
Wireless Networks 8, 231–247, 2002
 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

A Unified Architecture for the Design and Evaluation
of Wireless Fair Queueing Algorithms

THYAGARAJAN NANDAGOPAL
Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, USA

SONGWU LU
Department of Computer Science, University of California at Los Angeles, USA

VADUVUR BHARGHAVAN
Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, USA

Abstract. Fair queueing in the wireless domain poses significant challenges due to unique issues in the wireless channel such as location-
dependent and bursty channel errors. In this paper, we present a wireless fair service model that captures the scheduling requirements of
wireless scheduling algorithms, and present a unified wireless fair queueing architecture in which scheduling algorithms can be designed to
achieve wireless fair service. We map seven recently proposed wireless fair scheduling algorithms to the unified architecture, and compare
their properties through simulation and analysis. We conclude that some of these algorithms achieve the properties of wireless fair service
including short-term and long-term fairness, short-term and long-term throughput bounds, and tight delay bounds for channel access.

Keywords: wireless scheduling, fair queueing, wireless networks, wireless fair service

1. Introduction

The growing use of wireless networks has brought the issue
of providing fair wireless channel arbitration among contend-
ing flows to the fore. The wireless channel being a critical
scarce resource, it is imperative to provide both short-term
and long-term fairness in channel access since providing only
best effort service can result in channel starvation for some
contending stations for long periods of time. In wireline net-
works, fluid fair queueing has long been a popular paradigm
for achieving instantaneous fairness and bounded delays in
channel access. However, adapting wireline fair queueing
algorithms to the wireless domain is non-trivial because of
the unique problems in wireless channels such as location-
dependent and bursty errors, channel contention, and joint
scheduling of uplink and downlink flows in a wireless cell.

In the past few years, several wireless fair queueing al-
gorithms have been developed [2,6–10], that provide varying
degrees of short-term and long-term fairness, short-term and
long-term throughput bounds, average case and worst case
delay bounds, and graceful degradation for flows in the pres-
ence of channel error. However, there has not been any work
to precisely characterize the desired service model in terms
of a wireless fair service, and define a unified wireless fair
queueing architecture to achieve wireless fair service. This is
important for two reasons: (a) it provides a single framework
in which to compare different wireless fair queueing algo-
rithms and evaluate tradeoffs between these algorithms head-
to-head, and (b) it serves as an architectural framework in
which to develop new wireless scheduling algorithms. Given
the emerging importance of wireless fair queueing and the

diversity of contemporary wireless fair queueing algorithms
proposed in the literature, we believe that such a study is over-
due. To this end, this paper makes three contributions:

1. We present a wireless fair service model that captures the
scheduling requirements in the wireless domain.

2. We present a unified wireless fair queueing architecture
that serves as a framework to design wireless fair queueing
algorithms. We then map seven recently developed wire-
less fair queueing algorithms onto this unified framework.
These algorithms are: Channel State Dependent Packet
Scheduling algorithm (CSDPS) [2], Idealized Wireless
Fair Queueing algorithm (IWFQ) [6], Channel Indepen-
dent Fair Queueing algorithm (CIF-Q) [8], Server Based
Fairness algorithm (SBFA) [9], Wireless Fair Service al-
gorithm (WFS) [10], a variant of IWFQ called Wire-
less Packet Scheduling algorithm (WPS) [6], and an en-
hancement of CSDPS that provides class based queueing
(CBQ-CSDPS) [7].

3. We evaluate and compare the seven algorithms mentioned
above via both simulation and analysis. Based on our
evaluation, we conclude that two of these algorithms,
WFS [10] and CIF-Q [8], achieve all properties of wire-
less fair service in the general case.

The rest of this paper is organized as follows. In sec-
tion 2, we describe the channel model, the wireless fair ser-
vice model, and the key issues in wireless fair queueing. In
section 3, we present the unified architecture for wireless fair
queueing. In section 4, we map the seven wireless fair queue-
ing algorithms as instantiations of the generic architecture. In

232 NANDAGOPAL, LU AND BHARGHAVAN

sections 5 and 6, we compare the algorithms through simula-
tion and analysis. Section 7 concludes the paper.

2. Models and issues

2.1. Wireless channel model

We consider a packet cellular network, where each base sta-
tion performs the scheduling of both uplink and downlink
packet transmissions in its cell. All communication is con-
strained to be uplink or downlink. Neighboring cells are as-
sumed to transmit on different logical channels. Every mobile
host in a cell can communicate with the base station, though
it is not required for any two mobile hosts to be within range
of each other.

The key characteristics of the wireless channel include the
following: (a) the wireless channel capacity is dynamically
varying, (b) channel errors are location-dependent and bursty
in nature, (c) there is contention in the channel among mul-
tiple mobile hosts, (d) mobile hosts do not have global chan-
nel state (in terms of which other hosts contending for the
same channel have packets to transmit, etc.), (e) the schedul-
ing must take care of both uplink and downlink flows, and
(f) mobile hosts are often constrained in terms of processing
power and battery power. For simplicity, we assume that the
packets are of the same size. The results presented in this
paper can also be extended to variable packet sizes.

2.2. Service model

Fluid fair queueing has three important properties [3]: (a) fair-
ness among backlogged flows even over infinitesimal time
windows, (b) bounded delay channel access, and (c) guaran-
teed minimum throughput for backlogged flows. In summary,
fluid fair queueing provides full separation between flows, i.e.
the minimum guarantees provided for a flow are unaffected by
the behavior of other flows. However, fluid fair queueing as-
sumes that the channel is error-free, or at the very least, errors
are not location dependent (i.e. all backlogged flows have the
ability to transmit at a given time, or none of the flows can).
Specifically, fluid fair queueing is neither fair nor able to pro-
vide minimum throughput bounds in the presence of location
dependent channel error, as shown in section 2.3.

In order to capture the behavior of flows in a wireless envi-
ronment while bearing the constraints of the channel in mind,
we define the error-free service of a flow as the service that
it would have received at the same time instant if all channels
had been error-free, under identical offered load. A flow is
said to be leading if it has received channel allocation in ex-
cess of its error-free service. A flow is said to be lagging if it
has received channel allocation less than its error-free service.
A flow that is neither leading nor lagging is said to be in sync.

In an effort to identify the requirements of flows in a
channel-constrained wireless environment, we define a wire-
less fair service model for fair queueing in wireless channels
with the following properties:

1. Short-term fairness among in sync backlogged flows that
perceive a clean channel.

2. Short-term throughput bounds for flows with clean chan-
nels.

3. Channel conditioned delay bounds for packets.

4. Long-term fairness among backlogged flows with bounded
channel error.

5. Long-term throughput bounds for all flows with bounded
channel error.

6. Support for both delay sensitive and error sensitive data
flows.

7. Optionally, optimization of the schedulable region by de-
coupling the delay and bandwidth requirements of flows.

Property 1 ensures that channel allocation is fair among back-
logged flows that are in conformance with their error-free ser-
vice and that are able to transmit packets. Property 2 fur-
ther specifies that even if a flow has received additional ser-
vice in a previous time window, its degradation of service in
any subsequent time window must be graceful, i.e. a flow that
has received excess service in the past must not be starved of
channel access at any time in the future. The delay bound
requirement of property 3 is subject to the fact that chan-
nel error is bounded for any flow over some time period, i.e.
each flow i observes at most ei errors in any time window of
length Ti , where ei and Ti are flow-specific parameters. Prop-
erty 3 specifies that so long as a flow has bounded channel
error, none of its packets must wait indefinitely to be served.
Property 4 further stipulates that long term fairness is not vi-
olated so long as every backlogged flow has sufficient a num-
ber of error-free slots during which it can transmit its packets.
Property 6 is very useful for handling both delay sensitive and
error-sensitive flows in error-prone channels.

2.3. Issues in wireless fair queueing

In adapting fluid fair queueing to the wireless domain, three
critical issues need to be addressed:

1. The failure of traditional fluid fair queueing in the presence
of location-dependent channel error.

2. The compensation model for flows that perceive channel
error: how transparent should wireless channel errors be
to the user?

3. The tradeoff between full separation and compensation,
and its impact on fairness of channel access.

In addition to these issues, other issues that are important are
(a) handling inaccuracies in channel state prediction, (b) dis-
covery of uplink flow state by the base station, and (c) coordi-
nation of scheduling and medium access. We briefly discuss
(a) in the next section, however, (b) and (c) are beyond the
scope of this paper.

