̂

(
exp

{
Ir

p̂

}
− 1

)
. (11)
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Figure 5. Transmitter power using various forms of power management,
r = 0.25. The rate of energy consumption is proportional to the area

under the curve.

From here it is necessary to use numerical root-finding
methods. In the threshold case (when θ is free), an analyt-
ical solution proceeds only as far as the following relation:

p̂

(
1− exp

{
−
Ir

p̂

})
=
Ir

2
.

In the other case (θ = I fixed) we may solve for p̂ in (11)
using θ = I . The average energy consumption per unit
time in either case is

E[p] =
p̂θ

I
.

Now let us briefly compare methods. Figure 5 shows
the optimal curves, taking I = 10 and r = 0.25, for each
of the five cases we have considered. Recall that we have
so far assumed s = γ/(γ + 1) and uniformly distributed
interference (what happens when these restrictions are re-
laxed is discussed in section 2.3). Because each It is uni-
form on (0, 10) we can equate the (normalized) area un-
der each curve with the average energy consumption per
unit time for the corresponding method: 0.94 for the unre-
stricted case, 0.97 for constant-power with threshold, 1.07
for constant-power, 1.25 for constant-SIR with threshold,
and 1.67 for constant-SIR. The constant-SIR schemes are
harshly penalized at low values of r for using high power
when interference is moderate to high. In this example the
useful battery life is improved by 78% by using optimal
unrestricted power management rather than constant-SIR
transmission to obtain the specified transmission rate.

Increasing r to 0.99 (see figure 6) causes attempted
transmission at all interference levels (i.e., θ = I) no mat-
ter what the power management method, so the with- and
without-threshold curves coincide. This yields an aver-
age power of 439.4 in the unrestricted case, and 495.0 in
the constant-SIR and constant-power cases. At this higher
transmission rate the constant-power scheme unnecessarily
uses a lot of power at low interference levels, whereas the
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Figure 6. Transmitter power functions as in figure 5, but with r = 0.99.

disparity between the constant-SIR and unrestricted solu-
tions is narrowed significantly at high interference levels,
relative to the r = 0.25 case.

2.3. Arbitrary interference distributions

In section 2.2 we focused on specific forms of the suc-
cess probability function and the interference power distri-
bution, namely (6) and (7), respectively. What can we say
about the optimal unrestricted power management function
in the general case? Though the optimal p will always
depend explicitly on s, it turns out that the form of the
optimal power management function p is independent of
the distribution of interference power. In fact, by calculus
of variations and the method of Lagrange applied to (1)
and (2) (see, e.g., [30, pp. 368–370]), one can show that
the general minimum-energy solution must satisfy Euler’s
equation

d
di

(
∂F

∂p′

)
=
∂F

∂p
,

where F = p− λs; cf. (8). It follows that the form of p is
obtained simply by solving

∂e

∂p
= −

1
λ

, (12)

where e = 1− s is the bit error probability function.
For example, we can generalize our above discussion to

consider a bit error probability function

e =
b− a

γ + b
, a < b,

– we have used a = 0, b = 1 so far – and get, via (12),

p(i) =
√
λ(b− a)i− bi

(cf. eq. (9)). The “NC-FSK, fade” curve in figure 2 is given
by 1/(γ + 2), so the optimal p using NC-FSK modulation

a

r r r(1-a) (1-a) (1-a)

a(1-r )a(1-r )
1 2

1 2 3

0 1 2 3

Figure 7. Markov chain for bits of data present, with interference-
dependent transition rates.

in a fading environment would be p(i) =
√
λi − 2i. For

DPSK over a non-fading channel we have

e = a exp{−bγ}, a > 0, b > 0,

and for BPSK over a non-fading channel,

e = a erfc
{√

bγ
}

, a > 0, b > 0.

The corresponding solutions to (12) are found to be

p(i) = −
i

b
ln

(
i

abλ

)
(DPSK, no fading),

and, via Leibniz’s rule, the p = p(i) which satisfies

p−1/2 exp

{
−
bp

i

}
=

1
aλ

√
πi

b
(BPSK, no fading).

