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Scheduling data broadcast in asymmetric communication
environments
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With the increasing popularity of portable wireless computers, mechanisms to efficiently transmit information to wireless clients are
of significant interest. The environment under consideration is asymmetric in that the information server has much more bandwidth
available, as compared to the clients. In such environments, often it is not possible (or not desirable) for the clients to send explicit
requests to the server. It has been proposed that in such systems the server should broadcast the data periodically. One challenge
in implementing this solution is to determine the schedule for broadcasting the data, such that the wait encountered by the clients
is minimized. A broadcast schedule determines what is broadcast by the server and when. In this paper, we present algorithms for
determining broadcast schedules that minimize the wait time. Broadcast scheduling algorithms for environments subject to errors, and
systems where different clients may listen to different number of broadcast channels are also considered. Performance evaluation results
are presented to demonstrate that our algorithms perform well.

1. Introduction

Mobile computing and wireless networks are fast-
growing technologies that are making ubiquitous computing
a reality. With the increasing popularity of portable wireless
computers, mechanisms to efficiently transmit information
to wireless clients are of significant interest. For instance,
such mechanisms could be used by a satellite or a base
station to communicate information of common interest to
wireless hosts. In the environment under consideration, the
downstream communication capacity, from server to clients,
is relatively much greater than the upstream communication
capacity, from clients to server. Such environments are,
hence, called asymmetric communication environments [1].
In an asymmetric environment, broadcasting the informa-
tion is an effective way of making the information available
simultaneously to a large number of users. When some in-
formation is broadcast, all pending requests for that infor-
mation are served simultaneously. For asymmetric environ-
ment, researchers have previously proposed algorithms for
designing broadcast schedules [1,3,4,7–10,12–15,20,21].

We consider a database that is divided into informa-
tion items (or items for short). Thus, a broadcast schedule
specifies when each item is to be transmitted. We present
an approach to design broadcast schedules that attempt to
minimize the average “access time”. Access time is the
amount of time a client has to wait for an information item
that it needs. It is important to minimize the access time
so as to decrease the idle time at the client. Several re-
searchers have considered the problem of minimizing the
access time [1,4,7,9,14,15,20,21]. Note that, in general, a
client may request multiple items simultaneously [5,6,8,12].
In this case, the access time may depend on the number of
items requested. Also, the client would expect to receive
mutually consistent versions of the requested items. In this
paper, similar to some of the past work (e.g., [1,7,9,20]),

we consider the simplest case where a client only requests
one item per request, and present algorithms to minimize
the mean access time. The issue of consistency of items
requested in different requests is not considered here.

While mean access time is the performance metric con-
sidered in this paper, note that other metrics are also rele-
vant in the context of broadcast scheduling. For instance,
the user may want to reduce the “tuning” time, i.e., the
time for which the user must actively listen to the broad-
cast [13,20]. In other cases, the user may be interested not
only in reducing the mean but also the variance of access
time. Alternatively, the user may want to minimize the
mean access time under the constraint that the worst case
access time be limited by a specified upper bound. We
consider strategies for reducing the variance of access time
elsewhere [16].

In this paper, we also analyze the impact of transmis-
sion errors on the scheduling policy. In an asymmetric
environment, when a client receives an information item
containing errors (due to some environmental disturbance),
it is not always possible for the client to request retransmis-
sion of the information. In this case, the client must wait
for the next transmission of the required item. We evaluate
how optimal broadcast schedule is affected in presence of
errors.

In environments where different clients may listen to
different number of broadcast channels (depending on how
many they can afford), the schedules on different broadcast
channels should be coordinated so as to minimize the access
time for most clients. This paper presents an algorithm to
minimize access time for clients listening to varying number
of channels.

The rest of the paper is organized as follows. Sec-
tion 2 introduces some terminology. Section 3 presents
two broadcast scheduling algorithms. The impact of errors
is analyzed in section 4. Section 5 considers an environ-
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ment where different clients may be listening to different
number of channels. Section 6 evaluates the performance
of our schemes. Related work is discussed in section 7.
A summary is presented in section 8.

2. Preliminaries

This section introduces much of the terminology and
assumptions to be used in the rest of the paper. Database
at the server is assumed to be divided into many information
items. The items are not necessarily of the same size. The
time required to broadcast an item of unit length is referred
to as one time unit. Hence time required to broadcast an
item of length l is l time units. M denotes the total number
of information items in the server’s database. The items
are numbered 1 through M . li represents the length of
item i. Arrival of client requests is assumed to be governed
by a Poisson process. An appearance of an item in the
broadcast is referred to as an instance of the item. The
spacing between two consecutive instances of an item is the
time it takes to broadcast information from the beginning
of the first instance to the beginning of the second instance.

If all consecutive instances of an item i are equally
spaced, then si denotes the spacing for item i.

Item Mean Access Time of item i, denoted as ti, is de-
fined as the average wait by a client needing item i until
it starts receiving item i from the server. If all consecutive
instances of item i are equally spaced with spacing si, then,
from the Poisson process assumption for request arrivals, it
follows that [3] ti = si/2.

Demand probability pi denotes the probability that item i
is requested in any request. The demand probability is ob-
tained as an average over all clients served by the server. In
our discussion, we assume that all items have the same pri-
ority. When different items have different priorities, it may
be more important to keep access times smaller for certain
items than others (independent of their demand probability).
One potential approach to take priorities into account is to
attach weight wi to the access times for item i, according
to its priority. When such weights are attached, the analy-
sis below needs to be modified to replace each occurrence
of pi with (piwi). For simplicity, we will assume that all
items have the same priority – effectively, wi is assumed
to be 1 for all i.

