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Abstract. The next generation of mobile wireless networks has to provide the quality-of-service (QoS) for a variety of applications.
One of the key generic QoS parameters is the call dropping probability, which has to be maintained at a predefined level independent of
the traffic condition. In the presence of bursty data and the emerging multimedia traffic, an adaptive and dynamic bandwidth allocation
is essential in ensuring this QoS. The paradox, however, is that all existing dynamic bandwidth allocation schemes require the prior
knowledge of all traffic parameters or/and user mobility parameters. In addition, most proposals require extensive status information
exchange among cells in order to dynamically readjust the control parameters, thus making them difficult to be used in actual deployment.
In this paper, we introduce a novel adaptive bandwidth allocation scheme which estimates dynamically the changing traffic parame-
ters throughocal on-line estimation Such estimations are restricted to each individual cell, thus completely eliminating the signaling
overhead for information exchange among cells. Furthermore, we propose the yselmdlailistic control policy which achieves a high
channel utilization, and leads to an effective and stable control. Through simulations, we show that our proposed adaptive bandwidth
allocation scheme can guarantee the predetermined call dropping probability under changing traffic conditions while at the same time
achieving a high channel utilization.

Keywords: bandwidth allocation, call admission control

1. Introduction The trunk reservation schem@lso called theguarded
channel schenm)éhas been extensively studied in the tradi-
We have recently witnessed a proliferation and rapid deplojonal voice-centric cellular networks [4,5]. The basic idea
ment of the wireless cellular communication services. Or to reserve a fixed number of channels in each cell ex-
of the major challenges is to effectively utilize the prim&lusively for handoffs. This is shown to be able to de-
scarce resource (i.e., radio channels) in the emerging micféease the dropping probability for the admitted calls. More-
cell and pico-cell environment while at the same time guafVer, the schemes proposed in [1,9,13] allow the queueing
anteeing the QoS of the on-going calls [18,19]. There apf the handoff requests when there is no (reserv_ed) chan-
two generic and critical QoS parameters in mobile wirdl€! available, which can further reduce the dropping prob-
less networks, namely the call (handoff) dropping probabiPility at the expense of higher new call blocking. Ram-
ity and the new call blocking probability. Dropping a call®® et _aI. prove_d that such a scheme is optimal for a I|_near
in progress is generally considered to be more severe, Aiective function of call dropping and new call blocking
needs to be kept under control. An efficient bandwidth ali@robabilities [16]. In addition, they proposedfractional
cation scheme has to ensure that the call dropping proba@ifi@rded channel policshat is optimal for minimizing the
ity is maintained at a predefined level while at the same tin§&!l Plocking probability subject to a hard constraint on the

minimizing the new call blocking probability (or maximiz-CaII dropping probability. In other words, for a given set of
ing the channel utilization) parameters including traffic parameters and mobility char-

acteristics, the fixed bandwidth allocation scheme based on
* A preliminary version of this work was presented at PIMRC'99 [10]guarded channel assignment or its variants can yield an op-
This work was supported in part by a grant from Hong Kong Telecoqimg| solution. All such schemes, however, by reserving a
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ing multimedia traffic. Therefore, an adaptive and dynamtbem difficult to be used in actual deployme@ur major
bandwidth allocation is essential. motivationin this paper is to design an adaptive and dynamic
A call admission control scheme was proposed in [20handwidth allocation scheme that can overcdhese two
This scheme is adaptive to changing traffic by evaluating tineajor deficienciesThe main features of the proposed algo-
network conditions before each new call can be establisheithm are:
However, this scheme cannot guarantee the more stringent L _ -
QoS parameter as the bandwidth is only reserved at the céII_The estlmat!on is donen-line and perl_odlcally,_ hencg, .
where the new call is initiated, and thus subsequent hand-'t can effectwe_zly adapt to the chgngmg t_rafflc_. This is
off calls have higher risks of being droppedhe shadow part_|CL_JIarIy suitable for_the emerging m“'t'me‘."a type of
cluster concepproposed by Levine et al. allows predictive traffic in that the.stafus_tlcal behaw_orof the traffic is either
bandwidth allocation [8], wherein upon each call set up re- not available or s difficult to obtain.
quest, the mobile needs to provide the bandwidth require- The bandwidth allocation is implemented bypeoba-
ments and accurate mobility parameters (position and move-bilistic mechanism, which can reserve the bandwidth in
ment). Such information is passed to the base stations of thean efficient statistical multiplexing manner. This elimi-
cell that the mobile resides as well as the neighboring cells, nates the need to reserve bandwidth explicitly for each
all of which reserve the bandwidth in advance accordingly. call set up. In addition, this can spread new arrivals
This scheme is shown to be able to guarantee the QoS. Theevenly over a control period, thus leading to more effec-
major drawback is the requirement of the detailed trajectory tive and stable control.
information and the S|gnaI|r_1g involved f(_)r each call setup. The rest of the paper is organized as follows. We de-
Another adaptive bandwidth reservation scheme was pro- ibe the bandwidth allocation algorithm and on-line esti-
posed by Oliveira et al. [14], in which the bandwidth isscn. N . . . gortr
mation algorithm in section 2. In section 3, we study the