In any case, after solving (12), λ is obtained (when it
exists, i.e., when the transmission rate r is not unattainable)
by substituting the value of p obtained from (12) into the
constraint (2) with ‘> r’ replaced by ‘= r’. So naturally
the constant λ (constant relative to i) will in general depend
on r and the distribution of the interference power. Fortu-
nately, this dependence does not hamper implementation of
a dynamic power management algorithm, as we shall see
in section 4.

3. Quality of service: Rates versus delays

Thus far our analysis has used a guaranteed mean trans-
mission rate, r, as the main performance constraint, with the
implicit assumption that there are always data to transmit.
Let us now turn to delays, and assume that a single unit of
data (again, say, a bit) arrives with probability a > 0 dur-
ing any particular time slot, independent of others, and is
queued there in an infinite buffer until successfully transmit-
ted. Under certain circumstances the state of the transmit-
ter may then be modeled as the birth–death Markov chain
shown in figure 7, where state k represents the presence of
k bits. In general, under power management, the rates rk
will depend on the statistics of the interference, and we ob-
tain a stationary probability distribution {πk: k = 0, 1, . . .}
of the form

πk =
ak(1− r1)(1− r2) · · · (1− rk−1)

(1− a)k(r1r2 · · · rk)
π0,

k = 1, 2, . . . , (13)
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as long as the chain is stable, i.e.,
∞∑
k=1

ak(1− r1)(1− r2) · · · (1− rk−1)
(1− a)k(r1r2 · · · rk)

<∞.

To get some analytical insight into the relationship be-
tween delays and transmission rates (and to justify the
Markov chain model), we need to impose some kind of
structure on the interference. In [29] we use matrix-
geometric methods [24] to obtain an expression for delays
when interference is a stationary continuous-time Markov
process unaffected by transmitter power. With a stronger
assumption, namely that {It} is an independent, identically
distributed (i.i.d.) sequence (again unaffected by our trans-
mitter power), we can obtain a simple expression for the
mean delay. In this case rk = r for all k, and (13) becomes

πk =
ak(1− r)k−1

[(1− a)r]k
π0, k = 1, 2, . . . .

Solving 1 =
∑
k>0 πk for π0 yields π0 = (r − a)/r. From

this it follows that the mean number of bits present will be
a(1−a)/(r−a) and hence, by Little’s law, that the expected
bit delay is given by

E[D] =
1− a
r − a

, r > a. (14)

Eq. (14), which assumes one-at-a-time arrivals and i.i.d.
interference, provides a baseline for calculating delays. In
the admittedly limited situations where these assumptions
are strictly valid, we may express the optimization prob-
lems based on (1) and (2) as delay-constrained problems
rather than rate-constrained. We generally expect delays to
be greater than (14) when arrivals are bursty or batched,
as will be the case in many real wireless communication
systems. The effects of a non-i.i.d. or – more importantly –
transmission-dependent environment are not so clear. In or-
der to examine this situation we will, via simulation, move
our energy-saving transmitter to a realm where other, inter-
fering transmitters are operating and, moreover, are them-
selves assumed to be using power management.

4. A distributed dynamic power management
algorithm

Two key assumptions about interference made in the
preceding analysis were that it is (i) time-stationary and
(ii) unresponsive to the optimizer’s transmissions. It turns
out that, fortunately for the sake of practical implementa-
tion, power management can still be employed when these
assumptions are substantially relaxed. And while at least
asymptotic stationarity will always be required for mean-
ingful power management constrained by time-average pa-
rameters, our unresponsive-interference restriction can be
completely relaxed. The simulator described in section 5
allows us to model environments which include any num-
ber of transmitters, any subset of which may be using some
form of power management. Here we present a dynamic

power management algorithm (DPMA) which is intended
to work in such environments, and which is based on the
analytical results obtained in section 2.

The algorithm requires no prior knowledge of the oper-
ating environment; the only foreknowledge necessary is a
good estimate of the error probability function e, since the
algorithm will seek a solution satisfying (12). However,
like the analysis on which it is based, the DPMA will as-
sume that interference power can be measured reliably at
the receiver and communicated rapidly to the transmitter;
in some real situations this may not be possible, or at least
not without additional overhead. Also, for concreteness, we
will assume (6) holds, and hence so does (9), giving us ex-
plicit expressions in step 4 of the main algorithm and step 3
of the sub-algorithm, below. For other forms of e or s sim-
ply substitute the appropriate expressions into those steps.