We now explore the three issues listed above. In fluid fair
queueing, each flow i is given a weight ri , and for any time

ARCHITECTURE FOR THE DESIGN AND EVALUATION OF QUEUEING ALGORITHMS 233

interval [t1, t2] during which there is no change in the set of
backlogged flows B(t1, t2), the channel capacity granted to
each flow i, Wi(t1, t2), satisfies the following property:

∀i, j ∈ B(t1, t2),

∣∣∣∣Wi(t1, t2)

ri
− Wj(t1, t2)

rj

∣∣∣∣ = 0. (1)

Consider three backlogged flows during the time interval
[0, 2] with r1 = r2 = r3. Flow 1 and flow 2 have error-
free channels while flow 3 perceives a channel error during
the time interval [0, 1). If the scheduler is aware of the chan-
nel state of flows, then it will not consider f3 during [0, 1).
Hence, by applying equation (1) over the time periods [0, 1)
and [1, 2], we arrive at the following channel capacity allo-
cation: W1[0, 1) = W2[0, 1) = 1/2,W1[1, 2] = W2[1, 2] =
W3[1, 2] = 1/3. Now, over the time window [0, 2], the allo-
cation is W1[0, 2] = W2[0, 2] = 5/6, W3[0, 2] = 1/3, which
does not satisfy the fairness property of equation (1). This
simple example illustrates the difficulty in defining fairness
in a wireless network, even in an idealized model. In general,
due to location-dependent channel errors, service allocations
that are designed to be fair over one time interval may be in-
consistent with fairness over a different time interval, though
both time intervals have the same backlogged set.

The problem is that wireless fair queueing must distinguish
between a non-backlogged flow (for which no compensation
is provided in fair queueing) from a backlogged flow that per-
ceives channel error. However, compensating for the latter
will void the separation property of fair queueing. Explor-
ing the tradeoff between separation and compensation fur-
ther, consider in the above example that during the time win-
dow [0, 1), f1’s offered load was only 1/3, while f2 could
use all the additional channel allocation. Thus, over [0, 1),
the channel allocation is W1[0, 1) = 1/3, W2[0, 1) = 2/3,
W3[0, 1) = 0, i.e. f2 received 1/3 units of additional channel
allocation at the expense of f3, while f1 received exactly its
contracted allocation. During [1, 2], what should the channel
allocation be? In particular, there are three questions that need
to be answered: (a) is it acceptable for f1 to be impacted due
to the fact that f3 is being compensated even though f1 did
not receive any additional bandwidth? (b) over what time pe-
riod should f3 be compensated for its loss? and (c) should f2
give up its excess channel allocation, and over what time pe-
riod? These three issues are central to wireless fair queueing
and are discussed in the next section.

3. Unified wireless fair queueing framework

The basic goal of wireless fair queueing algorithms is to em-
ulate fluid fair queueing when all flows perceive error-free
channels, but swap channel allocation between flows that per-
ceive channel error and flows that perceive a clean channel
in order to make short location-dependent error bursts trans-
parent to the end user at the expense of providing coarser
properties for delay, instantaneous fairness, and throughput.
The wireless fair queueing algorithms considered in this pa-
per differ in terms of how the swapping takes place, between

which flows the swapping takes place, and how the compen-
sation model is structured. However, all these algorithms can
be thought of as instances of a unified wireless fair queue-
ing architecture, which consists of the following five compo-
nents:

• The error-free service, which defines an ideal fair service
model assuming no channel errors.

• The lead and lag model in wireless service, which deter-
mines which flows are leading or lagging their error free
service, and by how much.

• The compensation model, which compensates lagging
flows that perceive an error-free channel at the expense of
leading flows, and thus addresses the key issues of bursty
and location-dependent channel error in wireless channel
access.

• Slot queues and packet queues, which allow for the sup-
port of both delay sensitive and error sensitive flows
in a single framework and also decouples connection-
level packet management policies from link-level packet
scheduling policies.

• Channel monitoring and prediction, which provides a re-
liable and accurate measurement and estimation of the
channel state at any time instant for each backlogged flow.

Figure 1 describes the interactions between these compo-
nents in the unified architecture. Within the context of this
architecture, a wireless fair queueing algorithm has the abil-
ity to “plug-in” different algorithms for each component. We
now describe the components, and consider some popular al-
gorithmic choices for each component.

3.1. Error-free service model

The error-free service provides a reference for how much ser-
vice a flow should receive in an ideal error-free channel envi-
ronment. Typically, the error-free service is some packetized
approximation of fluid fair queueing. We briefly describe
Weighted Fair Queueing [3], the error-free service model de-
sired for the algorithms in this paper. Other choices include
STFQ [4], Weighted Round Robin, WRR with WFQ-like
spreading, and an enhanced fluid fair model that allows for
delay-bandwidth decoupling [10].

In WFQ, each flow i in a set of flows F is allocated a rate
weight ri . The kth packet pki of flow i is assigned a start
tag S(pki) and a finish tag F(pki), according to the following
algorithm:

• S(pki) = max{V (A(pki)), S(pk−1
i) + Lk−1

i /ri}, where Lk
i

is the length of the kth packet of the flow i, A(pki) is the
arrival time of the packet, and V (t) is the virtual time at
time t .

• F(pki) = S(pki) + Lk
i /ri .

• dV/dt = C(t)/
∑

i∈B(t) ri , where B(t) is the set of back-
logged flows at time t and C(t) is the instantaneous chan-
nel capacity at time t .

234 NANDAGOPAL, LU AND BHARGHAVAN

Figure 1. Interaction of components in the unified wireless fair queueing
architecture. The bold boxes indicate programmable components. In the lag
compensation box, the alternate flow f2 is constrained to be a backlogged

flow that perceives a clean channel.

• At each time, the packet with the minimum finish tag (i.e.
the packet whose last bit would complete transmission first
among all backlogged packets in the fluid model) is trans-
mitted.

The version of WRR used by WPS, and STFQ are basi-
cally approximations of WFQ, that do not need to simulate
the fluid model by computing dV/dt . We describe the error-
free service of WFS in section 4.7.

3.2. Lead and lag model

Refining the notion of lead and lag introduced in section 2.2,
the lag of a lagging flow denotes the amount of additional ser-
vice to which it is entitled in the future in order to compensate
for lost service in the past, while the lead of a leading flow
denotes the amount of additional service that the flow has to
relinquish in the future in order to compensate for additional
service received in the past. The set of leading flows, lagging
flows and in sync flows may change dynamically over time.

There are two distinct approaches for computing lag and
lead.

1. The lag of a flow is computed to be the difference between
the error-free service and real service received by the flow.
In this case, a flow that falls behind its error-free service
is compensated irrespective of whether its lost slots were
utilized by other flows. This approach is used by IWFQ,
CIF-Q, and SBFA.

2. The lag of a flow is computed to be the number of slots
allocated to the flow during which it could not transmit
due to channel error, but another backlogged flow that had
no channel error transmitted in its place and increased its
lead. In this case, the lag of a flow is incremented upon a
lost slot only if another flow that took this slot is prepared
to relinquish a slot in the future. This approach is used by
WFS and WPS.

Lead and lag may be upper bounded by flow-specific pa-
rameters. An upper bound on lag is the maximum error burst
that can be made transparent to the flow, while an upper bound
on lead is the maximum number of slots which the flow must
relinquish in the future in order to compensate for additional
service received in the past.

3.3. Compensation model

The purpose of the compensation component is to enable the
lagging flows to reclaim service lost due to channel error,
and to cause the leading flows to relinquish excess service
received in the past. There are several possible compensation
models for leading and lagging flows.

• No explicit compensation. A lagging flow is not compen-
sated explicitly. Rather, the scheduling proceeds accord-
ing to the error-free service, except that a flow perceiving
channel error is skipped. So long as the offered load to the
scheduler is stable (e.g., input traffic into each scheduler is
policed), this approach provides long-term fairness among
flows with bounded channel error. CSDPS uses this ap-
proach.

• Flow with maximum lag is preferentially allocated the
channel. There are two variants to this compensation
model: (a) the flow with the maximum lag is granted ac-
cess to the channel whenever it can transmit (there is no
explicit punishment of leading flows), and (b) the sched-
uler grants channel access to the flow with the minimum
finish tag that perceives a clean channel. This mechanism
explicitly maintains the precedence of lagging and leading
flows, but in sync flows may also be affected due to com-
pensation of lagging flows. IWFQ and CBQ-CSDPS use
variants of this approach.

• Leading and lagging flows swap slots. There are several
variants to this compensation model. When a leading flow
is allocated a slot, it decides whether to relinquish or retain
the slot according to one of three heuristics: (a) a leading
flow always gives up its slots, (b) a leading flow gives up

ARCHITECTURE FOR THE DESIGN AND EVALUATION OF QUEUEING ALGORITHMS 235

a constant fraction of its slots (i.e. the compensation is lin-
ear), and (c) a leading flow gives up a varying fraction of
its slots, where the fraction of slots relinquished decreases
exponentially as the size of the lead decreases.
When a leading flow relinquishes a slot, a lagging flow
is picked up according to one of three heuristics: (a) the
lagging flow with the minimum finish tag, (b) the lagging
flow with the maximum lag, and (c) a lagging flow from
a weighted round robin allocation of lagging flows where
the weight of a flow is its lag. The heuristic for the lead-
ing flow to relinquish its slots determines how gracefully
leading flows degrade, while the heuristic for the lagging
flow chosen for compensation determines how fairly lag-
ging flows make up their lag. WFS and CIF-Q use variants
of this approach.

• Bandwidth is reserved for compensation. A fraction of
channel bandwidth is statically reserved for compensation
by creating a “compensation flow” and scheduling it in the
error-free service along with other flows. A lagging flow
reclaims additional channel access from the slots allocated
to the compensation flow. SBFA uses this approach.