allocated for a new call in the cell where the call request ) :

o . " o . rformance of our proposed bandwidth allocation scheme
originates, and in addition the bandwidth is reserved in . . . ; . :

; ) S rough simulations, and further investigate the impact on its
neighboring cells. When a handoff occurs, similar band-

. . . . erformance under a variety of changing traffic conditions.

width allocation and reservation are carried out, and reser S :
) . . : . e present the conclusion in section 4.

bandwidths in some original neighboring cells are released.

The novelty of the scheme is that the amount of bandwidth
reserved can be dynamically adjusted, reflecting the actléal
traffic conditions in the network. A similar approach was”
proposed in the adaptive admission control scheme 8tMi\ye consider a cellular network consisting of close packed
etal. [11]. Resource estimations are triggered by the eveRig aqonal cells and using a fixed channel allocation scheme.
of call handoff, origination and termination. Bandwidths reg ;- cell has a capacity of channels. New calls arrive in
served for possible handoffs are estimated using the “spafigf|; at a rate of.;. Connected calls terminate at a ratg.of

activity factors”, providing an approximate control of th; o 1/, is the average call duration time). In addition, calls
QoS. However, the computational and signaling complexly g off from cellk to a neighboring cell at a rate ofi;

ties of these approaches are still heavy due to the upd%ﬁ call. Lethy = X", hix be the handoff rate per call out of
required for each call event. cell k. !

We recently proposeo_l a_dynamic call_ac_zlmission sche- The pandwidth allocation algorithm is executed in a dis-
me [21] based on a_penodlcal control, similar to the Oibuted and periodic fashion. Each cell executes the identi-
prop_osed by Naghshineh and Schwart; [12]. The _SDCA C8AI algorithm based on local estimations. The length of the
preciselyguarantee the target call dropping probability while ..o, period isT. At the beginning of a control period,

at th_e_sar_ne tlm(_e maximizing t_he channel ut|I|zr_;1t|on. Tht‘?le bandwidth allocation algorithm determines the amount
precision is obtained by taking into account the time depegr 0 qidth reserved in the next control period for the par-
dence of the call dropping probability and the effect of thg., ar cell by taking into consideration the network traffic
non-neighboring cells. In addition, it also greatly improves,jisions, Notice that such bandwidth reservation is done
over the Gaussian approximation commonly used [7,12} o notential handoffsn a control period, thus eliminat-
However, this als_o requires periodic status information ®thg the need for reserving bandwidth for each call required in
change among different C?”S- _ other schemes [8,14]. More importantly, this enables a more
. The parao!ox, however, is thff‘t all proposed dynamic bangg;cien statistical multiplexing, leading to a more effective
width allocation schemes require the prior knowledge of ﬂ]fse of the bandwidth. Before we present the bandwidth allo-

traffic parameters or/a}nd user mqb|||ty pa}rameters. Und@étion algorithm, we first summarize its key features below:
such conditions, the fixed bandwidth assignment based on

the guarded channel scheme can yield optimal solutions fd) The QoS requirement that the algorithm provides is the
steady state [16], but cannot adapt to changing traffic condi- dropping probability Poog). We calculate an expres-
tions. In addition, most of the proposed schemes require the sion of the Pqes for the call acceptance ratie;, which
status information exchange among different cells in order is defined as the fraction of new calls to be admitted into
to dynamically readjust the control parameters, thus making cell i in the coming control period. Instead of using it

