
Wireless Networks 7, 617–625, 2001
 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

A Routing Algorithm for Wireless Ad Hoc Networks with
Unidirectional Links

RAVI PRAKASH ∗
Department of Computer Science, University of Texas at Dallas, Richardson, TX 75083-0688, USA

Abstract. Most of the routing algorithms for ad hoc networks assume that all wireless links are bidirectional. In reality, some links may
be unidirectional. In this paper we show that the presence of such links can jeopardize the performance of the existing distance vector
routing algorithms. We also present modifications to distance vector based routing algorithms to make them work in ad hoc networks
with unidirectional links. For a network of n nodes, neighbors exchange n× n matrices to propagate routing information. This results in
loop-free routes.

Keywords: mobile ad hoc networks, routing, unidirectional links, distance-vector routing

1. Introduction

The mobility pattern of the nodes in an ad hoc network is
often non-deterministic. Hence, the network topology is
always in a flux. There has been a significant amount of
effort towards developing routing algorithms for such net-
works. These algorithms can be classified into (a) cluster-
based algorithms, and (b) flat algorithms. In cluster-based
algorithms [1–4], at regular intervals, a subset of nodes is
elected as cluster-heads. A node is either a cluster-head or
one wireless hop away from a cluster-head. Nodes that are
not cluster-heads will, henceforth, be referred to as ordinary
nodes. When an ordinary node has to send a packet, the
node can send the packet to the cluster-head which routes
that packet towards the destination. In flat routing algorithms
[5,8–11] each node maintains routing information.

These routing algorithms have contributed significantly
towards the understanding of the problem and the feasible
solution approaches. However, to successfully deploy ad
hoc networks we need to understand the various ways in
which RF-propagation characteristics can impact the routing
problem. Several models based on the IEEE 802.11 physi-
cal and medium-access control layer protocol [6] have used
its Request_to_Send (RTS) and Clear_to_Send (CTS) con-
trol message exchange option to avoid collision and facilitate
communication over bidirectional links. We will concentrate
on a scenario that has not been considered in these models,
namely presence of some unidirectional links in the network.

Some links may be unidirectional due to the hidden ter-
minal problem [12] or due to disparity between the trans-
mission power levels of the nodes at either ends of the link.
Almost all existing routing algorithms tend to assume that
all links are bidirectional. In this paper we intend to eval-
uate the impact of unidirectional links on some of the exist-
ing distance vector based routing algorithms for ad hoc net-

∗ Supported in part by the National Science Foundation grants CCR-
9796331 and ANI-9805133.

works. Based on the understanding of the impact of such
links, we propose a strategy to modify existing distance-
vector based algorithms so that they can work correctly in
an ad hoc network that has a combination of unidirectional
and bidirectional links. Evaluation of the impact of unidirec-
tional links on hierarchical cluster-based routing algorithms
and link-state routing algorithms is slated for future research.

Section 2 describes two scenarios in which unidirectional
links may arise. Section 3 presents a brief description of
some of the existing flat routing algorithms. As the focus of
this paper is on such algorithms, we do not describe the hi-
erarchical algorithms. In section 4 we discuss the impact of
unidirectional links on some of the existing flat routing al-
gorithms for ad hoc networks. In section 5 we prove that ex-
changing O(n) size messages, as performed in existing dis-
tance vector based routing algorithms that assume all links
to be bidirectional, is not sufficient. We also propose an ex-
tension to such routing algorithms in which adjacent nodes
exchange O(n2) size messages. This is a significant increase
in the communication overheads. Future work will be fo-
cused on reducing this overhead. MAC sub-layer issues per-
taining to routing with unidirectional links are discussed in
section 6. Finally, we present the conclusions in section 7.

2. Unidirectional link scenarios

Some node, say A, may be able to receive messages from
node B as there may be very little interference in A’s vicin-
ity. However,B may be in the vicinity of an interfering node
and, therefore, be unable to clearly receive A’s messages. If
all data communication is preceded by a two-way handshake
between nodes (like RTS-CTS) then neither will exchange
data packets with the other over this link. However, if such a
handshake is not used at the MAC sub-layer, node B may be
able to send data packets to node A. So, the link between A
and B is directed from B to A. Of course, what happens if B
expects MAC sub-layer acknowledgements from A but can-

618 PRAKASH

Figure 1. Presence of unidirectional links due to energy depletion.

not receive them due to interference? We will discuss this
issue later in section 6.