Overall Mean Access Time, denoted as t, is defined as
the average wait encountered by a request. Therefore [3],

t =
M∑
i=1

piti. (1)

When the consecutive instances of item i are spaced si
apart, ti = si/2, therefore, the overall mean access time is
given by

t =
1
2

M∑
i=1

pisi. (2)

3. Proposed scheduling schemes

In sections 3 and 4, we consider the case when the infor-
mation items are broadcast on a single channel. Section 5
considers multiple channel broadcasts. Lemma 1 below
states an intuitive observation that follows from a result
presented in [15]. This observation has also been implic-
itly used by others (e.g., [1,4,21]).

Lemma 1. The broadcast schedule with minimum overall
mean access time results when the instances of each item
are equally spaced.

Proof of the lemma is omitted here for brevity. In real-
ity, it is not always possible to space instances of an item
equally. However, the above lemma provides a basis to
determine a lower bound on achievable overall mean ac-
cess time. Note that, while Lemma 1 suggests that spacing
between consecutive instances of item i should be constant
(denoted as si), it need not be identical to the spacing sj
between instances of another item j. Assuming equal spac-
ing si for instances of each item i, theorem 1 below states
a result obtained by generalizing a result derived in [4,21].
While the result in [4,21] is applicable only to items of
identical size, theorem 1 applies to items of differing sizes
as well. We use this result to design broadcast scheduling
algorithms.

Theorem 1 (Square-root rule). Assuming that instances
of each item are equally spaced, minimum overall mean
access time is achieved when spacing si of each item i is
proportional to

√
li and inversely proportional to

√
pi. That

is, si ∝
√
li/pi.

Appendix A presents proof of the above theorem. As
shown in the appendix, when the condition in theorem 1 is
satisfied, optimal overall mean access time, named toptimal,
is obtained as

toptimal =
1
2

(
M∑
i=1

√
pili

)2

. (3)

toptimal is derived assuming that instances of each item are
equally spaced. As this assumption cannot always be real-
ized, toptimal represents a lower bound on achievable over-
all mean access time. The lower bound, in general, is
not achievable. However, as shown later, it is possible
to achieve overall mean access time almost identical to the
above lower bound. Now we present two scheduling algo-
rithms.

3.1. Broadcast scheduling algorithm

Whenever the server is ready to transmit a new item,
it calls the algorithm presented here. The algorithm deter-
mines the item to be transmitted next using a decision rule
– this decision rule is motivated by theorem 1. Theorem 1
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implies that, for optimal performance, instances of an item i
should be equally spaced with spacing si, such that

s2
ipi
li

= constant, ∀i, 1 6 i 6M. (4)

The above observation is used in our algorithm, as pre-
sented below. We first define some notation. Let Q denote
the current time; the algorithm below decides which item to
broadcast at time Q. Let R(j) denote the time at which an
instance of item j was most recently transmitted; if item j
has never been broadcast, R(j) is initialized to −1. Note
that R(j) is updated whenever item j is transmitted. Let
function G(j) be defined as G(j) = (Q−R(j))2pj/lj , 1 6
j 6M . Our first broadcast scheduling algorithm is named
algorithm A. (Note that our algorithms for asymmetric en-
vironment can be applied to a pull-based broadcast environ-
ment, by replacing pi by the number of pending requests
for item i.)

Broadcast scheduling algorithm A

Step 1. Determine maximum value of G(j) over all items
j, 1 6 j 6 M . Let Gmax denote the maximum
value of G(j).

Step 2. Choose item i such that G(i) = Gmax. If this equal-
ity holds for more than one item, choose any one
of them arbitrarily.

Step 3. Broadcast item i at time Q.

Step 4. R(i) = Q.

Q−R(i) is the spacing between the current time, and the
time at which item i was previously transmitted. Note that
the function G(i) = (Q−R(i))2pi/li is similar to the term
s2
ipi/li in equation (4). The motivation behind our algo-

rithm is to attempt to achieve the equality in equation (4),
to the extent possible.

Example 1. Consider a database containing 3 items such
that p1 = 1/2, p2 = 3/8, and p3 = 1/8. Assume that items
have lengths l1 = 1, l2 = 2 and l3 = 4 time units. Figure 1
shows the items recently broadcast by the server (up to
time < 100). The above algorithm is called to determine
the item to be transmitted at time 100. Thus, Q = 100.
Also, from figure 1, observe that R(1) = 95, R(2) = 93,
and R(3) = 96. The algorithm evaluates function G(j) =
(Q−R(j))2pj/lj for j = 1, 2, 3 as 12.5, 147/16 (= 9.1875)
and 0.5, respectively. As G(j) is the largest for j = 1,
item 1 is transmitted at time 100.

Figure 1. Example 1.

In general, as shown in section 6, the proposed algorithm
performs close to the optimal obtained by equation (3).
However, it is also possible to construct scenarios where the
schedule produced by the algorithm is not exactly optimal,
as demonstrated in the next example.

Example 2. Consider the following parameters: M = 2,
l1 = l2 = 1, p1 = 0.2 + ε, p2 = 1− p1, and 0 < ε < 0.05.
In this case, the algorithm produces the cyclic schedule
(1,2), i.e., 1, 2, 1, 2, . . . , which achieves an overall mean
access time of 1.0. On the other hand, the cyclic schedule
(1,2,2) achieves overall mean access time 2.9/3+2ε/3 < 1.
Thus, in this case, the algorithm is not optimal. However,
the overall mean access time 1.0 of the algorithm is within
3.5% of that achieved by the cyclic schedule (1,2,2).