The adaptive bandwidth allocation algorithm
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to determine an admission threshold (i.e., the number of To overcome this limitation, an on-line estimation algo-
new calls that are allowed) as in a guard channel paithm is implemented by restricting the use of information
icy, we stochastically accept each new call with probde those only from the local cell, while the status of the
bility a;, which can spread the new calls uniformly oveneighboring cells are derived by estimation rather than ac-
the period. This avoids a sudden overload of the netwotlal signaling. An exponential smoothing technique from
at the beginning of the control period during congestiotime series analysis is adopted to compute the expected ar-
leading to a more effective and stable control. rival rate from the observed values. Noticeably, a similar
technique was used in TCP adaptive retransmission to esti-
(2) We derive the call dropping probability as teme- mate the round-trip time (RTT) [6].
dependent functiom; (7) in a cell while taking into ac- cgncretely, let.(” (/) be the observed arrival rate in cell
count itsfinite capacity It greatly improves over the ¢ the ith control period. This value is needed and is avail-
Gaussian approximation commonly used [7,12]. Wgpe at the beginning of thg + 1)th control period (i.e., the
then gompute the average dropplng pro_bapﬂ;-yas N end of jth control period). Leﬁge) (j) be the estimated ar-
equation (17) over a control period, taking into account ais for the jth control period (at the beginning of thi¢h

its time dependence. This increases the precision ovel & irol period). Using exponential smoothing, we have
single-value approximation within the control period. ’

© © - ), .

The major computational complexity of the control algo- WU D = m0) F A e 0. (D)
rithm is to obtain the acceptance ratio by solving the notnder the uniform handoff rate case, the handoff fatan
linear equation (18) for the average dropping probability or@lso be obtained similarly:
line. However, since the control is stochastic, a coarse-grain o, . o, . 0, .
integration of the average dropping probability is already hf )(J +1h= azhf )(J) +(d- “2)}15 )(J)‘ (2)
sufficient. For the observed channel occupamgy(j + 1) at the be-

To derive the control algorithm, the key is to obtain thginning of the(;j + 1)th control period, we note that it con-
acceptance ratia; for cell i via equation (18) according sists of two components. First, tisentrollablecomponent
to the following steps: (a) the arrival rate, the handoff rateonsists of the channels occupied by calls admitted tai cell
and the average channel occupancy in the local cell are ediiting thejth control period. It is directly controlled by the
mated on-line in section 2.1; (b) the time-dependent survivadimission actions of the local cell, and is approximated by
probability of a call in a cell is computed with the estimateg; (j))‘fo) (/)T. Secondly, thebackgroundcomponent con-
handoff rate in section 2.2 to be used in the following stepists of the channels occupied by all the ongoing calls which
(c) these parameters are used to compute the evolution of fiire admitted in the previous control periods, and handoff
mean(n; (t)) and variances; (t)2 of the time-dependent oc- calls which entered the cell during thiéh period or before-
cupancy distribution in each cell in section 2.3; (d) in turrhand. The background occupancies cannot be controlled di-
these enable us to find the evolution of the dropping probctly by the actions of the local cell, but it is expected to
bility in section 2.4, prescribed by the off-line solution to &xhibit some long term statistical behavior given the traffic
diffusion equation applicable to sufficiently large systems.does not change too rapidly. This will be further elaborated

using examples in section 3. Letting® (j) be theobserved
2.1. The on-line estimation algorithm background channel occupanatthe end of thgth control