3.4. Slot queues and packet queues

Typically, packets are tagged as soon as they arrive in wire-
line fair queueing algorithms. This works well if we assume
no channel error, i.e. a scheduled packet will never be lost.
However, in a wireless channel, a lost packet may need to be
retransmitted for an error-sensitive flow. Retagging the packet
after a transmission loss will cause it to join the end of the
flow queue and thus cause packets to be delivered out of order.

Fundamentally, there needs to be a separation between
“when to send the next packet”, and “which packet to send
next”. The first question should be answered by the sched-
uler, while the second question is really a flow-specific de-
cision and should be beyond the scope of the scheduler. In
order to decouple the answers to these two questions, one ad-
ditional level of abstraction can be used in order to decouple
“slots”, the unit of channel allocation, from “packets”, the
unit of data transmission. When a packet arrives in the queue
of a flow, a corresponding slot is generated in the slot queue
of the flow, and tagged according to the wireless fair queueing
algorithm. At each time, the scheduler determines which slot
will get access to the channel, and the head-of-line packet in
the corresponding flow queue is then transmitted. The num-
ber of slots in the slot queue at any time is exactly the same
as the number of packets in the flow queue. While the above
description applies to the case of fixed packet sizes, the same
concept can be extended to variable packet sizes also.

Providing this additional level of abstraction enables the
scheduler to support both error-sensitive flows and delay-
sensitive flows according to the wireless fair service model.
Error-sensitive flows will not delete the head-of-line packet
upon channel error during transmission, but delay-sensitive
flows may delete the head-of-line packet once it violates its
delay bound. Likewise, the flow may have priorities in its
packets, and may choose to discard an already queued packet

in favor of an arriving packet when its queue is full. Essen-
tially, the approach is to limit the scope of the scheduler to
determine only which flow is allocated the channel next, and
let each flow make its own decision about which packet in the
flow it wishes to transmit.

3.5. Channel monitoring and prediction

Perfect channel-dependent scheduling is possible only if the
scheduler has accurate information about the channel state
for each backlogged flow. The location-dependent nature of
channel error requires each backlogged flow to monitor its
channel state continuously, based on which the flow may pre-
dict its future channel state and send this information to the
scheduler.

Errors in the wireless channel typically occur over bursts
and are highly correlated in successive slots, but possibly un-
correlated over longer time windows [11]. Thus, fairly ac-
curate channel prediction can be achieved using an n-state
Markov model [12]. In fact, we have found that even using
a simple one step prediction algorithm (predict slot i + 1 is
good if slot i is observed to be good, and bad otherwise) re-
sults in an acceptable first cut solution to this problem [6]. In
general, the performance improves with the accuracy of the
channel prediction algorithm.

It is important to note that for the purposes of this work,
we make no assumptions about the exact channel error model,
except for an upper bound on the number of errors during any
time window of size Ti , i.e. flow i will not perceive more
than ei errors in any time window of size Ti , where ei and Ti
are per-flow parameters for flow i. The delay and throughput
properties for the wireless fair queueing algorithms are typi-
cally “channel-conditioned”, i.e. conditioned on the fact that
flow i perceives no more than ei errors in any time window of
size Ti .

4. Instantiations of the unified wireless fair queueing
architecture

The programmable components of the unified wireless fair
queueing architecture that we consider are the error-free ser-
vice algorithm, the lead/lag model, and compensation algo-
rithm. In this section, we map seven wireless fair queue-
ing algorithms onto the unified architecture. In the next
two sections, we provide a comparative evaluation of these
algorithms through simulation and analysis. We use the
slot/packet decoupling mechanism used in [6], and one-step
channel prediction for the last two components. These two
components are orthogonal to the first three, and a specific
choice of these components does not significantly impact the
relative performance of the algorithms.

4.1. Channel State Dependent Packet Scheduling

Error-free service. CSDPS allows for the use of any error-
free scheduling discipline. A typical example cited in the

236 NANDAGOPAL, LU AND BHARGHAVAN

CSDPS paper [2] is the standard weighted round robin algo-
rithm (as opposed to the WRR with spreading in WPS – see
section 4.3).

Lead and lag model. When a flow i is allocated a slot ac-
cording to the error-free service, if flow i perceives a chan-
nel error, then CSDPS skips flow i and allocates the slot to
the next flow according to the error-free service. In effect,
CSDPS performs weighted round-robin among flows that per-
ceive clean channels. As a result, CSDPS does not measure
lag or lead for flows.

Compensation model. Since there is no concept of lag or
lead, there is no compensation in CSDPS. As a consequence,
a lagging flow can only make up its lag over the long term if
leading flows cease to become backlogged sometime. Thus,
CSDPS assumes that the input traffic is policed, and that the
policing mechanism enforces stability. This is a limitation of
CSDPS.

Implementation complexity. The implementation complex-
ity of error-free service in CSDPS is low because of the use
of WRR. However, WRR needs to check if each selected flow
is backlogged and perceives a clean channel. This results in
O(n) pointer traversals for n flows (in WRR without spread-
ing).

Impact and limitations. The service lost by a flow due to
channel error is given to the next eligible flow, irrespective of
whether that flow has received excess service or not. Thus, in-
sync flows get disturbed, and receive service in excess of their
error-free service. Since there is no compensation, CSDPS
does not provide long-term and short-term fairness guaran-
tees. However, for flows with error-free channels it can pro-
vide throughput guarantees. CSDPS by itself does not have
any mechanism to commit a specific fraction of the available
bandwidth to a flow, and it does not have a mechanism to
enforce the allocations provided by the error-free service for
flows that perceive channel error. This can result in misbehav-
ing flows getting more than their fair share while other flows
suffer.

4.2. Idealized Wireless Fair Queueing

Error-free service. IWFQ uses WFQ [6] for its error-free
service according to the algorithm described in section 3.1.

Lead and lag model. Each arriving packet is tagged as in
WFQ, and the service tag for a flow is set to the finish tag
of its head-of-line packet. Among the flows that can trans-
mit, i.e. backlogged flows with a clean channel, the flow with
the least service tag is picked, and the head of line packet is
transmitted.

IWFQ also simulates error-free service for identical ar-
rivals. The lead of a leading flow is the difference between
the service tag of the flow and the service tag of the flow in
the error-free simulation, upper bounded by a per-flow para-
meter. The lag of a lagging flow is the difference between

the service tag of the flow in the error-free simulation and the
service tag of the flow in the real system, upper bounded by
B · ri , where B is a scheduler parameter and ri is the normal-
ized weight of the flow (i.e.

∑
i∈F ri = 1).

Compensation model. The compensation model implicitly
favors channel access for lagging flows. Since precedence
of tags is maintained, a lagging flow has a low service tag
and captures the channel whenever it perceives a clean chan-
nel. Among lagging flows with clean channels, the flow with
the lowest tag gets to transmit until it either perceives a dirty
channel or its finish tag is greater than that of some other flow
with a clean channel. This compensation model guarantees
that lagging flows will catch up their lag, but may starve out
leading flows in the short term.

Implementation complexity. The amortized cost for insert-
ing a slot in sorted order is O(logn) for n flows. Computing
the rate of increase of virtual time in WFQ takes O(n) time,
although algorithms such as STFQ [4] and SCFQ [5] elimi-
nate this requirement. Searching for the backlogged flow with
a clean channel with minimum service tag has a time com-
plexity of O(n) pointer traversals for n flows.

Impact and limitations. IWFQ was the first algorithm to
propose a structured adaptation of fair queueing to the wire-
less domain.

Short-term fairness and throughput bounds in IWFQ are
coarse because of the property that a lagging flow that starts
to perceive a clean channel may capture the channel while its
finish tag is minimum among flows with a clean channel. For
the same reason, in sync flows may become lagging. How-
ever, IWFQ provides long-term fairness and bounded delay
channel access.

4.3. Wireless Packet Scheduling

Error-free service. WPS uses WRR with spreading of slots
as in WFQ as its error-free service. Consider three flows f1,
f2, f3 with weights of 0.2, 0.3, and 0.5, respectively. While
the standard WRR would allocate slots according to the
schedule:

〈f1, f1, f2, f2, f2, f3, f3, f3, f3, f3〉,
WRR with spreading allocates slots according to the schedule

〈f3, f2, f3, f1, f3, f2, f3, f1, f2, f3〉,
which is identical to the schedule generated by WFQ if all
flows are backlogged. The mechanism to achieve this spread-
ing is described in [6].

Lead and lag model. WPS generates a “frame” of slot allo-
cation from the WRR-spreading algorithm. In each slot of the
frame, if the flow that is allocated the slot is backlogged but
perceives a channel error, then WPS tries to swap the slot with
a future slot allocation within the same frame. If this is not
possible (i.e. there is no backlogged flow perceiving a clean

ARCHITECTURE FOR THE DESIGN AND EVALUATION OF QUEUEING ALGORITHMS 237

channel with a slot allocation later in the frame), then WPS
increments the lag of the flow if another flow can transmit in
its place (i.e. there is a backlogged flow with clean channel,
but has been served its slot allocations for this frame), and the
lead of this new alternate flow is incremented, where lead is
negative lag. At the start of a frame, WPS computes the ef-
fective weight of a flow equal to the sum of its default weight
and its lag, and resets the lag to 0. The frame is then generated
based on the effective weights of flows.