Briefly, the algorithm works as follows: Starting at
t = 0, interference levels are measured and the values used
to update a frequency vector F ; the ith component, Fi,
is incremented by one if the interference is in the interval
[iρ, (i+1)ρ), where ρ is the (perhaps adaptively determined)
“resolution”. Based on F , r (the required transmission
rate), and p (as determined by (12)), the Lagrange multi-
plier λ is numerically estimated to within some specified
tolerance; put another way, (2) is solved, with Fi/(t+ 1) in
place of dP (I1 6 i). Then this value of λ is used to obtain
a numerical value for p, and transmission is attempted at
power level p, assuming a bit (or appropriate unit of data)
is ready for transmission.

Dynamic power management algorithm

Notes: The parameters ρ (“resolution”) and r are as-
sumed fixed in advance. The symbol ‘:=’ is used to denote
assignment.
0. START: Fi = 0 for all i, λ = 1, t = 0.
1. Measure (or estimate) interference I.
2. Set Fi := Fi + 1 for i = bI/ρc.
3. Update λ (see sub-algorithm below).
4. Set p = max{0,

√
λI − I} and go to 1.

5. END.

Sub-algorithm for updating λ

Notes: This recursive algorithm is called from the main
algorithm with initial values sign = 0 and step > 0.
Also, the variable tol is assumed to be fixed and positive.

0. START: i = 0, j = 0.5ρ, s = 0.
1. If j > λ go to 10.
2. If Fi = 0 go to 9.
3. Set s := s+ [Fi/(t+ 1)][1−

√
j/λ ].

4. If s < r go to 9.
5. If sign 6= 1 go to 8.
6. If step 6 tol go to 13.
7. Set step := step/2.
8. Set sign = −1 and go to 12.
9. Set i := i+ 1, j := j + ρ, and go to 1.



J.M. Rulnick, N. Bambos / Mobile power management for wireless communication networks 9

10. If sign = −1 set step := step/2.
11. Set sign = 1.
12. Set λ := λ+ sign · step and go to 0.
13. END.

Note that the sub-algorithm returns with a value of λ
which satisfies λ∗ 6 λ < λ∗+tol, where λ∗ is the “true”
value.

Implementation notes

1. Finite memory and adaptive resolution. In any real
implementation there will be some upper limit on the size of
the vector F being stored. This finiteness can be accom-
modated by allowing the resolution, ρ, to adapt to peak
interference levels. In fact, we use just such a device in
our simulation of section 5.

2. Interpolation of the interference frequency vector. In
the sub-algorithm, the parameter j determines the centering
of F ’s quantization of interference. At the start of the sub-
algorithm we use j = 0.5ρ. A more conservative design
might use j = ρ.

3. Constant-SIR or constant-power DPMA. It is of
course possible to use the DPMA without using the op-
timal, unrestricted solution for p. The expression for p in
the main algorithm would be adjusted accordingly. Below,
when we refer to DPMA, we mean the unrestricted form
used in the algorithm as stated above, unless we explicitly
indicate otherwise.

5. Network simulation

In this section we test the results of our analysis from
sections 2 and 3, and the algorithm presented in section 4,
by computer simulation. Note that the simulator makes the
same optimistic assumption as discussed in section 2.1:
that signalling and signal processing are sufficient to pro-
vide all necessary information to each transmitter at the
times it adjusts its power. This means that total receiver
interference is known and each transmitter knows (and com-
pensates for) its own path loss; or, equivalently, that the
received SIR and received signal power are known. While
this is certainly an idealization in absolute terms, it is ap-
plied to both DPMA and constant-SIR simulations, so the
numerical results discussed below should still provide a rea-
sonable guide to the relative performances of power man-
agement and conventional power control.

Unless otherwise noted, data arrivals are one-at-a-time
(i.e., non-batch) and simulations are run for 25,000 time
steps. We use tol = 0.125 and a simple adaptive resolu-
tion scheme (see implementation note 1, above). Finally, in
the multiple transmitter case we assume transmitter powers
are updated in round-robin fashion at each time instant.