A drawback of algorithm A above is the computational
cost of O(M ) required to evaluate Gmax in step 1 of the
algorithm. This cost can be reduced by partitioning the
database into “buckets” of items, as shown in the next sec-
tion.

It can be shown that if ties occurring in step 2 of al-
gorithm A are broken deterministically, then the resultant
schedule is cyclic [18]. However, determining the cycle it-
self is compute-intensive. Also, the cycle size is often very
large, potentially making it impractical to store the entire
schedule. Secondly, producing the schedule at “run-time”
has the advantage that any changes in parameters such as
demand probabilities can be taken into account.1 There-
fore, techniques to reduce the time complexity are of in-
terest. Also note that the results obtained in relation to the
bucketing scheme are also useful to optimize the previously
proposed multidisk [1] scheme.

3.2. Scheduling algorithm with bucketing

Partition the database into k buckets, named B1 through
Bk. Bucket Bi contains mi items, such that

∑k
i=1 mi =

M , the total number of items in the database. We maintain
the items in each bucket in a queue. At any time, only
items at the front of the buckets are candidates for broadcast
at that time. Define qj = (

∑
i∈Bj pi)/mj as the average

demand probability of the items in bucket Bj , and dj =
(
∑
i∈Bj li)/mj as the average length of the items in bucket

Bj . Note that
∑k
j=1 mjqj = 1. As shown in appendix B,

to minimize the overall mean access time, the following
condition must hold when bucketing is used: if item i is in
bucket Bj , then spacing si ∝

√
dj/qj .

In other words,

s2
i qj
dj

= constant, ∀j, 1 6 j 6 k, and i ∈ Bj . (5)

The scheduling algorithm with bucketing is based on the
above result. Let Q be the current time and R(i) be the

1 For instance, demand probabilities may change as and when new clients
subscribe the broadcast service, or existing clients unsubscribe.
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Figure 2. Heuristic for assigning items to k buckets: The interval (Amin,Amax) is divided into k equal-sized sub-intervals. An item i whose
√
pi/li

value belongs to the jth sub-interval is assigned to bucket Bj (1 6 j 6 k).

time when item i was most recently broadcast. Let Ij
denote the item at the front of bucket Bj . Let G(j) now
denote (Q−R(Ij))2qj/dj , 1 6 j 6 k. Function G(j) used
here is similar (but not identical) to function G(j) used in
algorithm A in the previous section. The algorithm with
bucketing, named algorithm B, is obtained from the above
result.

Algorithm B using bucketing

Step 1. Determine maximum value of G(j) = (Q −
R(Ij))2qj/dj over all buckets j, 1 6 j 6 k. Let
Gmax denote the maximum value of G(j).

Step 2. Choose a bucket Bi such that G(i) = Gmax. If this
equality holds for more than one bucket, choose
any one bucket arbitrarily.

Step 3. Broadcast item Ii from the front of bucket Bi at
time Q.

Step 4. Dequeue item Ii from the front of the bucket Bi
and enqueue it at the rear of Bi.

Step 5. R(Ii) = Q.

The above algorithm is quite similar to the original algo-
rithm A, except that the decision rule (in steps 1 and 2) is
applied only to items at the front of the k buckets. Hence,
the algorithm needs to compare values for only k items re-
sulting in the time complexity of O(k). Observe that all
items within the same bucket are broadcast with the same
frequency. This suggests that the (pi/li) values of all items
in any bucket should be close for good results.

As shown in appendix B, a lower bound on achievable
overall mean access time using bucketing is given by

topt bucket =
1
2

(
k∑
j=1

mj

√
qjdj

)2

. (6)

The above equation shows that topt bucket is dependent upon
the selection of values for mj’s under the constraint that∑k
j=1 mj = M . Optimizing the bucketing scheme for a

given number of buckets k requires that the mj’s be chosen
appropriately, such that the above equation is minimized.

For the purpose of performance evaluation, we use a
heuristic to determine the membership of items to the buck-
ets. The heuristic for determining the membership of an
item i to a bucket Bj is as follows: Let Amin and Amax

denote the minimum and maximum values of
√
pi/li (1 6

i 6 M ), respectively. Let δ = Amax−Amin. If, for
item i,

√
pi/li = Amin, then item i is placed in bucket

B1. Any other item i is placed in bucket Bj (1 6 j 6 k) if
(j−1)δ/k < (

√
pi/li−Amin) 6 (jδ/k). This is pictorially

depicted in figure 2. The above heuristic executes in O(M )
time, and needs to be executed once for given probability
and length distributions.

The notion of a bucket is similar to that of a broadcast
disk in the multi-disk approach proposed by Acharya et
al. [1]. Therefore, the result in equation (5) can be used
to determine suitable frequencies for the broadcast disks.
The differences between buckets and broadcast disks are
summarized in section 7.

4. Effect of transmission errors on scheduling strategy

The algorithms presented in section 3 do not take into
account transmission errors. In this section, we modify
our basic approach to design broadcast schedules in the
presence of transmission errors.