Compensation model. The compensation is twofold in WPS.
Intra-frame swapping is first attempted to compensate flows
that encounter channel error by locally trading slot alloca-
tions. If this fails, the lag/lead accounting mechanism de-
scribed above maintains the difference between the real ser-
vice and the error-free service across frames. By changing
the effective weight in each frame depending on the result of
the previous frame, WPS tries to provide additional service
to lagging flows at the expense of leading flows. In the ideal
case, in sync flows are unaffected at the granularity of frames,
though their slot allocations may change within the frame.

Implementation complexity. The implementation complex-
ity of WRR-spreading is O(n) for n flows. The worst case
time complexity for intra-frame swapping is O(n) pointer tra-
versals for n flows.

Impact and limitations. WPS has performance characteris-
tics similar to IWFQ. Thus, it has coarse short-term fairness
and throughput bounds, but provides bounded delay channel
access and long-term fairness. It may disturb in sync flows
when intra-frame swapping fails to find a compensation flow.
It is susceptible to a lagging flow accumulating a large lag.
However, it prevents complete channel capture because each
flow receives the effective weight worth of slots in each frame.

4.4. Channel-condition Independent Fair Queueing

Error-free service. CIF-Q uses Start Time Fair Queueing
(STFQ) [4] as the error-free service. STFQ is an approxima-
tion of WFQ that eliminates the dV/dt computation complex-
ity by setting V (t) to the start tag of the transmitting packet.

Lead and lag model. As in IWFQ, CIF-Q simulates an error-
free service. The lag of a flow is the difference in service be-
tween the error-free service and the real service (i.e. lead is
negative lag). A flow is considered to be “active” if it is ei-
ther leading or backlogged. The error-free service is applied
among all active flows. If a backlogged leading flow is allo-
cated a slot, it relinquishes the slot with a probability of α,
a system parameter. If an non-backlogged leading flow is al-
located a slot, it relinquishes the slot. A relinquished slot is al-
located to the lagging flow with the maximum normalized lag.

Compensation model. Lagging flows receive additional ser-
vice only when leading flows relinquish slots. These relin-
quished slots are given to the lagging flow with the maximum
normalized lag, where the normalization is done using the rate

weight of a flow. As a result of this compensation policy,
in sync flows are not disturbed if lagging flows can receive
the additional service, and leading flows degrade their service
gracefully. However, in pathological cases, a lagging flow
may capture the channel, as in IWFQ, and starve out other
flows.

Implementation complexity. The amortized time complexity
for STFQ to insert service tags in sorted order (as in WFQ) is
O(logn) for n flows. The complexity to compute virtual time
is O(1) in STFQ. In the event of a slot being allocated to a
flow perceiving an error channel, the time complexity to find
another flow to transmit in its place is O(logn).

Impact and limitations. CIF-Q can provide short-term and
long-term fairness, and bounded delay channel access. Ser-
vice degradation for leading flows is linear. Additional ser-
vice for lagging flows is not short-term fair. In sync flows
may be disturbed during redistribution of channel allocations
that cannot be used by lagging flows or the selected flow. In
the general case, CIF-Q achieves the properties of wireless
fair service except that it disturbs in-sync flows, and in some
pathological cases, a lagging flow may capture the channel as
in IWFQ.

4.5. Enhanced Class Based Queueing with Channel State
Dependent Packet Scheduling

Error-free service. CBQ-CSDPS combines a modified ver-
sion of Class Based Queueing (CBQ) [14] with Channel State
Dependent Packet Scheduling (CSDPS).

Lead and lag model. Rather than basing the lead/lag on the
error-free service, CBQ-CSDPS maintains lead and lag based
on the actual number of bytes s transmitted during each time
window. A flow with a normalized weight ri is leading if it
has received channel allocation in excess of s · ri , and lagging
if it has received channel allocation less than s · ri . Lagging
flows are allowed precedence in transmission in order to make
up their lag.

Compensation model. The compensation model of CBQ-
CSDPS is similar to IWFQ in that lagging flows are given
explicit precedence in channel access. This results in worst
case behavior of channel capture by a lagging flow that starts
to perceive a clean channel. Thus, short term fairness is not
provided and the worst case delay bounds are coarse. Addi-
tionally, leads and lags are computed with respect to a time
window of measurement; the properties of CBQ-CSDPS are
sensitive to the time window of measurement.

Implementation complexity. If the error free service of
CSDPS is WRR, the implementation complexity of CBQ-
CSDPS follows the same arguments as CSDPS in section 4.1.

Impact and limitations. Short-term fairness is not provided.
In sync flows are affected and leading flows may be starved
of channel access, i.e. service degradation is not graceful in

238 NANDAGOPAL, LU AND BHARGHAVAN

the worst case. CBQ-CSDPS can provide long term fairness
and throughput bounds.

4.6. Server Based Fairness Approach

Error-free service. SBFA provides a generic framework for
adapting different service disciplines to the wireless domain,
though the properties satisfied by the service discipline in the
wireline domain may not be translated to the wireless domain.

Lead and lag model. SBFA reserves a fraction of the chan-
nel bandwidth statically for compensation by specifying a vir-
tual compensation flow. If a backlogged flow is allocated
a slot but cannot transmit due to channel error, it enqueues
a slot request in the compensation flow. The error-free ser-
vice serves the compensation flow along with the other packet
flows. When the compensation flow is allocated a slot, it turns
over the slot to the flow to which its head-of-line slot request
belongs. SBFA does not have the concept of a leading flow.
The lag of a lagging flow is the number of slot requests in the
compensation flow.

Compensation model. Since the compensation flow is treat-
ed like any other flow by the error-free service, in sync flows
are not affected. However, when there are no slots in the com-
pensation flow, its bandwidth is shared by all flows perceiv-
ing clean channels at that time instant. Thus, in sync flows
receive excess service in this scenario. Lagging flows share
the compensation flow; hence the rate of aggregate compen-
sation received is statically bounded by the reserved share of
the compensation flow. Head of line blocking of the compen-
sation flow is not prevented. Leading flows do not give up
their lead, since the lead of a leading flow is not monitored.
SBFA is fundamentally different from the other algorithms
discussed in this paper because it statically reserves a frac-
tion of the channel for compensation. Thus, all the bounds
supported by SBFA are only with respect to the remaining
fraction of the channel bandwidth. The performance of SBFA
is sensitive to the statically reserved fraction.

Implementation complexity. The performance of SBFA is
dependent on the choice of the error-free service. For the
compensation component of SBFA, the implementation com-
plexity is a constant. This is because SBFA either transmits
the slot chosen by the error-free service, or a replacement
slot from the compensation flow, irrespective of channel state.
The downside of this approach is that the worst case through-
put bound of SBFA is extremely coarse.

Impact and limitations. SBFA provides long term fairness
and throughput bounds for error-free flows. However, it does
not provide short-term fairness or throughput bounds, and
provides very coarse worst case delay bounds. Leading flows
do not give up their lead, and lagging flows make up their lag
from the reserved fraction of the channel. A lagging flow may
capture compensation slots till it becomes in sync in the worst
case. SBFA is sensitive to the reserved fraction parameter. If

this value is less than the lag of flows over some time win-
dow, then error-prone flows cannot be guaranteed long-term
fairness or throughput bounds.

4.7. Wireless Fair Service algorithm

Error-free service. WFS uses an enhanced version of WFQ
in order to support delay-bandwidth decoupling. In WFS,
each flow is allocated two parameters, a rate weight ri and
a delay weight φi . The start tag of a packet is computed as
in WFQ, i.e. S(pki) = max{V (A(pki)), S(pk−1

i) + Lk−1
i /ri}.

However, the finish tag is computed based on φi rather than ri ,
i.e. F(pki) = S(pki) + Lk

i /φi . The service tag of a flow is the
finish tag of its head-of-line packet. At a time t with virtual
time V (t), WFS transmits the flow with the minimum service
tag and a clean channel subject to the constraint that the start
tag of the head-of-line packet for the flow must be less than
V (t)+ �, where � is a lookahead parameter of the scheduler.
If � = ∞, the error-free service is earliest deadline first. If
� = ∞ and ri = φi , the error-free service is WFQ. If � = 0
and ri = φi , the error-free service is WF 2Q [1]. Decoupling
the delay and rate weights allows for delay-bandwidth decou-
pling.

Lead and lag model. If a backlogged flow perceiving an er-
ror channel is allocated the channel, its lag is increased only if
there is another flow that can transmit in its place and increase
its lead (or reduce its lag). Both lead and lag are bounded by
per-flow parameters. In effect, the lag of a flow reflects the
number of slots which the flow is entitled to make up in the
future, and the lead of a flow reflects the number of slots it
must relinquish in the future.

Compensation model. A leading flow with a lead of l and
a lead bound of lmax relinquishes a fraction l/ lmax of the
slots allocated to it by error-free service. This leads to an
exponential reduction in the number of slots relinquished as
a function of the lead of the flow, and implies that a leading
flow asymptotically relinquishes all its lead. WFS maintains
a WPS-like “WRR with spreading” mechanism for determin-
ing which lagging flow will receive a relinquished slot. The
weight of a lagging flow in the WRR is equal to its lag. As
a result of this compensation model, compensation slots are
fairly allocated among lagging flows, and service degradation
is graceful for leading flows. In sync flows are not affected.