The other scenario for unidirectional links has to do with
batter life. Sometimes nodes may choose to have unidirec-
tional links incident on them in order to conserve energy.
For example, let the maximum power-level at which nodes
can transmit, when they have a sufficient energy supply, be
p watts. This enables their transmission to reach nodes up to
d distance units away. However, when a node’s energy sup-
ply is depleted it may choose to lower its maximum trans-
mission power to p′ watts. As a result its range may reduce
to d ′. The consequence is depicted in figure 1. Node A’s
energy supply is depleted, but nodes B and C still have suf-
ficient energy. So, while A can receive transmissions of B
and C, only B can receive A’s transmissions. This yields a
bidirectional link between A and B and a unidirectional link
from C to A.

By reducing its energy consumption A can stay opera-
tional for a longer period of time and provide potentially im-
proved network connectivity. For example, in figure 1, A
can continue to provide a two-hop path from C to B. Had A
dropped out of the network, B would have been unreachable
from C.

So, link unidirectionality may be a persistent phenom-
enon, especially if some nodes experience: (i) a signifi-
cant depletion of their energy supply, or (ii) a persistent and
strong interferer. Alternatively, unidirectionality may be a
transient phenomenon where a link quickly transitions from
unidirectional to bidirectional state. The frequency of such
transitions, and the duration of stay in each state would be
a function of offered traffic, terrain, mobility pattern, and
energy availability.

3. Previous work

The Destination Sequenced Distance Vector (DSDV) [11]
approach is a modification of the distance vector routing

algorithm used earlier in ARPANET. In DSDV, each node
maintains a distance vector that contains entries for each des-
tination. The entry indicates the distance estimate and the
next hop to be taken by a packet to reach a destination. Each
entry has a sequence number associated with it, indicating
its freshness. If a destination is unreachable, the distance
metric is set to infinity. Periodically a node’s distance esti-
mates are diffused to neighbors. When a node p loses a link
that it was using to forward packets meant for destination q ,
p sets its distance metric for q to infinity and propagates
this information with a higher sequence number. Such up-
dates are diffused immediately, without waiting for the next
update time. Similarly, when a path is found to a hitherto un-
reachable node the finite distance metric to that destination
is propagated immediately through the network.

Dynamic Source Routing (DSR) [8] uses a diffusion
based mechanism to find a route to the destination. In-
stead of periodically exchanging routing information be-
tween nodes, route(s) are discovered when a node has to
send packets to some destination node. During this process
intermediate nodes can use the discovered routes to update
their own routing information. Caching of recently discov-
ered routing information is employed to speed up the rout-
ing process. The route maintenance mechanism does the
following: (i) sends a route error packet to the source if it
detects that the route to the destination is broken, and (ii) ei-
ther tries to use any other cached route to the destination or
invokes route discovery once again. In order to route pack-
ets, the source completely specifies the path the data packet
should take. This can significantly increase the communica-
tion overheads, especially as the network diameter increases.

In the Ad hoc On-demand Distance Vector (AODV)
scheme [10], route discovery and maintenance are per-
formed on demand, as in DSR, along with hop-based routing
as in DSDV. In order to reduce communication overheads,
as compared to DSDV, updates are propagated only along
active routes, i.e., routes that have seen some traffic in the
recent past.

The Temporally Ordered Routing Algorithm (TORA) [9]
is based on the notion of edge-reversal [5]. One instance of
the algorithm is executed for each destination and a directed
graph is maintained with respect to each destination. Only
bidirectional links are considered, and a direction is asso-
ciate with each link. Directed paths between every pair of
nodes are initially determined through a sequence of edge
reversals. When any node detects that it has lost the path to
a destination (all edges incident on the node are directed to-
wards it, in the graph for that destination) it performs full
edge reversal so that it has only outgoing links to all its
neighbors, and initiates route rediscovery for that destina-
tion. If a network partition is detected, the source is informed
about the same.

We have not discussed cluster-based routing algorithms
as this is not within the scope of this paper.

ROUTING ALGORITHM WITH UNIDIRECTIONAL LINKS FOR WIRELESS NETWORKS 619

Figure 2. Ad hoc network with unidirectional and bidirectional links.

4. Problem description

Several flat routing protocols [9–11] and hierarchical rout-
ing protocols [1–4] assume that all wireless links are bidi-
rectional.1 In the presence of unidirectional links several
problems arise for distance vector based algorithms. For the
purpose of illustration, let us consider DSDV [11]. AODV
[10] has similar behavior. Other flat routing protocols may
also exhibit similar problems.

Let us consider three interesting phenomena, illustrated
with the help of the network configuration shown in figure 2.