In the discussion so far, we assumed that each item trans-
mitted by the server is always received correctly by each
client. As the wireless medium is subject to disturbances
and failures, this assumption is not necessarily valid. Tra-
ditionally, in an environment that is subject to failures, the
data is encoded using error control codes (ECC). These
codes enable the client to “correct” some errors, that is,
recover data in spite of the errors. However, ECC cannot
correct large number of errors in the data. When such er-
rors are detected (but cannot be corrected by the client), the
server is typically requested to retransmit the data.

In the asymmetric environment under consideration here
it is not possible for the client to ask the server to retransmit
the data. If a client waiting for item i receives an instance
of item i with uncorrectable errors, the item is discarded by
the client. The client must wait for the next instance of item
i. In this section, we evaluate the impact of uncorrectable
errors on the scheduling strategy for broadcasts.

Suppose that uncorrectable errors occur in an item of
length l with probability E(l). Now, li denotes length of
item i after encoding with an error control code. As shown
in appendix C, the overall mean access time, t, assuming
that instances of item i are equally spaced with spacing si,
is given by

t =
1
2

M∑
i=1

sipi
1 +E(li)
1−E(li)

.

To take uncorrectable errors into account, the square-root
rule in theorem 1 needs to be modified as follows:
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Theorem 2. Given that the probability of occurrence of un-
correctable errors in an item of length l is E(l), the overall
mean access time is minimized when

si ∝
√
li
pi

1−E(li)
1 +E(li)

.

The proof of theorem 2 is very similar to that of theo-
rem 1. Note that, when all items have the same length, the
term (1−E(li))/(1 +E(li)) becomes a constant (indepen-
dent of i). Therefore, in this case, theorem 2 reduces to
theorem 1. The lower bound on the overall mean access
time now becomes [19]

topt error =
1
2

(
M∑
i=1

√
pili

1 +E(li)
1−E(li)

)2

. (7)

Theorem 2 implies that in an optimal schedule,

s2
i pi
li

1 +E(li)
1−E(li)

= constant, 1 6 i 6M.

The scheduling algorithms presented previously can be
trivially modified to take into account the above result. For
instance, algorithm A can be used as such with the excep-
tion that function G(j) needs to be re-defined as

G(j) =
(
Q−R(j)

)2
(pj/lj)

1 +E(lj)
1−E(lj)

, 1 6 j 6M.

Section 6 evaluates the modified algorithm A (using the
re-defined function G(j)).

5. Multiple broadcast channels

The discussion so far assumed that the server is broad-
casting items over a single channel and all the clients are
tuned to this channel. One can also conceive an environ-
ment in which the server broadcasts information on multiple
channels, and different clients listen to different number of
channels depending on the desired quality of service (as
characterized by the mean access time). In this section, we
present an algorithm for scheduling broadcast on multiple
channels such that the overall mean access time, averaged
over all clients, is minimized.

Figure 3 illustrates multiple channel broadcast assuming
that the number of items is 4 and number of channels is 2.
In this illustration, each item is assumed to be of length 1.
In figure 3(a), if a client listens only to channel 1, the overall
mean access time is 2 time units, as each item is transmitted
once every 4 time units on channel 1. On the other hand, if
a client listens to both the channels simultaneously, then the
overall mean access time is 1 (when a client listens to both
channels, it receives each item once every 2 time units).

In general, in a multiple channel schedule, all items are
transmitted on each channel. However, under certain cir-
cumstances this is not necessary. For instance, in the above
illustration, assume that all clients listen to both channels
(i.e., no client listens to only one channel). In this case, the

Figure 3. Two examples of multiple channel broadcast schedules.

schedule shown in figure 3(b) may be used instead of that
in figure 3(a). In this case too, the overall mean access time
is 1 time unit (even though only half the items are trans-
mitted on each channel). However, if some clients listen
to only a single channel, then the schedule in figure 3(b)
would lead to “starvation”, and effectively an infinite ac-
cess time for some requests. Therefore, our algorithm does
not explicitly partition the items across different channels,
and each channel may transmit all the items.

The approach considered here uses a modification of al-
gorithm A, described in section 3.1, to accommodate mul-
tiple channels. Let the total number of broadcast channels
be c, the channels being numbered 1 through c. A client
capable of listening to, say, n broadcast channels, may be
listening to any n channels. Let H = {1, 2, . . . , c} denote
the set of all broadcast channels. A client may listen to any
non-empty subset S of the set H . For instance, if c = 2,
then H = {1, 2}, and S may be {1}, or {2}, or {1, 2}. Let
ΠS denote the probability that S is the set of channels lis-
tened to by a client, where S ⊆ H . By definition, Π{} = 0;
that is, each client of interest in this discussion listens to at
least one channel.

As different clients may be listening to different number
of channels, we re-define overall mean access time to be
an average over all clients. The overall mean access time
for multichannel broadcast is named tmultichan, and obtained
as

tmultichan =
∑
S⊆H

ΠStS , (8)

where tS denotes the average access time encountered by a
client listening to channels in set S. For instance, when the
number of broadcast channels is c = 2, H = {1, 2}, and
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tmultichan = Π{1}t{1} + Π{2}t{2} + Π{1,2}t{1,2}. Equation (3)
presented a lower bound (toptimal) on the overall mean access
time when a client listens to only one channel. Clearly, for
a non-empty set of channels S, a lower bound on tS is
given by toptimal/|S|, where |S| is the number of channels
in set S. It follows that a lower bound on tmultichan is given
by

tmultichan optimal =
∑

S⊆H,|S|>0

ΠS
toptimal

|S| . (9)

In particular, if the number of channels c = 2, then

tmultichan optimal =

(
Π{1} + Π{2} +

Π{1,2}

2

)
toptimal.