Implementation complexity. The error-free service has a
time complexity of O(logn) for inserting service tags in
sorted order as in all fair queueing algorithms. Traversing the
WRR in order to determine the first available lagging flow to
transmit a compensation slot has a time complexity of O(n)
pointer traversals.

Impact and limitations. WFS achieves the tightest short-
term fairness and throughput bounds among all the algorithms
considered in this paper. It achieves long-term fairness and
throughput bounds, delay bounded channel access, and grace-
ful degradation of leading flows. WFS satisfies the properties

ARCHITECTURE FOR THE DESIGN AND EVALUATION OF QUEUEING ALGORITHMS 239

of wireless fair service. Additionally, it also has the optimal
schedulable region because of delay–bandwidth decoupling.

5. Simulation results

In this section, we compare the algorithms in terms of the
properties of wireless fair service. Specifically, we evaluate
the performance of each algorithm by considering the fol-
lowing features: separation between flows, decoupling of rate
and delay, size of the schedulable region, short term through-
put and fairness guarantees for error-free flows, long term
throughput and fairness guarantees for all flows, and grace-
ful service degradation for leading flows.

We have not presented CBQ-CSDPS in this version of the
paper since it is ongoing work. We expect CBQ-CSDPS to
perform similar to IWFQ.

5.1. Simulation environment

The following performance measures are used in the evalua-
tion:

• W : number of transmitted packets of the flow expressed
as a fraction of the total number of packets transmitted for
all flows;

• Pl: loss probability, i.e. fraction of packets dropped;

• Dmax: maximum delay of successfully transmitted pack-
ets;

• Davg: average delay of successfully transmitted packets;

• σD: standard deviation of the delay;

• dnq: maximum new queue delay, i.e. the maximum delay
experienced by the head-of-line packet of a newly back-
logged flow.

Note that the delay and throughput parameters are expressed
in terms of slots.

Each of our simulations had a typical run of 50000 time
units. We averaged each result over 40 simulation runs. To
obtain measurements over short time windows, we measured
the parameters over 10 different time windows, of size 200
time units each, in a single simulation run, and averaged the
values obtained over 5 distinct simulation runs.

We have considered CBR sources, Poisson sources and
MMPP sources in our simulations. For the MMPP sources,
the modulated process is a continuous-time Markov chain

which is in one of two states ON or OFF. The transition rate
from ON to OFF is 0.9 and OFF to ON is 0.1.

The wireless channel in our simulations evolves according
to a two-state discrete Markov chain. Let pg be the probabil-
ity that the next time slot is good given that the current time
slot is in error, and pe be the probability that the next time
slot is in error given that the current slot is good. Then, the
steady-state probabilities PG and PE of being in the good and
bad states, respectively, are given by

PG = pg

pg + pe
and PE = pe

pg + pe
.

We also consider bursty error models, in which the error burst
lengths are uniformly distributed. For the channel prediction
algorithm, we use one-step predictions, i.e. the channel state
for the current time slot is predicted to be the same as the mon-
itored channel state during the previous time slot. Though this
is obviously not perfect, our simulation results show that it is
reasonably effective for typical wireless channel error models.

For the IWFQ [6] simulations, we do not bound the maxi-
mum credits and debits allowed for a flow. For CIF-Q, unless
explicitly mentioned, we set α = 0.5. For WFS [10] simula-
tions, we set � = ∞ and φi = ri unless explicitly mentioned
otherwise. For SBFA, we set the compensation fraction to 0.2.
We have not simulated CBQ-CSDPS in this work.

We present six examples in this section. Example 1 illus-
trates the error-free service model, and the delay-bandwidth
decoupling in WFS. Example 2 shows the performance of
error-sensitive and delay-sensitive flows. Example 3 illus-
trates the service degradation property for leading flows. Ex-
ample 4 illustrates the importance of a good channel predic-
tion mechanism. Example 5 shows a particular case when
all the algorithms perform similarly. Example 6 shows how
an adaptive source can improve its throughput by adapting to
packet drops due to channel error or delay-violation.

Example 1. Error-free service

In this example, we show that in the error-free case, each al-
gorithm performs according to its error-free service model.

a. Consider three Poisson sources with error-free channels.
Source 1 has an average rate of 0.111, sources 2 and 3 have
average rates of 0.444 each.

The simulation results for flows 1 and 2 are given in ta-
ble 1. As expected, the rates obtained by the sources are pro-
portional to their weight, and the configuration is schedulable.

Table 1
Results for example 1(a): flows 1 and 2.

Algorithm Flow 1 Flow 2

W Pl Dmax Davg σD dnq W Pl Dmax Davg σD dnq

CSDPS 0.111 0 86.41 8.53 10.89 8.00 0.444 0 40.03 3.91 5.10 2.00
WPS 0.111 0 89.84 8.58 11.03 8.00 0.444 0 43.88 4.01 5.38 2.00
IWFQ 0.111 0 81.79 9.46 10.31 13.26 0.444 0 40.16 3.79 4.96 2.32
SBFA 0.111 0 83.25 9.52 10.69 13.36 0.443 0 42.82 3.70 4.91 2.36
CIF-Q 0.111 0 81.57 6.90 9.99 8.00 0.444 0 41.47 3.88 5.00 3.00
WFS 0.111 0 82.90 7.18 10.53 9.33 0.444 0 42.45 4.15 5.21 3.53

240 NANDAGOPAL, LU AND BHARGHAVAN

b. Now, we run the WFS simulation again, changing the
delay weights for each of the sources, setting "1 = 0.9,
"2 = 0.09 and "3 = 0.009. The simulation results over
the entire run (I), and over small time windows (II) are shown
in table 2. There were no losses observed during the simula-
tion run. We can see that source 1, which has a larger delay
weight than the other sources, experiences a much smaller de-
lay, even though its rate is smaller than the other two sources.
On the other hand, source 3 has a large rate, but it sees a large
delay, as it has a smaller delay weight. WFS can schedule low
rate, low delay flows, as well as high rate, high delay flows,
due to delay-bandwidth decoupling.

Example 2. Error-sensitive versus delay-sensitive flows

A delay-sensitive flow drops its packets when the packets are
in the queue for a time larger than the specified delay bound.
An error-sensitive flow drops packets when it tries to trans-
mit a packet for a specified number of times and encounters a
channel error on all its attempts. For all algorithms, we imple-
mented the slot queue/packet decoupling as described in [6].

We consider three sources, where sources 1 and 2 are
Markov-modulated Poisson processes (MMPPs), with an ON
rate of 1.5 (average rate of 0.15), and source 3 is a constant
source with a rate of 0.25 (i.e. packet inter-arrival time of 4).
The channels for sources 1 and 2 evolve according to a two-
state discrete Markov chain having a steady state probability
PG = 0.7 with pg + pe = 0.1. Source 3 has an error-free

Table 2
Parameters and results for example 1(b): WFS.

Sorce ri "i W Dmax Davg σD dnq

I 1 0.11 0.9 0.11 37.5 1.0 2.7 16
2 0.44 0.09 0.44 40.8 2.9 4.4 23
3 0.44 0.009 0.44 64.7 6.8 7.4 30

II 1 0.11 0.9 0.11 5.4 0.8 1.4 4
2 0.44 0.09 0.44 11.8 2.6 2.9 5
3 0.44 0.009 0.44 20.1 6.6 5.1 7

Table 3
Example 2: throughput (W) for three flows.

CSDPS WPS IWFQ SBFA CIF-Q WFS

W1 0.2343 0.2339 0.2349 0.3091 0.2342 0.2353
W2 0.2326 0.2341 0.2345 0.2861 0.2317 0.2342
W3 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500

channel. The rate weights for all sources are ri = 0.333.
Flow 1 has a retransmission bound of 8, and flow 2 has a de-
lay bound of 100. Flow 3 has a delay bound of 100.

Table 3 presents the throughput results, and table 4
presents the delay results for flows 1, 2 and 3 for all the al-
gorithms.

Flows 1 and 2 get equal throughput in all algorithms.
CSDPS performs as well as WPS in this example because the
error patterns for flows 1 and 2 are identical. All algorithms,
except IWFQ and SBFA, have identical packet loss rates for
flow 2. Flow 3 gets its due rate even though the other flows
are in error. Thus, error-free flows achieve their long term
throughput guarantees under all algorithms.

In IWFQ, the loss rates for flow 2 and packet delays for
flow 1 are considerably less than that of the other algorithms,
since IWFQ retains precedence of tags, giving priority always
to a lagging flow. This results in a very high delay for the
error-free flow 3, which is affected by this compensation. For
SBFA, when a slot is in error an alternate flow is chosen, and
its head of line packet is transmitted without checking for that
flow’s channel status, whereas it could have been given to an-
other flow with a clean channel at the same time instant. The
implications of this are twofold. First, if there is no other
backlogged flow with a clean channel when a designated flow
encounters channel error, the designated flow is still compen-
sated, leading to a high throughput for flows 1 and 2. Sec-
ondly, when the alternate flow is in error too, the slot ends up
being wasted, and since the original flow is also charged, the
compensation slot is queued behind the other compensation
slots. This results in a high delay and packet loss rates for the
flows with channel error, as is evident here. This effect is also
visible in the low delays for the error-free flow 3.