5.1. Unresponsive interference

We start with a very simple case to illustrate the func-
tioning of the DPMA: a single transmitter in a stationary,

unresponsive, sinusoidal-power interference environment.
Ideally one would like the algorithm to “learn” the sinu-
soidal environment within a few cycles and, if r is not too
large, transmit only when the interference power is near
its periodic minima. Taking a = 1 and r = 0.25 yields
figure 8. The average power used in this 500-step window
is only 7.26, while peak interference power is 100. The
transmission rate is 0.28, which meets our specification of
0.25 or greater. Longer simulation (duration 10,000) yields
average power of only 5.01 and transmission rate 0.25.
By comparison, the minimum-energy constant-SIR (with-
out threshold) scheme uses average power 16.7 to attain the
same rate, 0.25. Hence the energy savings using DPMA is
no less than 70%, and battery life is improved by a factor
of at least 3.3, relative to any constant-SIR scheme which
achieves this rate.

Increasing r to 0.5 yields figure 9. Notice that the trans-
mitter is essentially always “on” in this case. The average
power used here is 35.7, yielding a transmission rate of
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Figure 8. Transmitter using DPMA in an unresponsive, sinusoidal inter-
ference environment, r = 0.25.
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Figure 9. Transmitter using DPMA in the same interference environment
as figure 8 (note change of scale), but with r = 0.5.
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0.52. These values become average power 31.4 and rate
0.50 at time 10,000. The minimum-energy constant-SIR
values under the same circumstances are average power
50.0 and rate 0.50; i.e., the transmission power precisely
tracks the sinusoid. The energy saved by DPMA in this
case is 37%, and thus battery life is improved by 59%. At
r = 0.99 the energy savings is still a respectable 19%, and
battery life is extended 23%.

In fact, simulations of a wide range of situations for
a single DPMA-based transmitter operating in an unre-
sponsive interference environment – whether sinusoidal,
bi-level, constant, i.i.d. uniform, or varying according to
a finite birth–death Markov chain – demonstrate agreement
with the analysis of section 2. Specified transmission rates
are attained at the expected, minimal average transmission
power levels. We also find delay values matching our an-
alytical computations for i.i.d. interference (see eq. (14))
when we incorporate random data arrivals into the model.
However, a penalty is incurred when using DPMA for low
rs in the Markovian birth–death interference case: Delays
can become substantially greater when interference lingers
near high levels, during which the transmitter is turned
down or off. For example, with a = 0.05 and r = 0.1, de-
lays under DPMA are greater than those under constant-SIR
by a factor greater than five. On the bright side, the battery
life in this case is extended by a factor greater than ten. We
shall omit further detail for the unresponsive-interference
case and proceed now to the question of transmitter inter-
action.

5.2. Multiple transmitters: Responsive interference

We shall find it useful to use the cellular paradigm in
describing our multiple transmitter simulations. Consider
figure 10, which shows a typical uplink FDMA/TDMA cel-
lular model. Two mobiles (M1 and M2) are using one par-
ticular frequency/time slot in different cells. The link gains
gj,k from mobile k to base j are shown, with g1,2p2 repre-
senting co-channel interference at base station 1 (B1) if M2
uses power p2. The total interference at B1 is the sum of
co-channel interference and noise, shown by dashed lines,
and thus the SIR is g1,1p1/(g1,2p2 + ξ1), where we denote
the noise at receiver j by ξj .

Figure 10. Typical FDMA/TDMA cellular system with uplink paths.

For a gain matrix G = [gj,k] given by

G1 =

[
1 0.1

0.1 1

]
and i.i.d. noise uniform on (0, 100] at each base, we obtain
the data shown in table 2. The delay entries are blank
when a = 1, since then E[D] → ∞ with time; and the
rate r̄ entries are blank when a < r, since then r̄ → a if
the system is stable. The performance measures shown are
averages for the two transmitters.

For five transmitters and a gain matrix

G2 =


1 0.1 0.1 0.1 0.1

0.1 1 0.1 0.1 0.1
0.1 0.1 1 0.1 0.1
0.1 0.1 0.1 1 0.1
0.1 0.1 0.1 0.1 1


we obtain the data shown in table 3. In some cases the
system saturated (i.e., the adaptive resolution, ρ, exceeded
some upper bound) before the simulation was complete.
In such cases the system is considered unstable. We will
discuss stability in more detail below.

