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Efficient algorithms for scheduling data broadcast

Sohail Hameed and Nitin H. Vaidya
Department of Computer Science, Texas A&M University, College Station, TX 77843-3112, USA

With the increasing acceptance of wireless technology, mechanisms to efficiently transmit information to wireless clients are of
interest. The environment under consideration is asymmetric in that the information server has much more bandwidth available, as
compared to the clients. It has been proposed that in such systems the server should broadcast the information periodically. A broadcast
schedule determines what is broadcast by the server and when. This paper makes the simple, yet useful, observation that the problem of
broadcast scheduling is related to the problem of fair queueing. Based on this observation, we present a log-time algorithm for scheduling
broadcast, derived from an existing fair queueing algorithm. This algorithm significantly improves the time-complexity over previously
proposed broadcast scheduling algorithms. Modification of this algorithm for transmissions that are subject to errors is considered. Also,
for environments where different users may be listening to different number of broadcast channels, we present an algorithm to coordinate
broadcasts over different channels. Simulation results are presented for proposed algorithms.

1. Introduction

With the increasing acceptance of wireless technology,
mechanisms to efficiently transmit information to wireless
clients are of interest. For instance, such mechanisms could
be used by a satellite or a base station to communicate in-
formation of common interest to wireless hosts. In the
environment under consideration, the downstream commu-
nication capacity, from server to clients, is relatively much
greater than the upstream communication capacity, from
clients to server. Such environments are, hence, called
asymmetric communication environments [2]. In an asym-
metric environment, broadcasting the information is an ef-
fective way of making the information available simultane-
ously to a large number of users. For asymmetric environ-
ment, several researchers have proposed algorithms for de-
signing broadcast schedules [1–3,5–8,14–16,18–20,22,24–
27,36,37,39].

We consider a database that is divided into information
items. The server periodically broadcasts these items to all
clients. A broadcast schedule determines when each item
is transmitted by the server. We present a new approach
to design broadcast schedules that attempts to minimize the
average “access time”. Access time is the amount of time a
client has to wait for an information item that it needs. It is
important to minimize the access time so as to decrease the
idle time at the client [1,2,5,15,18,19,24–27,37,39]. This
paper makes three contributions:

• We observe that the problem of broadcast scheduling is
related to packet fair queueing [10,28,30]. While ob-
vious in the hindsight, this observation has not been
exploited before to design efficient broadcasting algo-
rithms.

• Based on the above observation, we present a O(logM )
broadcast scheduling algorithm, where M is the num-
ber of information items. Simulations show that this
algorithm achieves near-optimal performance. A modi-

fication of the algorithm to take transmission errors into
account is also presented.

• In environments where different clients may listen to
different number of broadcast channels (depending on
how many they can afford), the schedules on different
broadcast channels should be coordinated so as to min-
imize the access time for most clients. We extend the
above algorithm to such an environment.

The rest of this paper is organized as follows. Sec-
tion 2 introduces terminology, and derives some theoretical
results that motivate the proposed algorithms. Section 3
compares packet fair queueing and broadcast scheduling.
Section 4 presents the proposed scheduling algorithm for a
single channel. Section 5 shows how the proposed algo-
rithm can be modified to take transmission errors into ac-
count. Section 6 presents scheduling algorithms for broad-
cast on two and three channels. Section 7 evaluates the
performance of our algorithms. Related work is discussed
in section 8. A summary is presented in section 9.

2. Preliminaries

Database at the server is assumed to be divided into
many information items. li represents the length of item i.
The time required to broadcast an item of unit length is re-
ferred to as one time unit. Hence time required to broadcast
an item of length l is l time units. M denotes the total num-
ber of information items in the server’s database. The items
are numbered 1 through M . An appearance of an item in
the broadcast is referred to as an instance of the item.

The spacing between two instances of an item is the time
it takes to broadcast information from the beginning of the
first instance to the beginning of the second instance. It
can be shown that, for optimal broadcast scheduling, all in-
stances of an item should be equally spaced [27,33]. Here-
after, for our theoretical development, we assume that all

 J.C. Baltzer AG, Science Publishers



184 S. Hameed, N.H. Vaidya / Efficient algorithms for scheduling data broadcast

instances of item i are spaced si apart. The equal-spacing
assumption cannot always be realized in practice [34], how-
ever, the assumption does provide a basis for developing
the proposed algorithms.

Item Mean Access Time of item i, denoted as ti, is de-
fined as the average wait by a client needing item i until
it starts receiving item i from the server. Arrival of client
requests is assumed to be governed by a Poisson process.
From the Poisson process assumption, it follows that [4]
the average time until the first instance of item i is trans-
mitted, from the time when a client starts waiting for item
i, is si/2 time units. Hence, ti = si/2.