period, we have
The on-line estimation algorithm is developed to reduce the o) - . 5 (0), .
signaling load required in most dynamic call admission al- NOG) = niolj + D =siDa(Di" (DT, 3
gorithms [7,8,11,12,21]. For example, in [21], célhas wheres;(¢) is the survival probability of a call in cell av-
to obtain status information from all cells that have potereraged over a time interval the expression with = T
tial handoffs at the beginning of each control period. Fdieing the average over the entjia control period.s; () is
all neighboring cells, the signaled parameters include theomputed in the following subsection.
channel occupanacyio, the traffic arrivali; and the accep-  The estimatedbackground channel occupancy for the
tance ratiaz; in previous control period. In addition, it has(j + 1)th control period is given by
to pass exactly the same set of parameters of its aygnX; o, . o, . o), -
andg;) to all those cells. This requires a significant amount NOG+D =aaN () +L-aaNO(). (&)
of signaling. One potential solution is to enlarge the contrdlotice that the coefficients; (i = 1,2, 3) used in equa-
periodT so as to reduce the signaling frequency. Howeveipns (1), (2) and (4) have to be properly selectedrtioth
this can resultin the inaccuracy in computing the channel call the estimated values. In general, a small valug ¢thus,
cupancy distribution, since statistical uncertainty grows with large value of - «;) can keep track of the changes more
time. More seriously, if the traffic condition changes in angccurately, but is perhaps too heavily influenced by tempo-
cell, the control algorithm will not be able to adapt its contratary fluctuations. On the other hand, a large value;ois
parametersin time. These two factors hinder the deploymenbre stable but could be too slow in adapting to real traffic
of such algorithms in actual implementation. changes. In our experiment, we find the settingpanda;
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between 6 and 07, andas between B and 09 are ade-
guate for the estimation.

2.2. The survival probability for uniform handoff rate

In this subsection, we present the derivation for the survival
probability for uniform handoff ratei(, = h/6). Specifi-
cally, we use the estimated value/o&= 1® obtained at the
beginning of each control period.

Consider the single-call transition probability, (¢) that b) ® +6> + 12/N\ +...
an ongoing call in celk at the beginning of the control pe- '
riod (r = 0) is located in cell at timez. In particular, f;; (1) Figure 1. (a) A ]‘.9—cell hexagonal cellular network _Wlth yvrap—around con-
is the survival probability of a call in cell at timer. For nection. (b) Topology of paths connecting= .
an effective control enforcing dropping probabilities of the
order 103-102, we assume that essentially all calls hang.
off successfully, resulting in the evolution equation :

The first-order terms consist of one and only ahe
nce the elements of, are nonzero only for neighboring
cells, the first-order contributions go only to neighboring

dfix(?) cellsi andk, with
J Oft ==Y Jijfix@® and fi(0) =3, (5)
. o0
J (—1)"
| o nn=>3 —
whereJj; is the transition matrix given by;; = h; + 1 and —
Jir = —hji fori # k. The solution to (5) is 1h h .
x [(h+u)’_ gt T gh+twT }
fir(®) = [exp(=Jn)],,. (6) i
t
The computational complexity of this matrix operation can ) exp[—(h + “)t]' (11)

be reduced by considering the off-diagonal terms as pertur- )

bations to the diagonal part gf Each term in the resultantt Correésponds to the event that a call is handed off from
perturbation series of . (1) corresponds to the contribution®e! % 1. o o

of a path connecting andi by cell hopping. While the Higher order contributions can be evaluated similarly.
perturbation technique is applicable to non-uniform handdfP" @ Path withve hops along the path frora to i, we ob-

rates in general [21], results for the case of uniform raté@n

is particularly illustrating. Notice that the matrik can be 1/ ht\"

WriF:ten as g ° qn(t) = ] <€) exg—(h + wt]. (12)
J=Jo+ J1, (7) This equation can be intuitively interpreted by counting the

where number of handoff events along the path. Since all hopping

and termination events are assumed to take place indepen-
(Jo)ix = (hx + 10)8ik, dently at the same rate, the occurrence:afuch events in
time ¢ obeys a Poisson distribution with me&h + w)z.
(8) A path with n hops requires each of theevents to be a
handoff to a specified neighboring cell, excluding the other
For homogeneous handoff ratds, = h andh;; = h/6. five neighbors and the termination event. Hence, the proba-

—hir, k,i = nearest neighbors,

e = { 0, otherwise.

Considering/; as the perturbation, we have bility g, (¢) is given by[h/6(h + 1)]" ps, where the Poisson
~ distributionp, = [(h + w)t]" expg—(h + w)t]/n!, resulting
N D r—1 in equation (12).
[exp—Jn)];, = Z r! [J6 + (Jo 1+ Hence, fix (1) is obtained by summing over all possible

r=0 . .
paths betweert andi. For the cellular network in fig-

r—1
+AIT) L ) ure 1(a), figure 1(b) shows the examplekof= i, in which

The zeroth-order term consists of those terms in (9) whi@fch diagram represents the topology of a path connexcting

contain noJ;. Hence, the zeroth-order contribution gero itself, with vertices and edges representing cells and paths,
only toi = k, with respectively. Hence, there are one path of 0 hops, no path of