In general, these simulations show that the DPMA sig-
nificantly extends battery life by using much less power
on average, with no visible tradeoff in performance (rates

Table 2
Simulation results for two transmitters and gain matrix G1, with i.i.d.

uniformly distributed receiver noise.

N = 2, G = G1 Unrestricted DPMA Constant-SIR

arrival target average actual mean average actual mean
rate a rate r power rate r̄ delay power rate r̄ delay

1 0.1 1.53 0.098 5.62 0.100
1 0.5 44.9 0.502 55.7 0.505
1 0.9 3,620 0.899 4,500 0.901

0.05 0.1 0.726 17.8 2.82 19.1
0.25 0.5 20.7 2.97 26.2 3.02
0.45 0.9 336 1.23 426 1.22

0.1 0.5 7.97 2.27 10.1 2.22
0.1 0.9 48.2 1.13 56.1 1.13

Table 3
Simulation results for five transmitters and gain matrix G2, with i.i.d.

uniformly distributed receiver noise.

N = 5, G = G2 Unrestricted DPMA Constant-SIR

arrival target average actual mean average actual mean
rate a rate r power rate r̄ delay power rate r̄ delay

1 0.1 1.71 0.102 5.82 0.101
1 0.5 74.2 0.502 83.3 0.500
1 0.9 saturated at t = 7 saturated at t = 3

0.05 0.1 0.801 20.4 2.90 19.9
0.25 0.5 26.0 3.00 31.4 2.97
0.45 0.9 saturated at t = 138 saturated at t = 6

0.1 0.5 8.61 2.24 10.9 2.23
0.1 0.9 65.9 1.12 85.9 1.12
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Table 4
Simulation results for two transmitters and gain matrix G1, with birth–

death Markovian receiver noise.

N = 2, G = G1 Unrestricted DPMA Constant-SIR

arrival target average actual mean average actual mean
rate a rate r power rate r̄ delay power rate r̄ delay

1 0.1 0.0813 0.0996 5.51 0.101
1 0.5 44.3 0.514 55.5 0.504
1 0.9 3,510 0.898 4,370 0.900

0.05 0.1 0.213 134 2.76 16.8
0.25 0.5 21.6 5.45 27.0 3.06
0.45 0.9 340 1.22 443 1.21

0.1 0.5 8.57 2.88 10.4 2.28
0.1 0.9 43.7 1.13 53.2 1.14

Table 5
Simulation results for five transmitters and gain matrix G2, with birth–

death Markovian receiver noise.

N = 5, G = G2 Unrestricted DPMA Constant-SIR

arrival target average actual mean average actual mean
rate a rate r power rate r̄ delay power rate r̄ delay

1 0.1 0.487 0.106 5.91 0.102
1 0.5 74.1 0.506 82.4 0.499
1 0.9 saturated at t = 6 saturated at t = 3

0.05 0.1 0.246 118 2.99 20.5
0.25 0.5 26.5 4.06 31.0 2.96
0.45 0.9 saturated at t = 1168 saturated at t = 27

0.1 0.5 9.17 2.74 11.0 2.26
0.1 0.9 65.8 1.13 87.8 1.13

or delays). Delays are very nearly the same as those pre-
dicted by eq. (14). We can compare these results to cases
where the noise power is not i.i.d. uniform but instead varies
according to a birth–death Markov chain (BDMC). If the
BDMC is balanced and has roughly the same range as the
i.i.d. uniform process then the steady state distributions will
be approximately the same; however, the sample paths will
differ in that the BDMC will tend to dwell for longer pe-
riods at high or low interference levels. The result, similar
to the single transmitter case and shown clearly in tables 4
and 5, is that, for low r, delays under the “patient” DPMA
will be much greater than under the relatively “impatient”
constant-SIR scheme.

Now consider figure 11, which shows a typical uplink
CDMA cellular model. Two mobiles (M1 and M2) are
using one particular frequency/time slot in the same cell,
and signal separation is maintained by coding. In this case,
since all mobiles communicate with the same base station,
gj,k = gk for all j and the gain matrix G will have identical
rows.3 Hence the system quality and capacity will depend
on near-far effects rather than co-channel interference, and
interfering-link gains can be greater than the signal-link

3 A more general representation would allow the multiplication of ele-
ments along the main diagonal by some processing gains greater than or
equal to one.

Figure 11. Typical CDMA cellular system with uplink paths.