Demand probability of item i, denoted as pi, is the prob-
ability that an item needed by a client is item i. Overall
Mean Access Time, denoted as toverall, is defined as the aver-
age wait encountered by a client (averaged over all items).
Thus, toverall =

∑M
i=1 piti. Substituting ti = si/2, we get

toverall =
1
2

M∑
i=1

pisi. (1)

The theorem below provides a theoretical basis for the
proposed scheduling schemes. The proof is presented
in [33,35].

Theorem 1. Assuming that instances of each item i are
equally spaced with spacing si, minimum overall mean ac-
cess time is achieved when si is given by

si =

(
M∑
j=1

√
pjlj

)√
li
pi
. (2)

Substituting this expression for si into equation (1), the op-
timal overall mean access time, named toptimal, is obtained
as

toptimal =
1
2

(
M∑
i=1

√
pili

)2

. (3)

toptimal is derived assuming that instances of each item
are equally spaced. As noted before, the equal-spacing
assumption cannot always be realized. Therefore, toptimal

represents a lower bound on the overall mean access time.
The lower bound, in general, is not achievable. However,
as shown later, it is often possible to achieve overall mean
access time almost identical to the above lower bound.

3. Broadcast scheduling and packet fair queueing

Consider a switch that has many input channels (queues),
but just one output channel, as shown in figure 1. Packet
fair queueing algorithms [10,30] determine which packet
from the many input queues should be transmitted next
on the output channel. Packet fair queueing algorithms
typically attempt to satisfy two conditions:

• For a specified value φi, input queue i should get at
least fraction φi of the output bandwidth (if the input
queue is non-empty), such that

∑
i φi = 1. When all

input queues are non-empty, this requirement reduces
to allocating exactly φi fraction of the bandwidth to
input queue i. For instance, in figures 1(a) and (b) input
queue 1 gets half the output bandwidth, and the other
two queues get 1/4 of the bandwidth.

• Bandwidth allocated to a particular input queue should
be “evenly distributed”, rather than bursty. For instance,
while in figures 1(a) and (b) the first input queue re-
ceives half the bandwidth, the situation in figure 1(a) is
preferred over (b), because in (a), packets from input
queue 1 are distributed evenly on the output channel.

Now consider broadcast scheduling. As noted previously,
for an optimal schedule, the spacing between consecutive
instances of item i should be obtained using equation (2).
From equation (2), we get

li
si

=
li(∑M

j=1

√
pjlj

)√
li/pi

=

√
pili∑M

j=1

√
pjlj

. (4)

Figure 1. Packet fair queueing.
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Let φi denote the right-hand side of equation (4). That is,
φi =

√
pili/

∑M
j=1

√
pjlj . Then, we have li/si = φi, and∑M

i=1 φi = 1. Thus, the two conditions for obtaining an
optimal broadcast schedule are:

• li/si = φi for each item i. Observe that li/si is the frac-
tion of broadcast channel bandwidth allocated to item i.
This is similar to the requirement for fair queueing that
input channel i should receive fraction φi of the output
bandwidth.

• All instances of each item i should be spaced equally
apart with spacing si. This is similar to the “even dis-
tribution” requirement of fair queueing [10].

Although the problem of packet fair queueing is not identi-
cal to broadcast scheduling, above similarities motivated us
to adapt a packet fair queueing algorithm in [10] to broad-
cast scheduling. The broadcast scheduling algorithm, thus
obtained, is presented below.

4. Single channel broadcast scheduling scheme

In this section, we consider the case when the informa-
tion items are broadcast on a single channel. Section 6
considers multiple channel broadcast. For each item i, the
algorithm maintains two variables, Bi and Ci. Bi is the
earliest time when next instance of item i should begin
transmission, and Ci = Bi + si. (It may help the reader to
interpret Ci as the “suggested worst-case completion time”
for the next transmission of item i.)

Single channel broadcast scheduling algorithm

Step 0. Determine optimal spacing si for each item i, using
equation (2).
Current time is denoted by T . Initially, T = 0.
Initialize Bi = 0 and Ci = si for 1 6 i 6M .

Step 1. Determine set S of items for which Bi 6 T .
That is, S = {i | Bi 6 T , 1 6 i 6M}.
(It can be shown that S is never empty.)

Step 2. Let Cmin = minimum value of Ci over i ∈ S.

Step 3. Choose any one item j ∈ S such that Cj = Cmin.

Step 4. Broadcast item j at time T .
Bj = Cj ,
Cj = Bj + sj .

Step 5. When item j completes transmission, T = T + lj .
Go to step 1.