Example 3. Graceful service degradation

In this example, we look at the service degradation of lead-
ing flows. There are three flows. Flow 1 is in error till time
t = 100. Flows 2 and 3 are always error-free. All flows are
backlogged at any instant of time. For WFS, we bound the
Emax and Gmax of each flow to 50. The value of α in CIF-Q
is set to 0.8. The following figures present the plot of the
number of packets served over time for the various algorithms
(drawn using Gnu Plot).

CSDPS. The service curves for CSDPS are shown in fig-
ure 2. Since CSDPS gives the error-prone slots of flow 1 to
flows 2 and 3 uniformly until t = 100, both flow 2 and flow 3

Table 4
Example 2: loss rates and delay for flows 1–3.

Algorithm Flow 1 Flow 2 Flow 3

Pl Dmax Davg σD dnq Pl Pl Dmax Davg σD dnq

CSDPS 0 175.92 21.24 25.70 102.96 0.0069 0 8.54 0.54 1.06 7.38
WPS 0 174.46 20.20 23.98 88.42 0.005 0 14.54 1.71 1.53 14.46
IWFQ 0 137.90 16.32 18.38 100.23 0.0026 0 59.13 3.22 6.00 57.39
SBFA 0.0375 4105.67 2012.82 1181.70 29.10 0.1298 0 3.95 0.29 0.70 3.95
CIF-Q 0 183.09 22.34 27.49 95.91 0.008 0 16.09 0.15 0.76 15.81
WFS 0 169.21 18.44 22.32 89.58 0.0045 0 22.16 1.90 2.62 21.79

ARCHITECTURE FOR THE DESIGN AND EVALUATION OF QUEUEING ALGORITHMS 241

Figure 2. Service degradation plots from example 3. CSDPS.

Figure 3. Service degradation plots from example 3. WPS (credit
bound = 50).

see an increase in service. Since CSDPS does not have any
mechanism for compensation, flow 3 does not receive its lost
service back after t = 100.

WPS. WPS keeps track of the lead and lag up to the credit
bound and tries to do frame swapping to compensate for the
lost slots. If we bound the lead to a maximum of 50 slots for
each flow, it is clear from the service curve shown in figure 3
that flow 1 captures the channel until it has given up all its lag.
From figure 4, we see that if we bound the lead to 30 slots for
each flow, then flow 1 loses some service since WPS does not
keep track of the lag or lead beyond the bound.

Figure 4. Service degradation plots from example 3. WPS (credit
bound = 30).

Figure 5. Service degradation plots from example 3. IWFQ.

IWFQ. Since IWFQ maintains precedence of tags, the lag-
ging flow always has the minimum tag. This ensures that
when the channel for a lagging error-prone flow become
clean, the lagging flow captures the channel till it gives up
all its lag. This is the exact behavior we observe in figure 5.

SBFA. In SBFA, the excess service is given to another
flow which is then charged if the transmission is success-
ful. A compensation slot is created corresponding to flow 1,
which is in error. Since, flows 2 and 3 have clean channels
at all times, they receive the excess service proportionately.
At time t = 100, all flows including the compensation flow

242 NANDAGOPAL, LU AND BHARGHAVAN

Figure 6. Service degradation plots from example 3. SBFA.

Figure 7. Service degradation plots from example 3. CIF-Q.

have equal tags. Packets of flow 1 get their normal allocation
as well as the compensation allocation. Hence, they receive
twice the service as flows 2 and 3, as figure 6 shows. This
pattern continues till flow 1 eventually makes up for its lost
service. Thus, the degradation observed for the leading flows
in this case is linear.

CIF-Q. Referring to figure 7, we can conclude that CIF-Q
has a linear degradation of service, the slope of which can be
varied by changing the system parameter α. CIF-Q tries to
distribute the excess service among all sessions. Thus, both
flow 2 and flow 3 receive the same amount of excess service

Figure 8. Service degradation plots from example 3. WFS.

which they give back to flow 1, after it has become error-
free.

WFS. WFS has an exponential reduction in the degradation
of service, made possible by its compensation mechanism.
This is more graceful than the linear degradation observed in
CIF-Q, but takes longer to compensate lagging flows. Also,
WFS tries not to disturb in-sync flows, unlike CIF-Q, which
distributes excess service among all clean flows. This is
clearly evident from figure 8.

Graceful service degradation is important in providing
short-term fairness and throughput guarantees for flows.
When the degradation is abrupt, as we see in IWFQ and WPS,
then leading flows do not get any short-term throughput until
the lagging flows gain their lost service. If there is no service
degradation however, then the algorithm fails to provide any
fairness guarantees, as in CSDPS. Excess service has to be
given up, and in a graceful way, such that leading flows re-
ceive some service during the compensation period. This en-
sures that throughput guarantees and fairness guarantees can
be provided over short time windows as well. From this ex-
ample, we see that only SBFA, CIF-Q and WFS ensure grace-
ful service degradation for leading flows.

Example 4. Channel prediction

This example demonstrates the importance of channel predic-
tion for the efficient operation of a wireless scheduling algo-
rithm. For this purpose, let us revisit example 2. As said
before, the success of one-step prediction depends on the fact
that channel errors are highly correlated between slots. Now
let us see what happens if this is not true. Consider the same
source model as in example 2. Let pg+pe = 1 and PG = 0.7.
The example is now the same as in example 2 except that the
channel errors now are uncorrelated between slots.

ARCHITECTURE FOR THE DESIGN AND EVALUATION OF QUEUEING ALGORITHMS 243

Table 5
Packet delays for flow 1 with pg + pe = 1.

Algorithm Flow 1 Flow 2

pg + pe = 1 0.1 1

Dmax Davg σD dnq Pl Pl

CSDPS 369.76 81.43 76.90 19.64 0.0069 0.0383
WPS 400.70 92.24 82.22 19.38 0.005 0.044
IWFQ 254.19 41.01 43.16 19.94 0.0026 0.0174
SBFA 212.00 27.78 33.47 25.50 0.016 0.009
CIF-Q 395.21 99.29 104.31 18.46 0.008 0.049
WFS 265.14 45.15 46.45 21.32 0.0045 0.0175

Table 6
Results for flow 3 in example 6.

Algorithm W Pl Dmax Davg σD dnq

CSDPS 0.1666 0 120.68 9.30 14.38 99.24
WPS 0.1667 0 119.00 9.09 13.74 99.60
IWFQ 0.1666 0 119.86 9.18 13.11 98.43
SBFA 0.1667 0 139.44 16.04 23.06 95.78
CIF-Q 0.1667 0 115.93 9.56 15.25 99.00
WFS 0.1668 0 122.00 8.99 13.58 99.22

Table 5 gives the packet delays of flow 1 with pg +pe = 1,
and the packet loss ratio of flow 2, with pg + pe = 1 and
pg + pe = 0.1. Channel error increases by at least 300%. In
SBFA, the alternate flow transmits irrespective of its channel
state, and hence SBFA performs well even if channel predic-
tion is poor. On the whole, it can be seen clearly that the
worse the channel prediction, the worser the performance.

Example 5. Identical behavior

In this example, we illustrate a situation wherein all the wire-
less fair queueing algorithms discussed here behave in a sim-
ilar way. We consider six sources, all having identical error
patterns, modeled as a Markov Chain, with pg + pe = 0.01
and PG = 0.7. All the sources are MMPP sources with an
average rate of 0.04, and with a delay bound of 150. The
characterization here is of a moderately loaded network hav-
ing moderate error patterns, with a large number of sources.
The simulation results for a single flow for the different algo-
rithms is given in table 6.

The service obtained is approximately equal for all the al-
gorithms. The delays are similar except for SBFA for the
same reasons as stated in example 2. The reason for the sim-
ilar performance for the algorithms is that as the number of
flows increases, all flows have i.i.d. error patterns, and the
offered traffic is stable but moderately heavy, so the compen-
sation algorithms start to work approximately the same.

Example 6. Adaptive sources

A delay-sensitive flow that deletes its packets when they ex-
ceed their delay bound (due to channel error) will cease to be
backlogged and thus lose its compensation. A flow can react
to this packet loss by generating packets equal to the number
of packets lost, at a higher rate.

Table 7
Effect of adaptive nature of source on throughput W .

Dmax Non- Adaptation window

adaptive 100 50 40 30 10

∞ 0.332
100 0.327 0.328 0.329 0.330 0.331 0.332
50 0.308 0.326 0.327 0.328 0.329 0.330

In this example, we look at the effect of the latency of
adaptation on the throughput for a flow in the presence of
channel errors. We have incorporated a time-window in our
simulations for a flow, that determines how soon a flow reacts
to this packet loss. A time-window of 20 implies that a when
a source generates excess packets in reaction to a packet loss,
it will be 20 time units after the loss is observed. Ideally, this
time-window should be 0.