1 hop, six paths of 2 hops and twelve paths of 3 hops, leading

9]

(=)’
qo(t) = (18),; = exp[—(h + wt]. (10)
; rt fii (1) = qo(t) + 6q2(t) + 1293(¢) +---.  (13)

It corresponds to the case that no handoff events take pl&iacehr is the average number of hops in timethe re-
between time 0 and sultant perturbation series is rapidly converging/foup to
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O(1). For a handoff raté as high as 0.05% andr = 20's, channel occupancy distribution). It is obtained by solving

n = 0.005 s1, the computed values fof;; (r) are lower the diffusion equation describing the evolution of the chan-

than the true values by 1% up to 2 hops, and 0.3% up mel occupancy distribution while taking into account the

3 hops. nite capacityof each cell. The derivation is outlined in ap-
The survival probability averaged over timés given by  pendix, with the result

1L : exd—& (0?/2] | [(ni(®) — niol
Si(t)z_/ dr’ fii(t — 1), (14) Dy =2 ’ + 2 ZH(E®),
A (t) Cr—ny o ()2 & ®)
whose closed form can be easily obtained using integration (16)
by parts. whereé&;(t) = (N — (n;(t)))/o;(¢t) is the normalized va-

cancy in celli at timet, with N being the capacity of cell|
2.3. The mean and variance of the occupancy distributionand # (x) is related to theomplementary error functiovia
H(x) = erfc(x/~/2)/2 [15]. The(n;(r)) ando;(1)? are the
The channel occupancy distribution at a ggJl(z) is deter- meanand varianceof the channel occupancy distribution,
mined by the superposition of the ongoing calls and the nevhich are given in section 2.3.
calls admitted to the network. Based on the estimation ob- The average dropping probability over a control period is
tained in section 2.1, the mean of the occupancy distributiobtained by
pn; () in celli at timer of the (j + 1)th control period con- 1 T
sists of both the background and controllable components, D; = _/ dr D; (1). (17)
given by T Jo
. . o, . For an on-line periodic control, the complexity of the inte-
(11 (0) = NG + 1 + 510+ DTG + e, (15) gration could be very high. However, since our control is
where the background compone¥® (j + 1) is obtained in based on a probabilistic model, the precision for integration
equation (4)%@) (j + 1) is the estimated new call arrival in needc not be high. We found that it is sufflc_lent to use a
the next(j + 1)th control period (equation (1)), amg(j 4 1) 7-p0|nt. Slmpscn rule [15]..The acceptance ratic¢an then
is the acceptance ratio for the next control pettiuat needs P€ €asily obtained by solving numerically
to bc ccmputed . o . Di = Poos (18)
Similarly, we can obtain the estimation for thariance _
oi(1)? of the channel occupancy distribution at timeAs At low traffic, it may happen thaD; < Pgos even for
it turns out that the channel occupancy distribution can be = 1. Theng; is set to 1. Similarly, at high traffiey; is
approximated by a Poisson one, we take the variance to$gs to 0 ifD; > Pgoseven fora; = 0.
the same as the medm (r)).
The Poisson nature of the channel occupancy is justi-
fied for the new calls within the same control period, e3- Results
ther directly arriving at the local cell, or entering after first )
arriving at a neighboring cell. It is also a good approxoimulations were performed on a hexagonal cluster of
imation for handoff calls entering the local cell, provided® cells given in figure 1. To alleviafenite size effectsve
that they are only a small fraction of the active calls in thénplement periodic connections on the 3 pairs of opposite
originating cells. However, the Poisson assumption is onﬂdes. of the cluster (wrap-around). The parameters used in
a rough approximation for the surviving calls in the local@ simulation areN = 100,p = 0.005 s, h; = h =
cell. Indeed, the number of calls surviving from the prev-01 %, T = 20 s, andPgos = 0.01. Under such a setting,
ous control periods obey a binomial distribution with vari@ connection lasts on average 200 s and the mobile hands off
ancef;; ([1— fii(t)]nio, rather than a Poisson distributionfwice during its life time. The coefficienig; anda» used
with a slightly larger variance of;; (1)nio. As a result, this are 06, unless specified otherwise. Except for the figures 13
discrepancy leads to an underestimation of the variance, @&l 14, the handoff rate is assumed to be given.
hence, a slight overprovision of the bandwidth. Neverthe- We first compare the result with that of SDCA proposed
less, as justified by the results in section 3, the approximatibth[21]. Figure 2 shows that both schemes can guarantee
is adopted because of the reduced computational complexiig target call dropping probabilityPges = D; = 0.01),
at the expense of only a slight and acceptable overprovisi®tit the scheme based on local parameter estimation has a
slight overprovision of the bandwidth, thus yielding a call
2.4. The call dropping probability dropping probability slightly lower than the target. This is
caused by the conservative estimation in the control algo-
Now we introduce the time-dependent call dropping probathm, partly due to the Poisson approximation for taei-
bility D;(r) for cell i. The dropping probability can be ex-ance Notice that this is also evident from the utilization
pressed in terms of the quantities (channel status at the curve shown in figure 3.
beginning of a control periodjz; (z)) (themeanof the chan- We next present the results when the traffic condition
nel occupancy distribution) ang} (1) (the varianceof the changes, by considering the scenario that the traffic input
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Figure 5 demonstrates the dynamic behavior of the call
dropping probability for each control period when the net-
work is under saturation loading = 2 s~1. In this case, the
long term call dropping probability is maintained a0085
(below the target dropping probability@L). The utilization
obtained is B1. The new call blocking probability is.®7
caused by the overloading condition. One observes from fig-
ure 5 that the temporal behavior of the call dropping prob-
ability is also periodic, well matching the periodic changes
of the traffic input. In addition, careful studies show that the
target call dropping probability is violated for the first few
control periods when the traffic; changes, due to inaccu-
rate estimations of the traffic. Once the estimation becomes
stable, the target dropping probability is guaranteed for sub-
sequent control periods with the same traffic.