The algorithm iterates steps 1–5 repeatedly, broadcasting
one item per iteration. In each iteration, first the set S of
items with begin times Bi smaller than or equal to T is

Figure 2. Illustration of the single channel scheduling algorithm.

determined. The items in set S are “ready” for transmis-
sion. From among these items, the items with the small-
est Ci (suggested worst-case completion time) is chosen
for broadcast. As shown in appendix A, steps 1–4 can
be implemented such that the average time complexity per
iteration is O(logM ).

As an illustration, assume that the database consists of
3 items, such that l1 = 1, l2 = 2, l3 = 3, p1 = 0.5, p2 =
0.25, and p3 = 0.25. In this case, by equation (2), s1 =
3.224, s2 = 6.448 and s3 = 7.989. In the first iteration of
the above algorithm, at step 2, B1 = B2 = B3 = T = 0,
and C1 = 3.224, C2 = 6.448 and C3 = 7.989. During
the first iteration, S = {1, 2, 3}, because T = 0, and for
all items Bi = 0. As C1 is the smallest, item 1 is the
first item transmitted. During the second iteration of the
algorithm, T = 1, B1 = 3.224, B2 = B3 = 0, C1 =
6.448, C2 = 6.448 and C3 = 7.898. Now, S = {2, 3} (as
B2 = B3 = 0 < T = 1, and B1 > T ). As C2 < C3,
item 2 is transmitted next. Figure 2 shows the first few
items transmitted using the above algorithm. Note that,
after an initial transient phase, the schedule becomes cyclic
with the cycle being (1,2,1,3).

5. Impact of transmission errors on scheduling

In the discussion so far, we assumed that each item trans-
mitted by the server is always received correctly by each
client. When the wireless medium is subject to transmission
errors, this assumption is not always valid. Traditionally,
in an environment that is subject to errors, the data is en-
coded using error control codes (ECC). These codes enable
the client to “correct” some errors, that is, recover data
in spite of the errors. However, ECC cannot correct large
number of errors in the data. When such errors are detected
(but cannot be corrected by the client), the received item
must be discarded [33]. Thus, if a client waiting for item i
receives an instance of item i with uncorrectable errors, the
item is discarded by the client. The client must wait for
the next instance of item i.

Suppose that uncorrectable errors occur in an item of
length l with probability E(l). Now, li denotes the length
of item i after encoding with an error control code. It can
be shown that theorem 1 needs to be modified to take errors
into account as follows. We omit the proof here due to lack
of space [21,35].

Theorem 2. Given that the probability of occurrence of un-
correctable errors in an item of length l is E(l), the overall
mean access time is minimized when

si =

(
M∑
i=1

√
pili

1 +E(li)
1−E(li)

)√
li
pi

1−E(li)
1 +E(li)

. (5)

Observe that when errors do not occur, E(l) = 0, and
equation (5) reduces to equation (2). With transmission
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errors, the optimal overall mean access time, named topt err,
is as follows [33]:

topt error =
1
2

(
M∑
i=1

√
pili

1 +E(li)
1−E(li)

)2

. (6)

5.1. Scheduling algorithm with transmission errors

The on-line scheduling algorithm presented in the previ-
ous section can be used with transmission errors, with the
only modification that, in step 0 of the algorithm, the value
of si is obtained using equation (5), instead of equation (2).
No other changes are made in the algorithm. The modified
algorithm is evaluated in section 7.

6. Multiple broadcast channels

The discussion so far assumed that the server is broad-
casting items over a single channel and all the clients are
tuned to this channel. One can also conceive an environ-
ment in which the server broadcasts information on multiple
channels, and different clients listen to different number of
channels depending on the desired quality of service (as
characterized by the mean access time).

To illustrate how the algorithm in section 4 may be ex-
tended for multiple channels, we present algorithms for
scheduling broadcast on two and three channels. In prac-
tice, we do not expect a client to be capable of listening to
too many channels simultaneously.

Assume that the broadcast channels are numbered from
1 to c, where c is the number of channels. We assume that
a client listening to j channels, 1 6 j 6 c, must listen to
first j consecutive channels. Thus, a client listening to, say,
2 channels must listen to channels 1 and 2. Let πj denote
the probability that a client listens to j channels. Trivially,∑c
j=1 πj = 1.

6.1. Optimality criteria

For single channel scheduling, we attempted to mini-
mize overall mean access time, toverall. However, with mul-

tiple channels, the overall mean access time experienced
by clients listening to different number of channels would
be different. Let toverall(i) denote the overall mean access
time experienced by clients listening to the first i channels.
Then, the performance metric of interest here, called com-
posite overall mean access time, denoted as tcomposite overall,
is obtained as

tcomposite overall =
c∑
i=1

πitoverall(i). (7)

When a client listens to only 1 channel, a lower bound on
the overall mean access time toverall(1) is given by toptimal in
equation (3). It is easy to see that a lower bound on toverall(i)

is given by toptimal/i. Thus, a lower bound on tcomposite overall

can be obtained as

tcomposite optimal =
c∑
i=1

πi
toptimal

i
. (8)

The objective now is to design multi-channel algorithms
that minimize tcomposite overall.