Now we present an algorithm to schedule broadcast on mul-
tiple channels. This algorithm is obtained by generalizing
algorithm A in section 3.1. In the following, assume that
current time is Q, and the algorithm needs to determine
which item to broadcast on channel h (where 1 6 h 6 c).
Let Rh(j) denote the most recent time2 when item j was
broadcast on channel h (1 6 h 6 c, 1 6 j 6 M ).
Rh(j) is initialized to −1. For a subset S of H , define
RS(j) = maxh∈SRh(j). Thus, RS(j) is the time when
item j was most recently transmitted on any channel in
set S. Similar to the cost function G(j) used in algo-
rithm A, here we use a function Gh(j) for each channel
h (1 6 j 6M ). Gh(j) is defined as follows:

Gh(j) =
pj
lj

( ∑
S⊆H,h∈S

ΠS

(
Q−RS(j)

)2
)
. (10)

Function G(j) used in algorithm A was motivated by theo-
rem 1. The above definition of function Gh(j) is obtained
by generalizing function G(j), by observing the differences
between the expressions for overall mean access time for
single channel and multiple channel broadcasts (as given
in equations (1) and (8)). Note that the summation in the
expression for Gh(j) is over all subsets S of H that contain
channel h. In particular, when c = 2, we have H = {1, 2},
and

G1(j) =
pj
lj

(
Π{1}

(
Q−R{1}(j)

)2

+ Π{1,2}
(
Q−R{1,2}(j)

)2)
and

G2(j) =
pj
lj

(
Π{2}

(
Q−R{2}(j)

)2

+ Π{1,2}
(
Q−R{1,2}(j)

)2)
.

The proposed algorithm is as follows.

Algorithm for channel h, 1 6 h 6 c
Step 1. RS(j) = maxh∈S Rh(j), ∀S, ∀j, S ⊆ H , 1 6

j 6M .

2 Rh(j) is analogous to R(j) used in algorithms A and B.

Step 2. Determine maximum Gh(j) over all items j, 1 6
j 6 M . Let Gmax denote the maximum value of
Gh(j) over all j.

Step 3. Choose item i such that Gh(i) = Gmax. If this
equality holds for more than one item, choose any
one of them arbitrarily.

Step 4. Broadcast item i on channel h at time Q.

Step 5. Rh(i) = Q.

Section 6.5 evaluates the performance of the above algo-
rithm for two channels (c = 2). Time complexity of steps
1 and 2 above can be reduced by using techniques similar
to bucketing (as described in section 3.2).

6. Performance evaluation

In this section, we evaluate various algorithms presented
above, assuming that the number of items M = 1000. The
evaluation is performed by an analysis of the broadcast
schedule produced by our algorithms. Analytical evaluation
provides accurate overall mean access time without having
to conduct multiple simulations to obtain small confidence
intervals.

For evaluating a broadcast scheduling algorithm for a
particular set of parameters, the broadcast schedule is pro-
duced for 2,000,000 time units. For a given broadcast
schedule, the overall mean access time is calculated analyt-
ically – appendix D describes how a given schedule can be
evaluated analytically. An alternative to producing such a
large schedule would have been to determine the broadcast
cycle produced by the algorithm and determine the overall
mean access time for the broadcast cycle. However, the
time required to determine the broadcast cycle would be
very large in many cases.

6.1. Demand probability distribution

We assume that demand probabilities follow the Zipf dis-
tribution (similar assumptions are made by other researchers
as well [1,4,21]). The Zipf distribution may be expressed
as follows:

pi =
(1/i)θ∑M
i=1(1/i)θ

, 1 6 i 6M ,

where θ is a parameter named access skew coefficient. Dif-
ferent values of the access skew coefficient θ yield different
Zipf distributions. For θ = 0, the Zipf distribution reduces
to uniform distribution with pi = 1/M . However, the dis-
tribution becomes increasingly “skewed” as θ increases.

6.2. Length distribution

A length distribution specifies length li of item i. We
consider two distributions.
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• Increasing length distribution. Consider the following
function:

li = round

((
L1 − L0

M − 1

)
(i− 1) + L0

)
, 1 6 i 6M ,

where L0 and L1 are parameters that characterize the
distribution. L0 and L1 are both positive integers.
The round() function above returns a rounded inte-
ger value of its argument. In this section, we present
results for the Increasing Length Distribution obtained
by assuming L0 = 1 and L1 = 10. Analogous re-
sults for a decreasing length distribution (with L0 = 10
and L1 = 1) and a uniform length distribution (with
L0 = L1) are omitted for brevity [19].

• Random length distribution. In this distribution, we
choose integral lengths randomly distributed from 1 to
10 with uniform probability.

6.3. Performance evaluation in the absence of
uncorrectable errors

In this section, we evaluate algorithms A and B, as-
suming that uncorrectable transmission errors do not occur.
Performance evaluation in the presence of such errors is
discussed in the next section.

(a) Performance of algorithms A and B

(b) Analytical lower bounds

Figure 4. Overall mean access time for different values of access skew
coefficient θ and using increasing length distribution.