We next investigate the performance under fluctuating
traffic conditions. We consider a similar traffic pattern but

changes periodically, as is best reflected from daily telesth increasing overall traffic intensity given in figure 6.
phone operations. Specifically, the traffic input evolves dsis is the same as previous one shown in figure 5 except
the staircase function shown in figure 4, in which each stéjpat the scaling parametér increases after every long cy-
of the staircase is 40 control periods or 800 s. The parantde of 360 control periods. Figure 7 demonstrates that the
ter P is the scaling factor, and the traffic changes in steps ofimulative average of the call dropping probability is still

0.2P.

well maintained below the target. The call dropping prob-
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ability for each cycle (i.e., for a fixe®) is also presented = ' ' ' T o ooon ' '
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0.1 Control periods = 10 — 4

in figure 7. Notice that the cumulative average is consider- Gunee 2
ably lower than the individual measurements, but the two °®[ ome
converge when the scaling fact®r becomes significantly N
large, as expected. The corresponding utilization and new
call blocking probability are plotted in figures 8 and 9, res
spectively. The high blocking probability for new calls is az )
consequence of the overloaded traffic, which is the range oo
of interest. This clearly demonstrates the robustness and
stability of our bandwidth allocation mechanism. Under °°
such heavy loading, the channel utilization is maintained at
over 80%. This also illustrates the fact that on average about
20% of bandwidth is reserved for handoff in order to main- , , , , , , ,
tain the target call dropping probability. ° S - L
We next consider more volatile traffic conditions, and
study the impact on the call dropping probability of different ~Figure 11. The call dropping probability versus adjustecalues.
estimation coefficients; (i.e.,«1 andway, since the handoff
rate is assumed to be given). While large’s yield better (A = 4 s71), the system is under saturation. Figure 11 de-
performance at the steady state, smallés are necessary scribes the behavior of the call dropping probability under
to cope with volatility. The input traffic follows a periodic a variety of traffic input and different values @f. Specifi-
change given in figure 10, with being the number of con- cally, curve 1 shows the case of= 150 (i.e., the traffic is
trol periods. Note that under the given system parametethanged every 150 control periods) amd= 0.6. In this
the system saturates when the average traffic inpusis®, case the target call dropping probability is well maintained
therefore, under both low input (= 1 s~1) and high input aroundPgoes = 0.01. Curve 2 presents a similar scenario