6.2. Staggered broadcast schedules

The main idea here is to schedule broadcast of an item i
in such a way that its instances on consecutive channels are
“staggered” with some interval. As an example, figure 3
shows scheduling of an item i on three channels. The in-
stances on channel 2 are staggered by an interval of ψi2,
and those on channel 3 are staggered by an interval of ψi3,
with respect to the corresponding instances on channel 1.
Note that the spacing between instances of item i on each
channel is si.

If we assume that every client is listening to all the
three channels, i.e., π3 = 1, π1 = π2 = 0, then clearly,
ψi3 = 2ψi2 = 2

3si would be optimal. With these values,
instances of item i are staggered across the three channels
such that a client listening to three channels would receive
item i every si/3 time units. In general, however, optimal
ψi2 and ψi3 would vary with different πj distributions.

Figure 3. Schedule for item i on three channels. The instances of item i on channel 2 are staggered by an interval of ψi2 and on channel 3 by an
interval of ψi3 with respect to channel 1.
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6.3. 2-channel scheduling

Let us consider the case when c = 2. Hence a client
either listens only to channel 1, or to both channels. Ap-
pendix B.1 shows that, for optimality, ψi2 = si/2. Note
that the value of ψi2 is independent of the values of π1 and
π2. That is, every instance of item i on channel 2 should
appear exactly midway between every two consecutive in-
stances of item i on channel 1, independent of the values
of π1 and π2. (As seen later, for 3 channels, amount of
stagger depends on π distribution.)

Similar to single channel scheduling, the proof of the
above result assumes that the consecutive instances of all
items are equally spaced on a given channel. In addition,
the proof also assumes that an instance of item i on chan-
nel 2 appears exactly after ψi2 time units from an instance
on channel 1. These assumptions may not be realizable in
general. However, they provide a theoretical foundation on
which an algorithm may be developed.

The following algorithm tries to achieve optimal stag-
gering for 2 channels. Similar to the algorithm presented
in the previous section, for item i, the algorithm below
maintains Bji and Cji , for channel j, j = 1, 2.

2-channel broadcast scheduling

Step 0. Determine optimal spacing si for each item i, using
equation (2) (or equation (5), if transmission errors
can occur).
Current time is denoted by T . Initially, T = 0.
Initialize B1

i = B2
i = 0 and C1

i = C2
i = si, 1 6

i 6M .

Steps below are executed to find an item to transmit on
channel h at time T (h may be 1 or 2).

Step 1. Determine set S of items for which Bhi 6 T .
That is, S = {i | Bhi 6 T , 1 6 i 6M}.

Step 2. Let Cmin = minimum value of Chi over i ∈ S.

Step 3. Choose any one item j ∈ S such that Chj = Cmin.

Step 4. Broadcast item j at time T .
If h = 1 then {
C2
j = T + ψj2,

B2
j = C2

j − sj}.
Bhj = Bhj + sj ,
Chj = Bhj + sj .

Steps 1–4, on average, require O(logM ) time, similar to
the algorithm in section 4.

6.4. 3-channel scheduling

Unlike in case of c = 2, for three channels (c = 3),
optimal values of ψ’s are dependent on π’s. Appendix B.2
shows that, for optimality with 3 channels,

ψi2 =
2π2 + π3

4π2 + 3π3
si, (9)

ψi3 =
3π2 + 2π3

4π2 + 3π3
si. (10)

The 2-channel algorithm above can be modified for 3
channels, as follows:

3-channel broadcast scheduling

Step 0. Determine optimal spacing si for each item i, using
equation (2) (or equation (5), if transmission errors
can occur).
Current time is denoted by T . Initially, T = 0.
Initialize B1

i = B2
i = B3

i = 0 and
C1
i = C2

i = C3
i = si for 1 6 i 6M .

Determine ψij , j = 2, 3 and 1 6 i 6M .

Steps below are executed to find an item to broadcast on
channel h at time T (h may be 1, 2 or 3).

Step 1. Determine set S of items for which Bhi 6 T .
That is, S = {i | Bhi 6 T , 1 6 i 6M}.

Step 2. Let Cmin = minimum value of Chi over i ∈ S.

Step 3. Choose any one item j ∈ S such that Chj = Cmin.