Figures 4 and 5 plot overall mean access time for differ-
ent values of access skew coefficient θ, for the two length
distributions presented earlier. In each of these figures, the
curve titled without buckets corresponds to the performance
of algorithm A, whereas the curves titled i buckets corre-
spond to algorithm B using i buckets. Also, in each figure,
part (a) plots the actual performance measured for our al-
gorithms, and part (b) plots the “optimal” performance, i.e.,
the corresponding analytical lower bound on overall mean
access time (obtained using equations (3) and (6)).

First observation from the performance evaluation re-
sults is that the actual performance is very close to the
corresponding lower bounds (within less than 1%). There-
fore, analytical bounds may be used as an approximation
of actual performance. Now note that, when the number
of buckets is 1, algorithm B reduces to the so-called “flat”
cyclic scheduling [1] scheme where each item is broadcast
once in a broadcast cycle. As the number of buckets ap-
proaches the number of items M , performance of the buck-
eting algorithm should approach the performance of algo-
rithm A. As algorithm A has a higher time complexity than
algorithm B, it is interesting to see how the performance
of algorithm B improves when the number of buckets is
increased. Observe that the access time with 5 buckets is
much smaller than that with just 1 bucket. However, using

(a) Performance of algorithms A and B

(b) Analytical lower bounds

Figure 5. Overall mean access time for different values of access skew
coefficient θ and using random length distribution.
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5 buckets is not always adequate to achieve access time
comparable with algorithm A. Increasing the number of
buckets further to, say, 10 further improves the performance
of algorithm B. For large θ (i.e., large skew in probability
distribution), the number of buckets needs to be larger to
achieve performance close to optimal. Thus, the choice of
the number of buckets is more critical when the skew in
probability distribution is large.

An important conclusion from the above results is that
the performance of algorithm B, with a relatively small
number of buckets (10 buckets in our illustration), is quite
close to that achieved by algorithm A (effectively, using
M = 1000 buckets). This implies that algorithm B can sig-
nificantly reduce time complexity, with a reasonably small
degradation in performance.

6.4. Performance evaluation in the presence of
uncorrectable errors

In this section, we evaluate the performance of the algo-
rithm in the presence of uncorrectable errors as explained
in section 4. For the sake of illustration, we assume that
uncorrectable errors occur according to a Poisson process
with rate λ. Hence E(li) = 1− e−λli . Figures 6 and 7 plot

(a) Performance of proposed algorithm with erros

(b) Analytical lower bounds

Figure 6. Overall mean access time versus λ for different values of θ and
increasing length distribution. The results in figure (a) are obtained using

algorithm A modified to take errors into account.

overall mean access time in the presence of errors for dif-
ferent error rates (λ), and for increasing and random length
distributions, respectively. In each of these figures, part
(a) plots the actual performance obtained using algorithm
A modified to take errors into account, and part (b) plots
corresponding analytical lower bounds, for θ = 0, 0.5 and
1. The lower bounds are obtained using equation (7) (sub-
stituting E(li) = 1− e−λli ). Note that the results presented
in the previous section correspond to the case when λ = 0.
The performance results show that the proposed algorithm
A, modified to take errors into account, achieves perfor-
mance close to optimal (within 3% of optimal for small λ,
and within 10% for larger λ). Previous research on broad-
casts does not take uncorrectable errors into account when
determining the broadcast schedules, or when evaluating
the access time.

6.5. Performance with multiple broadcast channels

In this section, we evaluate the performance of the al-
gorithm given in section 5 for multiple channel broadcast,
assuming the number of channels c = 2. We also assume
that Π{1} = Π{2} = (1−Π{1,2})/2.

(a) Performance of proposed algorithm with errors

(b) Analytical lower bounds

Figure 7. Overall mean access time versus λ for different values of θ and
random length distribution. The results in figure (a) are obtained using

algorithm A modified to take errors into account.
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(a) Increasing length distribution

(b) Random length distribution

Figure 8. Performance evaluation for 2 channels. Label Pi {1} on
the horizontal axis denotes Π{1}. For these graphs, Π{1} = Π{2} =

(1−Π{1,2})/2.

Figures 8(a) and (b) show the results for increasing and
random length distributions, respectively. Results are plot-
ted for skew coefficient θ = 0 and 0.5, and different values
of Π{1}. (In these figures, label Pi {1} on the horizon-
tal axis denotes Π{1}.) In each figure, the curves labeled
actual plot the actual performance of our scheduling algo-
rithm, and the curves labeled optimal plot the analytical
lower bound obtained using equation (9). In all cases, note
that the actual performance is very close to optimal (within
less than 1% of optimal).

For each algorithm presented in this paper, we have also
evaluated their performance using decreasing and uniform
length distributions. The results for these length distribu-
tions are similar to those presented here for increasing and
random length distributions. For brevity, these additional
results are not included here.

7. Related work

Some of the early work relevant to this paper was per-
formed in the context of datacycle [8,12], and teletext and

videotex [3,4,11,21] systems. The problem of data broad-
casting has received renewed attention lately. The existing
schemes can be roughly divided into two categories (some
schemes may actually belong to both categories): schemes
attempting to reduce the access time [1,4–6,8,9,15,21] and
schemes attempting to reduce the tuning time (or power
consumption) [10,13,14].

Ammar and Wong [4,21] have performed extensive re-
search on broadcast scheduling and obtained many inter-
esting results. Our square-root rule is a generalization of
that obtained by Ammar and Wong. Algorithm A pre-
sented in the paper was obtained using the result in [18,
theorem 1]. Su and Tassiulas later independently arrived
at this algorithm by a numerical search that concluded that
algorithm A is superior in a particular class of scheduling
algorithms [17]. An algorithm similar to algorithm A has
also been applied to video-on-demand systems [2].