In this example, we analyze this effect through simulations
of WFS. In particular, we have tried to show that the faster a
flow adapts to packet loss due to delay violations, the lesser
decrease in throughput is observed. Let us consider three
flows. Flow 1 has an error-free channel at all times. The chan-
nel model for flow 2 evolves according to a two-state Markov
chain with pg = 0.07 and pe = 0.03, and for flow 3 with
pg = pe = 0.05. All flows are MMPP sources with λi = 1.2.
All the flows are delay-sensitive with the delay bound = 100.

Table 7 shows the throughput obtained for flow 3 as a frac-
tion of the overall throughput, for different values of this time-
window. The results show that the throughput increases with
smaller time-windows, i.e. when flow 3 becomes more adap-
tive with respect to the rate. We see a 4% increase in through-
put compared to the case when flow 3 is non-adaptive, when
the delay bound is 100 for flow 3. If we reduce the delay
bounds further (implying a greater number of losses), we see
up to 10% increase in throughput.

6. Analytical results

In this section, we compare the analytical performance
bounds of the various algorithms we described in previous
sections.

6.1. Notations

We adopt the following notations for the performance com-
parisons described in this section: ri is the normalized rate
weight for flow i, "i is the normalized delay weight for flow i

in WFS, wi is the weight (in terms of bits) for flow i in WRR,
B is the maximum aggregate lag for all flows in IWFQ, α is
the system parameter in CIF-Q to specify the minimum frac-
tion of service that a leading flow retains during compensa-
tion, Fg(t) is the set of lagging flows at t , Fl(t) is the set of
leading flows at t , F is the set of all n flows, C is the server
rate, and Lp is the packet size. Ci(t) is the credit/debit (in
bits) of flow i at time t , where Ci(t) > 0 if a flow is leading;
Ci(t) < 0 if lagging; Ci(t) = 0 if in-sync.

For a flow i, Wi(t1, t2) denotes its aggregate service in bits
during time interval [t1, t2]. The throughput bound for a con-
tinually backlogged flow i during [t1, t2] is defined in terms of

244 NANDAGOPAL, LU AND BHARGHAVAN

Table 8
Performance of the error-free service models.

Algorithm EF model Throughput Wi(t1, t2) Delay dki Fairness index fI (t1, t2)

CSDPS WRR wi

⌊
C(t2 − t1)∑

j∈F wj

⌋ Lp
(
1 + ∑j �=i

j∈F wj

)
C

1 + Lp

wi
+ Lp

wj

IWFQ WFQ riC(t2 − t1)− Lp
Lp

riC
+ Lp

C

Lp

ri
+ Lp

rj

WPS WRR-S
wi∑

j∈F wj
C(t2 − t1) − Lp

∑
j∈F wj

wi

Lp

C
+ Lp

C

(∑
k∈F

wk

)(
Lp

wi
+ Lp

wj

)

CIF-Q STFQ riC(t2 − t1)− ri

∑
i∈F

Lp − Lp
Lp

riC
+

∑
j∈F Lp

C

Lp

ri
+ Lp

rj

WFS WFS-EF riC(t2 − t1)− Lp max

(
1,

ri

"i

)
Lp

"iC
+ Lp

C
max

(
Lp

ri
,
Lp

"i

)
+ max

(
Lp

rj
,
Lp

"j

)

SBFA WFQ riC(t2 − t1)− Lp
Lp

riC
+ Lp

C

Lp

ri
+ Lp

rj

Wi(t1, t2). The short term fairness index for two continually
backlogged flows i and j during [t1, t2] is defined to be

fI(t1, t2) =
∣∣∣∣Wi(t1, t2)

ri
− Wj(t1, t2)

rj

∣∣∣∣.
In the case of WRR, it is defined to be

fI(t1, t2) =
∣∣∣∣Wi(t1, t2)

wi

− Wj(t1, t2)

wj

∣∣∣∣.
The delay experienced by the kth packet pki of flow i, denoted
by dki , is defined as the difference between its departure time
DPT(pki) and its expected arrival time EAT(pki) [4]. That
is, dki = DPT(pki) − EAT(pki). The expected arrival time
EAT(pki) of packet pki , which arrives at real time A(pki), is
formally defined as

EAT
(
pki

) = max

{
A

(
pki

)
, EAT

(
pk−1
i

) + Lp

riC

}
, k � 1.

6.2. Error-free service model

The performance of the error-free service model is shown in
table 8, from which we can draw the following conclusions in
terms of throughput, maximum packet delay and short term
fairness:

Throughput. As we can see from table 8, WFQ, WRR
with spreading (WRR-S) and the error-free service model of
WFS (WFS-EF) can achieve the best analytically derivable
throughput bound. WRR and STFQ have coarser analytical
throughput bound. Furthermore, we can see that WFS-EF
achieves delay and throughput decoupling in the sense that its
throughput is mainly determined by its rate weight ri , not its
delay weight "i .

Packet delay. From table 8, WFQ, WRR-S and WFS-EF
have the tightest analytical delay bound. WRR and STFQ
have courser packet delay bound. Besides, we can see that the
delay bound of WFS-EF is determined by the delay weight
parameter "i , not the rate parameter ri , hence, it achieves
delay and throughput decoupling.

Table 9
Performance of error-free flows in the presence of errors in other flows.

Throughput dki − d
k,EF
i

CSDPS Wi(t1, t2) � WEF
i

(t1, t2) 0

IWFQ Wi

(
t1, t2 + T

g
i

)
� WEF(t1, t2)+ *C

IWFQ
i

(t1, t2) T
IWFQ
d

CIF-Q Wi(t1, t2) � WEF
i

(t1, t2)+ *CCIF
i

(t1, t2) T CIF
d

WFS Wi(t1, t2) � WEF
i

(t1, t2)+ *CWFS
i

(t1, t2) T WFS
d

SBFA Wi(t1, t2) � WEF
i (t1, t2) 0

Short term fairness. WRR achieves the worst short term
fairness, and other algorithms achieve comparable short term
fairness index.

6.3. Error-free flows in the presence of channel errors

In this subsection, we compare the performance of error-free
flows in the presence of channel errors. A detailed charac-
terization of throughput and packet delay bounds is shown in
table 9, where d

k,EF
i denotes the packet delay for kth packet

of flow i in the error-free service model.

6.3.1. Throughput
We proceed with a generic throughput bound which may char-
acterize both short-term and long-term throughput behavior
of these scheduling algorithms, and then describe their prop-
erties (see table 9).

Theorem 1 (Throughput bounds). Consider a continually
backlogged flow i during interval [t1, t2]. Let Wi(t1, t2) be
the service received by error-free flow i during [t1, t2], then

Wi(t1, t2) � WEF
i (t1, t2) + Ci(t2) − Ci(t1), (2)

where WEF
i (t1, t2) denoted the service that flow i has received

in its error-free service during [t1, t2].

Property 1 (CSDPS). The CSDPS algorithm does not have
any notion of lead and lag, i.e. Ci(t) ≡ 0 ∀t . Therefore, as
long as flows are continually backlogged, leading flows do

ARCHITECTURE FOR THE DESIGN AND EVALUATION OF QUEUEING ALGORITHMS 245

not give up services and lagging flows do not receive com-
pensation.

Property 2 (IWFQ). For a continually backlogged error-free
flow i over [t1, t2],
• if flow i is leading, then we have

T
g
i =

Ci(t1)
∑

j∈Fg
rj

Cri
+

∑
j∈Fg

|Cj(t1)|
C

,

and

*C
IWFQ
i (t1, t2) � −Ci(t1);

• if flow i is lagging, then we have

T
g
i =

∑
j∈Fg

|Cj(t1)|
C

and

*C
IWFQ
i (t1, t2) = 0.

Property 3 (CIF-Q). Consider the case Ci(t1) = C0. For a
continually backlogged error-free flow i over [t1, t2],
• if flow i is leading, then the following holds:

Ci(t2) − Ci(t1) � *CCIF
i (t1, t2),

where

*CCIF
i (t1, t2) := min

(
0,−(1 − α)riC(t2 − t1)

+ Lp + (1 − α)(nri + 1)Lp
)
,

• if flow i is lagging, then the following holds:

Ci(t2) − Ci(t1) � *CCIF
i (t1, t2),

where

*CCIF
i (t1, t2) := ri

∑
j∈Fl

∣∣*CCIF
j (t1, t2)

∣∣
− (n − 1)riLp − Lp.

Property 4 (WFS). Consider the case Ci(t1) = C0. For a
continually backlogged error-free flow i over [t1, t2],
• if flow i is leading, then its credit is updated as

Ci(t2) − Ci(t1) � *CWFS
i (t2, t1),

where

*CWFS
i (t2, t1) := C0

(
1 − e−riC(t2−t1)/C

max
i

);
• if flow i is lagging, then its credit is updated as

Ci(t2) − Ci(t1)

� *CWFS
i (t2, t1)

:= min

{∣∣Ci(t1)
∣∣, ∑

k∈Fl(t1)

Ck(t1)rkC(t2 − t1)

rkC(t2 − t1) + Cmax
i

× |Ci(t1)|∑
j∈Fg(t1)

|Cj(t1)|
}
;

• if flow i is in-sync, then its credit is updated as

Ci(t2) − Ci(t1) = *CWFS
i (t2, t1) := 0.