Step 4. Broadcast item j at time T .
If h = 1 then {
C2
j = T + ψj2,

B2
j = C2

j − sj ,
C3
j = T + ψj3,

B3
j = C3

j − sj}
else if h = 2 then {
C3
j = T + (ψj3 − ψj2),

B3
j = C3

j − sj}.
Bhj = Bhj + sj ,
Chj = Bhj + sj .

Steps 1–4, on average, require O(logM ) time, similar to
the algorithm in section 4. This algorithm can be extended
for c > 3.

7. Performance evaluation

In this section, we present simulation results for various
algorithms presented above. In each simulation, the num-
ber of information items M is assumed to be 1000. Each
simulation was conducted for at least 8 million item re-
quests by the clients. We assume that demand probabilities
follow the Zipf distribution (similar assumptions are made
by other researchers as well [2,5,37]). The Zipf distribution
may be expressed as

pi =
(1/i)θ∑M
i=1(1/i)θ

, 1 6 i 6M ,

where θ is a parameter named access skew coefficient. Dif-
ferent values of the access skew coefficient θ yield differ-
ent Zipf distributions. For θ = 0, the Zipf distribution re-
duces to uniform distribution with pi = 1/M . However, the
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(a) Simulation results

(b) Analytical lower bounds

Figure 4. Overall mean access time versus access skew coefficient θ.
The simulation curves are obtained using the algorithm given in section 4.
The values obtained by simulation are within 0.5% of the corresponding

analytical values.

distribution becomes increasingly “skewed” as θ increases
(that is, for larger θ, the range of pi values becomes larger).

A length distribution specifies length li of item i as a
function of i, and some other parameters. In this paper, we
consider the following length distribution:

li = round

(
L1 − L0

M − 1
(i− 1) + L0

)
, 1 6 i 6M ,

where L0 and L1 are parameters that characterize the dis-
tribution. L0 and L1 are both non-zero integers. The
round() function above returns a rounded integer value
of its argument. We consider two special cases of the above
length distribution: (i) Increasing Length Distribution ob-
tained by L0 = 1 and L1 = 10, and (ii) Decreasing Length
Distribution obtained by L0 = 10 and L1 = 1. In addi-
tion to above length distributions, we also use a Random
Length Distribution obtained by choosing lengths randomly
distributed from 1 to 10 with uniform probability.

We generated two requests per time unit. The items for
which requests are made are determined using the demand
probability distribution.

(a) Simulation results

(b) Analytical lower bounds

Figure 5. Overall mean access time versus error rate λ for different
values of θ and decreasing length distribution. The simulation curves are
obtained using the single channel scheduling algorithm modified to take
errors into account. The simulation results are within 1.1% of analytical

lower bounds.

7.1. Performance evaluation for single channel broadcast

7.1.1. Single channel broadcast without transmission
errors
In this section, we evaluate the single channel scheduling

algorithm in section 4 (assuming that transmission errors
do not occur). Figure 4(a) shows the simulation results.
It plots overall mean access time versus access skew co-
efficient θ. The curves labeled “dec”, “inc” and “rand”,
respectively, correspond to decreasing, increasing and ran-
dom length distributions defined above. The correspond-
ing analytical lower bounds obtained from equation (3) are
plotted in figure 4(b) for comparison. From the simulation
results in figure 4, observe that the proposed single channel
scheduling algorithm performs very close to optimal (within
0.5% of optimal). These results confirm that the algorithm
is able to space instances of each item with approximately
ideal spacing, thereby achieving near-optimal overall mean
access time.
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(a) Simulation results

(b) Analytical lower bounds

Figure 6. Overall mean access time versus λ for different values of θ and
increasing length distribution. The simulation curves are obtained using
the single channel scheduling algorithm modified to take errors into ac-
count. The simulation results are within 2.5% of analytical lower bounds.

7.1.2. Single channel broadcast with transmission errors
This section evaluates performance of the modified ver-

sion of the single channel scheduling algorithm in the pres-
ence of uncorrectable errors, as explained in section 5. For
the sake of illustration, we assume that uncorrectable errors
occur according to a Poisson process with rate λ. Hence
E(li) = 1 − e−λli . Figures 5 and 6 plot overall mean ac-
cess time in the presence of errors for different error rates
(λ), and for decreasing and increasing length distributions,
respectively. Again, in each of these figures, part (a) plots
the simulation results and part (b) plots analytical lower
bounds, for θ = 0, 1 and 1.5. The lower bounds are ob-
tained using equation (6) (substituting E(li) = 1− e−λli ).
Note that the results presented in section 7.1.1 correspond to
the case when λ = 0. From the simulation results, observe
that the single channel scheduling algorithm, modified to
take errors into account, achieves performance close to op-
timal. Other researchers have not considered uncorrectable
errors when designing schedules.