0.6 Control periods = 150 --—

0.02 |- A

0.005 A
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Figure 12. The dynamic call dropping probability for periodic traffic input. Figure 14. The call dropping probability with estimated handoff rates.
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Figure 13. The call dropping probability based on local estimation of the Figure 15. The estimated handoff rate versus time.

handoff rates.
be leveraged over longer control periods, such as 150

with the samey;, but the traffic is changing more frequentlywhena; = 0.6 andn = 40 whena; = 0.1, but clearly can-
i.e., the traffic is changed eveny= 40 control periods. The not be compensated under= 10 with anya; setting since
result from curve 2 shows that the target dropping probabihe call dropping probability in the single control period im-
ity cannot be satisfied. The major reason is that the chmediately after the hike in call rate can account for more
sen value ofy; = 0.6 is not adequate for keeping track othan 10 periods’ target call dropping probability. Therefore,
such frequent traffic changes. Adjusting the value;ofan the target call dropping probability cannot be guaranteed for
clearly improve the performance guarantee. The result is #l-= 10 shown in curve 4 in figure 11.
lustrated in curve 3 of figure 11 witty; set to 01, and the Finally, we are interested in the system performance
target dropping probability is indeed guaranteed. Howevavhen the handoff rates are estimated. First we adjust the
the target cannot be met under more frequent traffic updatesffic input and use the estimation algorithm to trace the
such as curve 4 in the same figure, in which the traffic llandoff changes accordingly. Figure 13 essentially recap-
updated every = 10 control periods. tures the call dropping probability shown in figure 2. The

This can also be better observed from the dynamical benly difference is that in figure 13 the handoff rate is on-line
havior shown in figure 12. The call dropping probability obperiodically estimated as in equation (2), thus the survival
tained reflects the periodic change of the input traffic eveprobability f;; (z) is computed according to equation (13). It
n = 40 control periods. More importantly, at the beginninghows that the cumulative (target) call dropping probability
of the traffic change from low inputi(= 1 s™!) to high can be guaranteed. Figure 14 presents the results for the traf-
input @ = 4 s71), i.e., every 80 control periods, the instanfic input given in figure 6, and is similar to those presented
taneous call dropping probability is increased significantlin figure 7. Next we assume that the user mobility pattern is
as much as about 10-15 times the target call dropping prgderiodically changed, specifically, the user handoff raie
ability (Pqos = 0.01) in figure 12. This is caused by an exoscillated between.05 and 01 every 200 control periods.
cessive underestimation of the input traffic during the initidtigure 15 illustrates the handoff rate obtained by the estima-
control periods when traffic increases. Such an impact cdon algorithm, which accurately reflects the real changes.
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o In the limit of large N, the evolution equation (A.1) re-
duces to a diffusion equation for the continuous distribution

P(x,t), wherex =n/N:
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Dropping Prob.

2
P& PG L 0%P(x, t)’ (A.3)

oot N e ot dx 9x2
0007 1 wherev = (A — M)/N is the drift velocity, andD = (A +
0008 1 M)/2NZ2is the diffusion coefficient, in analogy with particle
2008 1 diffusion. The boundary condition at= 1 can be obtained
31333 . . . . . . . 1 from equation (A.2), yielding
T we mmm gm0 w0 e 2P(s. 1)
vP(x,t) =D ——2 atx =1 (A.4)

Figure 16. The call dropping probability for periodic handoff rate. dx

The other boundary condition B(x,7) = 0 atx = —o0.

The corresponding call dropping probability is on target anghe initial condition iSP(x, 1) = 8(x — xo) att = 0, where

plotted in figure 16. x0 = nio/N.

The diffusion equation is solved by Laplace transform.

4. Conclusion At x = 1, the solution is

exfd—(1 — xo — vt)2/(4D1)]

In this paper, we introduce a novel adaptive bandwidth allo- P(1,1)=2 N

cation scheme for mobile wireless networks based on local 1 i

on-line parameter estimations. The novelties of the proposed Yoz ro— vt A5
otls. ) _ +—=H . (A.5)

scheme are: (1) both estimation and bandwidth allocation D N 2Dt

are carrled ou'F perlod!qally, thus, can ef_fectlyely_adapt tlo thee dropping probability is given by (r) = py(1) =

changing traffic condm(_)n;, (2) the es_nmayon is restncteg(L 1)/N, which reduces to equation (16).
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