A probabilistic approach for deciding which item to
transmit next has been suggested previously [11,20,21].
The probabilistic algorithm was proposed for items of unit
length (i.e., li = 1 for all i). The overall mean access time
for the probabilistic algorithm is given by (

∑M
i=1
√
pi)2

(when li = 1) [21]. On the other hand, algorithm A
achieves overall mean access time very close to the lower
bound 1

2 (
∑M
i=1
√
pi)2 (when li = 1). Thus, the overall

mean access time achieved by the proposed algorithm is
better than the probabilistic algorithm by approximately a
factor of 2.

The bucketing scheme bears some similarities to the
multidisk approach proposed by Acharya et al. [1]. The
differences between the work in [1] and our work are as
follows:

(a) Acharya et al. do not have a way of determining the
optimal frequencies for the different disks, whereas our
algorithm automatically tries to use the optimal frequen-
cies.

(b) The algorithm in [1] strictly imposes the constraint that
the instances of each item be equally spaced at the risk
of introducing idle periods (or “holes”) in the broad-
cast schedule (the holes may be filled with other in-
formation). Our algorithm also tries to space items at
equal spacing, however, it does not enforce the con-
straint rigidly. Therefore, our algorithm does not cre-
ate such holes. The argument in favor of a rigid en-
forcement of equal spacing, as in [1], is that caching
algorithms are simplified under such conditions. How-
ever, it is possible to implement caching algorithms
similar to those in [1] for the bucketing scheme as
well.

(c) Our algorithm works well with items of arbitrary
sizes. [1] is constrained to fixed size items. Bar-
Noy et al. [7] have recently obtained several inter-
esting theoretical results related to the multidisk ap-
proach.
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Similar to our discussion in section 4, Jain and
Werth [15] also note that errors may occur in transmis-
sion of data. Their solution to this problem is to use er-
ror control codes (ECC) for forward error correction, and a
RAID-like approach (dubbed airRAID) that stripes the data.
The server is required to transmit the stripes on different
frequencies, much like the RAID approach spreads stripes
of data on different disks. ECC is not always sufficient to
achieve forward error correction, therefore, uncorrectable
errors remain an issue (which is ignored in the past work
on data broadcast).

8. Summary

This paper considers asymmetric environments wherein
a server has a much larger communication bandwidth avail-
able as compared to the clients. In such an environment,
an effective way for the server to communicate information
to the clients is to broadcast the information periodically.
Contributions of this paper are as follows:

• We propose algorithms for scheduling broadcasts, with
the goal of minimizing the access time. Performance
evaluation shows that our algorithms perform quite well
(close to the theoretical optimal). The bucketing scheme
proposed in the paper facilitates a trade-off between
time complexity and performance of the scheduling al-
gorithm.

• The paper considers the impact of errors on opti-
mal broadcast schedules. An algorithm for broadcast
scheduling in the presence of errors is proposed.

• When different clients are capable of listening on dif-
ferent number of broadcast channels, the schedules
on different broadcast channels should be designed so
as to minimize the access time for all clients. The
clients listening to multiple channels should experi-
ence proportionately lower delays. This paper presents
an algorithm for scheduling broadcasts in such a sys-
tem.

Future work will include design of strategies for caching
and updates that attempt to achieve optimal performance
while incurring low overhead.
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Appendix A. Proof of theorem 1

Let li/si = ri. Note that, with the equal-spacing as-
sumption, ri is the fraction of bandwidth allocated to item i.

Therefore,
∑M
i=1 ri = 1. Also, note that si = li/ri. There-

fore, equation (2) can be rewritten as

t =
1
2

M∑
i=1

pili
ri
. (11)

As
∑M
i=1 ri = 1, only M − 1 of the ri’s can be changed

independently. Now, for the optimal values of ri, we must
have ∂t/∂ri = 0, ∀i. We now solve these equations, be-
ginning with 0 = ∂t/∂r1.

0 =
∂t

∂r1
=

1
2
∂

∂r1

(
M∑
i=1

pili
ri

)

=
1
2
∂

∂r1

(
p1l1
r1

+
M−1∑
i=2

pili
ri

+
pM lM(

1−
∑M−1
i=1 ri

))

=
1
2

(
−p1l1
r2

1

+
pM lM(

1−
∑M−1
i=1 ri

)2

)
⇒ p1l1

r2
1

=
pM lM

(1−
∑M−1
i=1 ri)2

. (12)

Similarly,

p2l2
r2

2

=
pM lM(

1−
∑M−1
i=1 ri

)2 . (13)

From equations (12) and (13), we get

p1l1
r2

1

=
p2l2
r2

2

⇒ r1

r2
=

√
p1l1
p2l2

.

Similarly it can be shown that

ri
rj

=

√
pili
pjlj

, ∀i, j.

This implies that the optimal ri must be linearly propor-
tional to

√
pili. It is easy to see that constant of propor-

tionality a = 1/
∑M
j=1

√
pjlj exists such that ri = a

√
pili

is the only possible solution for the equations ∂t/∂ri = 0,
such that

∑M
i=1 ri = 1. From physical description of the

problem, we know that a non-negative minimum of t must
exist. Therefore, the above solution is unique and yields
the minimum t.

Substituting ri =
√
pili/

∑M
j=1

√
pjlj into equation (11),

and simplifying, yields optimal overall mean access time
as t = 1

2 (
∑M
i=1

√
pili )2.