(a) For Decreasing Length

(b) For Increasing Length

Figure 7. Overall mean access time versus access skew coefficient θ
for (a) decreasing length and (b) increasing length distributions. The
simulation results labeled as sim are within 3.6% of analytical lower
bounds labeled as opt. Note that the curves ch1 sim and ch1 opt

are overlapping.

7.2. Performance evaluation of 2-channel broadcast
algorithm

In this section, we evaluate performance of the 2-channel
scheduling algorithm in section 6. For brevity, we only
present results for the case when no transmission errors
occur – similar results can be obtained when transmission
errors do occur. Figures 7(a) and (b) plot the overall mean
access time versus access skew coefficient θ for decreas-
ing and increasing length distributions, respectively. The
curves labeled “ch1 sim” and “ch2 sim” are the curves
for toverall(1) and toverall(2), respectively, obtained from simu-
lations. Recall that toverall(i) is the overall mean access time
experienced by clients listening to first i channels. The
curves labeled “ch1 opt” and “ch2 opt” plot toptimal

and toptimal/2 – recall that toptimal/i is a lower bound on
toverall(i), where toptimal is obtained from equation (3). The
proposed 2-channel algorithm produces the same schedule
irrespective of the values of π1 and π2. Therefore, the
curves in figures 7(a) and (b) are applicable for all π dis-
tributions. Observe that, toverall(i) (i = 1, 2) in these curves
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(a) θ = 0, 0.2

(b) θ = 0.5, 0.75

Figure 8. Composite overall mean access time versus π3, for random
length distribution. The values of π1 and π2 are obtained as π1 = 2π2 =
2
3 (1− π3). The curves labeled sim represent simulation results and opt
represent analytical results. In (a), the curves shown are for access skew
coefficient θ = 0 and θ = 0.2, whereas in (b), the curves shown are for

θ = 0.5 and θ = 0.75.

is very close to toptimal/i (the curves are almost overlap-
ping). Therefore, it follows that the tcomposite overall (for any
π distribution) will be very close to tcomposite optimal (see
equations (7) and (8)).

7.3. Performance evaluation of 3-channel broadcast
algorithm

Figures 8(a) and (b) show the performance of the
3-channel scheduling algorithm using the random length
distribution. Similar results are obtained for the increasing
and decreasing length distributions as well. For brevity,
we only present results for the case when no transmission
errors occur. As noted earlier in section 6, the values of
ψij , for c > 3, depend on πi’s. For c = 3, the values of
ψi2 and ψi3 as a function of π’s are given by equations (9)
and (10).

In each figure in this section, the curves labeled sim
plot the composite overall mean access time tcomposite overall

obtained by simulations, and the curves labeled opt plot

the lower bound tcomposite optimal. These curves are plotted
for different values of π3 (horizontal axis) – π1 and π2 are
defined as functions of π3 as π1 = 2

3 (1−π3) and π2 = 1
3 (1−

π3). Figure 8(a) plots the analytical and simulation curves
for access skew coefficient, θ = 0 and θ = 0.2, whereas
figure 8(b) plots the analytical and simulation curves for
θ = 0.5 and θ = 0.75. In each of these figures, the curves
labeled sim represent simulation results and those labeled
opt represent analytical results. The analytical curves plot
equation (8). The figures show that the performance of
3-channel scheduling algorithm is fairly close to optimal
for some, but not all, values of access skew coefficient θ.
The algorithm does not always perform well because of
two reasons: (i) the bound tcomposite optimal is not tight for
c > 2, and (ii) there may be room for improvement in our
algorithm for c = 3.

8. Related work

The algorithms presented in this paper are based on
an algorithm proposed previously for “packet fair queue-
ing” [10]. As noted earlier, the problem of optimal broad-
cast scheduling is closely related to design of good packet
fair queueing algorithms.

Some of the early work relevant to this paper was
performed in the context of datacycle [12,22], and tele-
text and videotex [4,5,17,37,38] systems. The problem of
data broadcasting has received much attention lately. The
existing schemes can be roughly divided into two cate-
gories (some schemes may actually belong to both cat-
egories): Schemes attempting to reduce the access time
(e.g., [2,5,15,24,33,37]) and schemes attempting to reduce
the tuning time, i.e., the time a client actively listens to
the broadcast (e.g., [14,25,26,36]). In this paper, we only
consider minimization of access time.