Table 6
Simulation results for two transmitters and gain matrix G3, with i.i.d.

uniformly distributed receiver noise.

N = 2, G = G3 Unrestricted DPMA Constant-SIR

arrival target average actual mean average actual mean
rate a rate r power rate r̄ delay power rate r̄ delay

1 0.1 9.73 0.099 34.4 0.100
1 0.5 2,680 0.480 saturated at t = 3881
1 0.9 saturated at t = 3 saturated at t = 2

0.05 0.1 4.66 18.7 16.5 19.7
0.25 0.5 198 3.29 433 2.95
0.45 0.9 saturated at t = 301 saturated at t = 10

0.1 0.5 53.0 2.27 86.1 2.36
0.1 0.9 384 1.13 saturated at t = 3343

gain for any mobile.
For a gain matrix G = [gj,k] given by

G3 =

[
1 0.1
1 0.1

]
,

and i.i.d. uniform noise at the base station (analogous to
the TDMA results in table 2) we obtain the data shown in
table 6. For five transmitters and a gain matrix

G4 =


1 0.5 0.25 0.125 0.0625
1 0.5 0.25 0.125 0.0625
1 0.5 0.25 0.125 0.0625
1 0.5 0.25 0.125 0.0625
1 0.5 0.25 0.125 0.0625


we obtain the data shown in table 7. Again, values are
averages over all N transmitters. Finally, for the CDMA
model with noise which varies according to a birth–death
Markov chain (BDMC), we have tables 8 and 9. Notice the
substantially lower average powers, and the tradeoff with
higher delays for low r. As one would expect, additional
simulation results (not shown) indicate that batch arrivals
increase delays further.

Concerning stability, it is interesting to note that in the
cases where interfering link gains are high, transmitters
which fail (saturate) while using conventional constant-SIR
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Table 7
Simulation results for five transmitters and gain matrix G4, with i.i.d.

uniformly distributed receiver noise.

N = 5, G = G4 Unrestricted DPMA Constant-SIR

arrival target average actual mean average actual mean
rate a rate r power rate r̄ delay power rate r̄ delay

1 0.1 24.7 0.103 62.0 0.101
1 0.5 saturated at t = 88 saturated at t = 2
1 0.9 saturated at t = 0 saturated at t = 1

0.05 0.1 7.01 18.3 23.1 20.0
0.25 0.5 saturated at t = 1266 saturated at t = 16
0.45 0.9 saturated at t = 1 saturated at t = 2

0.1 0.5 134 2.50 saturated at t = 380
0.1 0.9 10,400 1.22 saturated at t = 19

Table 8
Simulation results for two transmitters and gain matrix G3, with birth–

death Markovian receiver noise.

N = 2, G = G3 Unrestricted DPMA Constant-SIR

arrival target average actual mean average actual mean
rate a rate r power rate r̄ delay power rate r̄ delay

1 0.1 1.51 0.104 33.0 0.098
1 0.5 1,970 0.468 saturated at t = 5258
1 0.9 saturated at t = 3 saturated at t = 2

0.05 0.1 1.23 110 16.1 18.1
0.25 0.5 201 3.91 477 3.01
0.45 0.9 saturated at t = 5 saturated at t = 21

0.1 0.5 51.8 2.70 79.3 2.23
0.1 0.9 400 1.13 saturated at t = 2584

Table 9
Simulation results for five transmitters and gain matrix G4, with birth–

death Markovian receiver noise.

N = 5, G = G4 Unrestricted DPMA Constant-SIR

arrival target average actual mean average actual mean
rate a rate r power rate r̄ delay power rate r̄ delay

1 0.1 18.8 0.115 61.7 0.100
1 0.5 saturated at t = 83 saturated at t = 2
1 0.9 saturated at t = 1 saturated at t = 1

0.05 0.1 1.51 122 22.3 19.6
0.25 0.5 saturated at t = 1991 saturated at t = 14
0.45 0.9 saturated at t = 1 saturated at t = 1

0.1 0.5 128 2.68 saturated at t = 38
0.1 0.9 11,300 1.21 saturated at t = 146

power control succeed while using the DPMA (see tables 6–
9). There are two reasons. First, for a large set of operat-
ing parameters, the optimal unrestricted power management
function calls for reduced or zero transmitter power when
interference is high. This tends to moderate the competition
for high SIRs.