Appendix B. Bucketing scheme

This section presents a derivation of equation (6).
Bucket Bj (1 6 j 6 k) contains mj items, such that∑k
j=1 mj = M . Also, qj = (

∑
iεBj

pi)/mj and dj =

(
∑
iεBj

li)/mj are average demand probability and aver-
age length of the items in bucket Bj , respectively. The
proof here is similar to the proof in appendix A. For op-
timal solution, the items should be equally spaced. With
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bucketing, the spacing for all items in the same bucket is
also identical. We define Sj as the spacing between con-
secutive instances of an item in bucket Bj .

Let Tj denote the item mean access time of an item in
bucket Bj . Then, Tj = 1

2Sj . Note that, with the equal
spacing assumption, item mean access time is identical for
all items in the same bucket. Thus, the Overall Mean Ac-
cess Time is given by

t =
k∑
j=1

( ∑
i∈Bj

pi

)
Tj =

k∑
j=1

( ∑
i∈Bj

pi

)
Sj
2
.

Since
∑
i∈Bj pi = mjqj , the above equation can be written

as t =
∑k
j=1 (qjmjSj/2). Now, let rj denote the fraction

of bandwidth used for transmitting items from bucket Bj .
Thus,

∑k
j=1 rj = 1. Also, it follows that rj = mjdj/Sj .

In other words, Sj = mjdj/rj . Substituting this expression
for Sj , the previous expression for t can now be rewritten
as

t =
1
2

k∑
j=1

qjm
2
jdj

rj
. (14)

If we denote qjm2
jdj as Xj , the above equation becomes

t = 1
2

∑k
j=1 (Xj/rj), where

∑k
j=1 rj = 1. This equation

has the same form as equation (11). Therefore, from the
proof in appendix A it follows that, with bucketing, to min-
imize t the following condition must be true:

rj ∝
√
Xj . (15)

As
∑k
j=1 rj = 1, rj =

√
Xj/

∑M
i=1

√
Xj . Substituting

this into equation (14), replacing Xj = qjm
2
jdj , and sim-

plifying, we get

topt bucket =
1
2

(
k∑
j=1

mj

√
qjdj

)2

.

Substituting Xj = qjm
2
jdj in the above proportionality

(15), we get

rj ∝
√
qjm2

jdj = mj
√
qj
√
dj .

As rj = mjdj/Sj , we get Sj ∝
√
dj/qj . Finally, note

that, for each item i in bucket Bj , item spacing si is equal
to Sj .

Appendix C. Overall mean access time in the presence
of errors

Consider item i, instances of which are equally spaced
si time units apart. Recall that average time until the first
instance of item i is transmitted, from the time when a
client starts waiting for item i, is si/2 time units. If the
first instance of item i transmitted after a client starts wait-
ing is corrupted, then an additional si time units of wait is
needed until the next instance. Thus, each instance of item

i that is received with uncorrectable errors adds si to the
access time. Given that the probability that an instance of
item i of length li contains uncorrectable errors is E(li),
the expected number of consecutive instances with uncor-
rectable errors is obtained as E(li)/(1−E(li)). Thus, the
item mean access time is obtained as

ti =
si
2

+ si
E(li)

1−E(li)
= si

1
2

+
E(li)

1−E(li)

=
1
2
si

1 +E(li)
1−E(li)

.

Therefore,

t =
M∑
i=1

piti =
1
2

M∑
i=1

pisi
1 +E(li)
1−E(li)

.

Appendix D. Analytical evaluation of a broadcast
schedule

In the analytical evaluation, the item mean access time
ti for each item i is calculated independently. Then, these
are used to obtain the overall mean access time. The re-
sults obtained by analytical evaluation are similar to those
obtained by simulations.

Let Sij denote the spacing between jth and (j + 1)th
instances of item i in the broadcast schedule. Let there be
a total of n instances of item i in the broadcast schedule
under evaluation. Note that the number of instances n may
be different for different items i. Figure 9 shows the in-
stances of item 1 in a broadcast schedule. In this example,
the schedule contains 4 instances of item 1 (note that we
produce a finite size schedule for analysis). The spacings
S11, S12 and S13 are shown in the figure. Note that, al-
though our algorithm tries to maintain a constant spacing,
in general, Sia may not be equal to Sib, when a 6= b.

Let µ be the rate of request arrival. Then, piµ is the
rate of arrival of requests for item i. Then, the expected
number of requests for item i that arrive between its jth
and (j + 1)th instances in the broadcast is piµSij . These
requests, on average, encounter access time of Sij/2. Thus,
the mean access time for all requests for item i that arrive
between the first and nth instances of item i in the broadcast
schedule is given by∑n−1

j=1 (piµSij )(Sij/2)∑n−1
j=1 (piµSij )

.

Figure 9. Instances of item i.
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We use the value obtained above as the estimate of item
mean access time ti. After simplifying, the above expres-
sion becomes

ti =

∑n−1
j=1 piS

2
ij/2∑n−1

j=1 piSij
.

Thus, ti is not dependent on the request arrival rate µ. Now,
using the above estimate of ti, the overall mean access time
is estimated as

M∑
i=1

piti.

Note that, in the above derivation, we consider the du-
ration between the first and the last instance of each item i
to obtain the estimate of ti. Therefore, the actual begin
time of the schedule used for calculating ti is different for
different i. This may introduce a small error in our esti-
mate of ti, however, the error is negligible when the chosen
schedule size is large.
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