Ammar and Wong [5,37] have performed extensive re-
search on broadcast scheduling and obtained many inter-
esting results. An O(1) probabilistic approach for decid-
ing which item to transmit next has been suggested previ-
ously [17,36,37]. The probabilistic algorithm was proposed
for items of unit length (i.e., li = 1 for all i). The overall
mean access time for the probabilistic algorithm is given
by (

∑M
i=1
√
pi)2 (when li = 1) [37]. On the other hand,

with a logarithmic time-complexity, our single channel al-
gorithm achieves overall mean access time very close to the
lower bound 1

2 (
∑M
i=1
√
pi)2 (when li = 1). Thus, the over-

all mean access time achieved by the proposed algorithm
is better than the probabilistic algorithm by approximately
a factor of 2. Wong [37] also presents a cyclic scheduling
algorithm that performs close to the optimal (the broadcast
schedule needs to be generated a priori).

Chiueh [15] and Acharya et al. [2] present schemes that
transmit the more frequently used items more often. How-
ever, they do not necessarily use optimal broadcast fre-
quencies. Our schemes, on the other hand, tend to use
optimal frequencies. (Optimal frequencies are inversely
proportional to optimal spacing.)
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Gondhalekar et al. [19] have looked at the problem of
optimizing mean access time using indexing schemes, and
shown that the problem is NP-complete under certain con-
ditions. They also present fast heuristics to achieve a low
access time using indexing. The scheduling schemes pre-
sented in this paper do not use indexing.

Several researchers, including Su and Tassiulas [32],
Acharya et al. [2] and Stathatos et al. [31], have considered
the possibility of caching information items at the client.
With caching, a client need only wait for broadcast if the
desired item is not in the cache. Our broadcasting schemes
do not consider caching as yet.

9. Conclusions

This paper considers asymmetric environments where a
server has a much larger communication bandwidth avail-
able as compared to the clients. In such an environment,
an effective way for the server to communicate information
to the clients is to broadcast the information periodically.
This paper makes four contributions:

(i) Observes that the broadcast scheduling problem is re-
lated to packet fair queueing.

(ii) Presents a broadcast scheduling algorithm based on a
packet fair queueing algorithm.

(iii) Modifies the above algorithm to take into account
transmission errors.

(iv) Presents algorithms for scheduling broadcasts on mul-
tiple channels.

Simulation results suggest that the proposed algorithms
perform well. These algorithms tend to result in near-
optimal spacing between consecutive instances of a given
item, achieving near-optimal performance.

Future work includes derivation of a better bound for
tcomposite overall, particularly, for c > 3. Also, this paper
does not consider caching of information at a client. Pro-
posed algorithms can be applied to a pull-based system by
replacing pi by the number of requests pending for item i,
in our algorithms. We have not evaluated the proposed
algorithms in the context of pull-based systems.
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Appendix A. Average time complexity

The algorithm presented in section 4 is derived from a
fair queueing algorithm by Bennett and Zhang [11]. The
proof that our algorithm has average time-complexity (per
iteration) of O(logM ), follows directly from the fact that
the algorithm in [11] has log-time complexity. However,
to elaborate on how the logarithmic average time com-
plexity can be achieved, we describe an implementation
of the proposed algorithm. Bennett and Zhang apparently
presented their implementation in [9]; however, we were
unable to obtain a copy of [9] at the time of writing this
paper. It is possible that their implementation of fair queue-
ing is analogous to the implementation summarized be-
low.

A binary heap [23] stores items in a tree form, such that
the “key” for the item at the root of the heap is the smallest
(or largest) of all items in the heap.

We maintain two binary heaps, HB and HC . Heap HB

uses Bi value as the key, and stores the item with the small-
est Bi value, among all the items in HB , at the root. Heap
HC uses Ci value as the key, and stores the item with
the smallest Ci value, among all the items in HC , at the
root. The heap HC implements set S in the algorithm in
section 4.

Initially, HB contains all M items, and HC is empty.
Due to the way the algorithm is implemented, each item
belongs to exactly one of the two heaps, HB and HC , at
any time.

In step 1 of the algorithm, set S can be determined by
repeatedly removing item j at the root of heap HB , such
that Bj 6 T , and inserting it into HC (note that after
every removal or insertion of an item, a heap needs to
be reheaped) – this process is completed when, for the
item at the root of HB , the Bj value is greater than T .
Each insertion and removal of an item in a binary heap
(including reheaping) requires O(logM ) time [23]. Note
that, in step 1, zero, one, or more items may be removed
from HB and added to HC .

Steps 2 and 3 can be performed by removing the root
item from HC , in O(logM ) time. Recall that heap HC

implements set S.
Assume that in step 3, item j is removed from HC . In

step 4, an instance of item j is broadcasted, and new values
of Bj and Cj are calculated. At this time, the next instance
of item j (with the new Bj and Cj values) is inserted into
heap HB .

The average time complexity can be determined by fol-
lowing the movement of each broadcast instance of an item.
When a previous instance of item j is broadcast, the next
instance of item j is inserted in HB (in step 4 of the iter-
ation that broadcasted the previous instance of item j, as
noted above).