Second, note that, under (6), transmitter j’s instanta-
neous successful transmission probability is

sj =
pj

pj + g−1
j,j (
∑
k 6=j gj,kpk + ξj)

.
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Figure 12. Response of constant-SIR and DPMA schemes to an unattain-
able data transmission rate. The two transmitters rapidly saturate under

constant-SIR, but do so only very gradually under DPMA.

Assume, for instance, that N transmitters with identical
target rates are operating simultaneously. Using constant-
SIR, the limiting value for sj (when pk = pj →∞ for all
k) is easily seen to be

r∗ =
1

1 + g−1
j,j

∑
k 6=j gj,k

.

So, for example, with N = 2, gj,j = 1, and gj,k = 0.1
(−10 dB) for k 6= j, the upper limit for s and hence
for r̄ is r∗ = 0.909. This in turn means that transmis-
sion rates r > 0.909 are unattainable using constant-SIR
transmission. Yet, using unrestricted power management,
the DPMA algorithm is able to yield stable operation and
near-target rates or delays for very long times. The main
reason is that the constant-SIR scheme attempts to reach
its target (SIR or rate) immediately, while the more patient
DPMA methodically accumulates data on its environment,
and hence only gradually increases the transmitter power
in persistently high-interference regimes. This is illustrated
in figure 12 for r = 0.91. Meanwhile, as our simulation
results show, the transmitter can operate at near-target per-
formance. While the sensitivity of the DPMA can be easily
adjusted if increased responsiveness is desired, the DPMA’s
measured approach clearly introduces a “slow-blow” kind
of failure, as opposed to the rapid saturation and drop-out
potentially seen by users of conventional power control.
So enhanced stability and capacity may be important side
benefits of using power management.

6. Conclusion and future directions

The motivation for the introduction of system-level
power management is clear enough: a vision of highly
mobile, always ready, data/voice/video communications for
personal communication systems (PCS), micro-cellular net-
works, and other applications on the horizon. Indeed,
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power management may be seen as “the heart of mobil-
ity”, since battery technology is presently so limiting [21].

We have attempted to illustrate the potential benefits of
low-power, rate- or delay-constrained operation. By con-
trast, conventional power control, because of its use of re-
ceived SIRs and power levels (and ultimately network ca-
pacity) as performance measures, did not consider this way
of exploiting fluctuations in interference to save energy.
(To be sure, if interference power approaches a constant
– a common assumption in power control analyses – the
optimal unrestricted solution converges to the constant-SIR
solution.) The kind of power management introduced here
explicitly capitalizes on variations in interference power,
behaving (like carrier-sense multiple access (CSMA)) as
an enhanced “listen-first” kind of protocol. Still, we are
presently considering other ways for mobile devices or the
entire network to save energy, such as network management
which encourages cooperation between users.

While our results indicate the possibility of substantially
reducing energy consumption without sacrificing quality of
service, and possibly enhancing network stability and ca-
pacity along the way, it is important to consider the sim-
plifying assumptions we have made. Perhaps most impor-
tantly, we have assumed accurate measurements or esti-
mates of interference power are available as needed. More
realistically, two problems will arise: Interference power
(and/or path losses) will be coarsely estimated, and the esti-
mates will arrive late. The latter problem – communication
delay in a feedback control system – is of course not at all
unique to power management or power control, nor are its
ramifications. It is possible that these delays will substan-
tially erode system performance or introduce instabilities;
further study is needed.

The former problem – difficulty in precisely determin-
ing the interference power and/or desired-link gain – is well
known in the realm of power control. What if one or both
of these parameters are unknown? It may be necessary
to guess them from recent error rates. Alternatively, it is
often assumed in power control analyses that at least the
received SIR at time t, γt, can be calculated accurately and
communicated quickly to the transmitter. In this case it is
reasonable to use the ratio pt/γt – where pt is the transmit-
ter power at time t – as an approximation or prediction of
It+1/gt+1, the anticipated receiver interference normalized
by the link gain. Finally, in circumstances where interfer-
ence power varies too rapidly for the transmitter to react, or
simply does not vary, the present brand of power manage-
ment offers little or no advantage over conventional power
control, and other energy-saving methods will have to be
found.
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