Remark 1. In CIF-Q, the compensation is distributed among
lagging flows according to their weight ri ; in WFS, the com-
pensation is distributed among lagging flows according to a
WRR, where the weight is a flow’s lag. Besides, in both
CIF-Q and IWFQ, in-sync flows may be disturbed, but in
WFS in-sync flows are not disturbed.

Remark 2 (SBFA and CSDPS). It might be misleading from
table 9 that SBFA and CSDPS seem to perform the best. This
is not true since in CSDPS, lagging flows will never receive
compensation; in SBFA, there is a fundamental conflict for
fairness between the service allocated to a flow and the pre-
reserved fraction, therefore, it is not exactly fair queueing in
the sense that its error-free service and fairness are defined by
excluding the prereserved fraction.

6.3.2. Packet delay
In table 9, we provide the packet delay for an error-free lag-
ging flow, since the cases for leading and in-sync flows are
straightforward.

Property 5. For a packet of error-free lagging flow i, the fol-
lowing is true for its packet delay dki (see table 9):

• in IWFQ,

T
IWFQ

d = |Ci(t)|
riC

+ B

C
;

• in CIF-Q,

T CIF
d = |Ci(t)|

riC
+ min

{
Lp

riC
, T CIF

m

}
,

where

T CIF
m = Lp

(1 − α)rirminC

+
(

1/ri + n − 1 + α

rmin(1 − α)
+ n + 1

rmin

)
Lp

C

with rmin = minj∈Fl rj ;

• in WFS,

T WFS
d = |Ci(t)|

Cri
+ min

{
Lp

riC
, T WFS

m

}
,

where T WFS
m is calculated from equation

CTm

∑
k∈Fl(t)

Ck(t)rk/Lp

rkCTm + Cmax
i

=
∑

j∈Fg(t)
|Cj (t)|

|Ci(t)| .

6.4. Service degradation of leading flows

In this section, we compare the service degradation of leading
flows in IWFQ, CIF-Q and WFS.

246 NANDAGOPAL, LU AND BHARGHAVAN

Theorem 2 (Graceful service degradation for CIF-Q and
WFS). Consider a leading backlogged flow i over a time in-
terval [t1, t2]. Assume Ci(t1) = C0 at time t1. Then, for any
time t ∈ [t1, t2]:
1. In WFS, its credit Ci(t) and instantaneous rate ri(t) are

given by

Ci(t) � C0 e−riC(t−t1)/C
max
i

and

ri (t) � riC

(
1 − C0

Cmax
i

e−riC(t−t1)/C
max
i

)
.

2. In CIF-Q, its credit Ci(t) � 0 is given by

Ci(t)� C0 − max
(
0, (1 − α)riC(t − t1)

− Lp − (1 − α)(1 + nri)Lp
)
,

and its instantaneous rate ri(t) is given by

ri (t) � riC(1 − α).

Theorem 3 (Service starvation time for IWFQ). For a lead-
ing flow with lead Ci at time t , the maximum service star-
vation time T sv

i , defined as the maximum time that a leading
flow does not receive any service compared to its error-free
service, is given by

T sv
i =

Ci

(∑
j∈Fg

rj
)

Cri
+

∑
j∈Fg

|Cj(t)|
C

.

Remark 3 (SBFA and CSDPS). In SBFA, though leading
flows do not give up services directly, the server has to preal-
locate a fraction of bandwidth for compensation, thus effec-
tively reducing the throughput for leading flows. In CSDPS,
the lagging flows do not receive any compensation due to
channel error.

6.5. Service capture effect by lagging flows

The service capture effect happens in one of the two scenar-
ios: (1) the entire channel is captured by a subset of lagging
flows, and other flows are starved out of service for certain pe-
riod of time; and (2) the compensation service is captured by
a subset of lagging flows, and other lagging flows are starved
out of compensation for certain period of time. As we can see
from the following theorems, all algorithms except WFS suf-
fer from one of the two capture effects. Note that it does not
apply for CSDPS since no compensation effort is made there.

Property 6 (Channel capture in IWFQ). In a worst case sce-
nario, the maximum channel capture time T cap

i,max by a lagging
flow i, which has a specified maximum lag Bi , is given by
T

cap
i,max = Bi/C.

Property 7 (Compensation capture in CIF-Q). In CIF-Q,
the difference between the normalized compensation (in vir-
tual time) of any two lagging error-free flows i and j is

−Lp/rj � ci − cj � Lp/ri . Therefore, a lagging flow with
a large lag but with small weight may be starved out compen-
sation for certain period of time.

Property 8 (Compensation capture in SBFA). In SBFA,
since the tagging history of lagging flows is maintained by
the Long Term Fairness Server (LTFS) in the same way as in
IWFQ, it suffers from the same capture effect as IWFQ for
compensation service. That is, in a worst case scenario, the
maximum capture time for compensation service by a lag-
ging flow i, which has a lag bi , is given by T

cap
i,max = bi/Bresv,

where Bresv is the preallocated capacity for compensation.

7. Summary

Wireless fair queueing is an important emerging area of wire-
less network research because simple best-effort scheduling
of flows is inadequate in scarce and heavily loaded chan-
nels. While several wireless fair queueing algorithms have
been proposed in literature, to our knowledge, this is the first
work that proposes a unifying architecture and a detailed per-
formance evaluation of different wireless fair queueing algo-
rithms.

We have presented the wireless fair service, which captures
the key requirements of wireless scheduling algorithms. We
have presented a unified wireless fair queueing architecture,
and mapped seven of the candidate wireless fair queueing al-
gorithms onto this architecture. A detailed simulation and
analysis based performance evaluation of these algorithms
shows that CIF-Q and WFS satisfy all the properties of wire-
less fair service.

References

[1] J.C.R. Bennett and H. Zhang, WF2Q: Worst-case fair weighted fair
queueing, in: IEEE INFOCOM’96 (March 1996).

[2] P. Bhagwat, P. Bhattacharya, A. Krishma and S. Tripathi, Enhancing
throughput over wireless LANs using channel state dependent packet
scheduling, in: IEEE INFOCOM’96 (April 1996).

[3] A. Demers, S. Keshav and S. Shenker, Analysis and simulation of a fair
queueing algorithm, in: ACM SIGCOMM’89 (August 1989).

[4] P. Goyal, H.M. Vin and H. Chen, Start-time Fair Queueing: A schedul-
ing algorithm for integrated service access, in: ACM SIGCOMM’96
(August 1996).

[5] S.J. Golestani, A self-clocked fair queueing scheme for broadband ap-
plications, in: IEEE INFOCOM’94 (April 1994).

[6] S. Lu, V. Bharghavan and R. Srikant, Fair scheduling in wireless packet
networks, in: ACM SIGCOMM’97 (August 1997).

[7] M. Srivastava, C. Fragouli and V. Sivaraman, Controlled multimedia
wireless link sharing via enhanced class-based queueing with channel-
state-dependent packet scheduling, in: IEEE INFOCOM’98 (March
1998).

[8] T.S. Ng, I. Stoica and H. Zhang, Packet fair queueing algorithms for
wireless networks with location-dependent errors, in: IEEE INFO-
COM’98 (March 1998).

[9] P. Ramanathan and P. Agrawal, Adapting packet fair queueing algo-
rithms to wireless networks, in: ACM MOBICOM’98 (October 1998).

[10] S. Lu, T. Nandagopal and V. Bharghavan, Fair scheduling in wireless
packet networks, in: ACM MOBICOM’98 (October 1997).

ARCHITECTURE FOR THE DESIGN AND EVALUATION OF QUEUEING ALGORITHMS 247

[11] D. Eckhardt and P. Steenkiste, Improving wireless LAN performance
via adaptive local error control, in: IEEE ICNP’98, Austin (October
1998).

[12] E.O. Elliot, Estimates of error rates for codes on burst-noise channels,
Bell Systems Technical Journal 42 (September 1963) 1977–1997.

[13] A. Parekh, A generalized processor sharing approach to flow control in
integrated services networks, PhD thesis, MIT Laboratory for Informa-
tion and Decision Systems, Technical report LIDS-TR-2089 (1992).

[14] S. Floyd and V. Jacobson, Link-sharing and resource management
models for packet networks, IEEE/ACM Transactions on Networking
3(4) (August 1995) 365–386.

Thyagarajan Nandagopal is a PhD candidate in the Electrical and Com-
puter Engineering Department at the University of Illinois and is affiliated
with the TIMELY Research Group. His research focuses on providing

Quality-of-Service in wireless networks.
E-mail: thyagu@timely.crhc.uiuc.edu

Songwu Lu is an Assistant Professor in the Computer Science Department at
the University of California at Los Angeles. His research focuses on develop-
ing wireless scheduling and medium access protocols that provide Quality-
of-Service.
E-mail: slu@cs.ucla.edu

Vaduvur Bharghavan is an Associate Professor in the Electrical and Com-
puter Engineering Department at the University of Illinois, where he heads
the TIMELY Research Group. His research interests are in mobile comput-
ing and computer networking.
E-mail: bharghav@timely.crhc.uiuc.edu