Subsequently, when time T becomes large enough such
that Bj 6 T , the instance of j is removed from HB and
added to HC (or set S), in step 1 of an iteration of the
algorithm.
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Eventually, when Cj for item j becomes smallest of all
items in HC , this instance of j is removed from HC and
transmitted.

Therefore, each broadcast instance of an item requires 4
heap operations, each operation requiring O(logM ) time.
Therefore, the average time complexity per iteration of the
algorithm is O(logM ).

Appendix B. Optimal values of stagger

B.1. Two channel broadcast

Figure 9 shows different instances of item i scheduled
on two channels. The spacing on each of the channels is si.
Every instance on channel 2 is staggered by an interval of
ψi2 from the corresponding instance on channel 1. Our
interest is to determine the value of ψi2 which will result
in optimal composite item mean access time, denoted by ti,
as follows. Note that each composite ti is being optimized
independently – thus, all optimal ti (or optimal stagger for
all items) may not be achievable simultaneously.

The item mean access time, ti1, for a client listening to
channel 1, assuming that a request is equally likely to occur
at any time in interval si, is clearly

ti1 =
1
2
si. (B.1)

Note that the probability that a client makes a request
during a sub-interval of length τ of an interval of length
si is given by τ/si. Therefore, item mean access time, ti2,
for a client listening to both the channels can be obtained
as

ti2 =
1
2

(si − ψi2)2

si
+

1
2
ψ2
i2

si
. (B.2)

Thus, the composite item mean access time can be obtained
as

ti = π1ti1 + π2ti2 (B.3)

=
1
2
π1si +

1
2
π2

(si − ψi2)2

si
+

1
2
π2
ψ2
i2

si
. (B.4)

For the minimum value of ti, we differentiate equa-
tion (B.4) with respect to ψi2 and equate it to zero:

dti
dψi2

= −π2
(si − ψi2)

si
+ π2

ψi2
si

= 0.

Solving for ψi2, we get ψi2 = 1
2si.

Note that the value of ψi2 for optimal composite item
mean access time is independent of π1 and π2 for the two
channel case. However, as can be seen in the next section,
for c = 3, the value of ψi2 for optimal composite item mean
access time is a function of πj ’s.

B.2. Three channels broadcast

Figure 3 shows the schedule for item i on three channels.
Let the instances of item i on channel 2 be staggered by

Figure 9. Schedule for item i on two channels. The instances of item i on
channel 2 are staggered from channel 1 by an interval of ψi2. The value
of ψi2 should be 1

2 si for the mean access time for item i to be minimum.

an interval of ψi2 and on channel 3 be staggered by an
interval of ψi3 with respect to channel 1. A client may
listen to channel 1 only, or to channels 1 and 2, or to all
the three channels. The item mean access times for item i
for a client listening to channel 1 and for a client listening
to channel 1 and 2, denoted by ti1 and ti2, and given by
equations (B.1) and (B.2), respectively, are still valid, as
the scheduling on first two channels in figure 3 is similar to
the scheduling shown in figure 9. However, the item mean
access time for item i for the client listening to all the three
channels, denoted by ti3, is given by

ti3 =
1
2

(si − ψi3)2

si
+

1
2
ψ2
i2

si
+

1
2

(ψi3 − ψi2)2

si
. (B.5)

From equations (B.1), (B.2) and (B.5), we get

ti = π1ti1 + π2ti2 + π3ti3

=
1
2
π1si +

1
2
π2

(si − ψi2)2

si
+

1
2
π2
ψ2
i2

si

+
1
2
π3

(si − ψi3)2

si
+

1
2
π3
ψ2
i2

si
+

1
2
π3

(ψi3 − ψi2)2

si
.

Again, for optimal ti, differentiating the above equation
with respect to ψi2 and ψi3, we get

∂ti
∂ψi2

=−π2
(si − ψi2)

si
+ π2

ψi2
si

+ π3
ψi2
si
− π3

(ψi3 − ψi2)
si

= 0, (B.6)
∂ti
∂ψi3

=−π3
(si − ψi3)

si
+ π3

(ψi3 − ψi2)
si

= 0. (B.7)

We assume that π2 and π3 are not both 0 – if both
are 0, then the 3-channel problem reduces to the single
channel broadcast problem. Solving equations (B.6) and
(B.7), we get ψi2 = ((2π2 + π3)/(4π2 + 3π3))si and ψi3 =
((3π2 + 2π3)/(4π2 + 3π3))si. It can be verified that these
values of ψi2 and ψi3 represent the point of minima, by
applying appropriate checks to second derivatives of ti [13].

The above proof can be generalized for c > 3 also.
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