1. Knowledge asymmetry. There is a two-hop path from
j to a: j ia. However, due to link �j i being unidirec-
tional, i cannot directly inform j about the path. Just
because i knows that j is its neighbor, i cannot assume
that j also knows that i is its neighbor. Simple diffusion
strategy may not be sufficient to propagate information
about network topology.

2. Routing asymmetry. In AODV, during the path discov-
ery phase, let an intermediate node, vi , get to know that
the shortest path from x to y is xv1v2 . . . vi−1vivi+1
. . . y. Then, vi concludes that the shortest path from
itself to x is vivi−1 . . . v1x: the lexicographical reversal
of the path prefix ending at vi . However, if there exists
a unidirectional link on the path from x to vi , then vi ’s
conclusion would be wrong. In figure 2, as the link �j i is
unidirectional, the shortest path from i to j consists of
seven hops and the path from j to i consists of one hop:
a routing asymmetry.

3. Sink unreachability. In DSDV path updates are initiated
by the destination node. In AODV a source node finds
a route to the destination only when a sequence of route
replies flows back on the path from the destination to
the source. In figure 2, there exists a path to node l. So,
it could be the destination of packets. However, there is
no way node l can inform k that the latter can reach the
former in one hop. So, reachability information about l
cannot propagate to other nodes. Node l is a sink node
as all its incident links are directed towards it. The net-
work topology may indicate that a sink is reachable from
other nodes. But due to the limitations of the routing al-
gorithm no node knows of the existence of the sink, mak-
ing it effectively unreachable. Even if nodes knew of the

1 DSR [8] does not explicitly assume the presence of only bidirectional
links.

existence of a sink, unicast packet routing protocols sit-
ting on top of MAC sub-layer protocols that require ac-
knowledgements could not use the link incident on the
sink. However, for a variety of broadcast and multicast
protocols where MAC sub-layer acknowledgements are
not expected the sink can be a recipient of packets.

In fact, the problem with DSDV and AODV in the scenario
shown in figure 2 is quite serious. As they can only use bidi-
rectional links for routing purposes, they will ignore links
�cd, �fg, �j i, and �kl. As a result, even though nodes a and e

are reachable from each other, DSDV and AODV will per-
ceive a and c to be in different network partitions.

In DSR, let i receive a path discovery message from j

along �j i. When i has to send an acknowledgement to j it
may need to initiate a new path discovery to find a route to j .
The acknowledgement should then be sent along this route.
Thus, while DSR does not ignore the possibility of unidirec-
tional links, it makes an implicit assumption that routes in
both directions always exist between a pair of nodes. In the
proposed algorithm we make a similar assumption.2 The ba-
sic difference between DSR and the proposed protocol is the
following: DSR pays a high price for each data packet be-
cause such packets have to carry information about the entire
route. The proposed protocol avoids paying such a price per
data packet, but incurs higher route discovery and mainte-
nance costs. Thus, while DSR would be especially suitable
for high mobility, low data traffic networks, the proposed
protocol would be suitable for low mobility, high data traffic
networks.3

5. Solution approach

Each node needs to maintain enough information to distin-
guish between bidirectional and unidirectional links to its
neighbors. A node may not be able to directly send infor-
mation to a neighbor if there is no link from the node to the
neighbor. Once knowledge of link orientations is available,
appropriate routing decisions can be made.

First, let us determine the minimum amount of informa-
tion participating nodes need to maintain to ensure correct-
ness of the routing protocol. We will concentrate on modifi-
cations to protocols like DSDV and AODV to cope with the
presence of unidirectional links.

5.1. Assumptions

We model the network as a graph G = (V, E), where V is the
set of vertices and E is the set of edges. Some of the edges
are assumed to be directed. Every vertex (also referred to
as a node) is reachable from every other vertex. Thus, every

2 Such an assumption may not always be valid in a network with a combi-
nation of bidirectional and unidirectional links.

3 A low mobility network experiences a low frequency of topology changes.
Hence, the high overhead route maintenance messages need to be ex-
changed less frequently.

620 PRAKASH

Figure 3. Representation of directed and undirected paths.

node in the network can send packets to every other node in
the network.

Let each packet start from the source x with its Time_To_
Live (TTL) field initialized to TTL_max. All nodes have
agreed a priori on the value of TTL_max. Each intermediate
node z, and the destination y on receiving the packet decre-
ments the TTL field by one. Let us refer to the resultant
value as TTL_receive. When the packet arrives at the des-
tination node the length of the path traversed by the packet
thus far is equal to TTL_max − TTL_recv. Similarly, every
intermediate node, on receiving a packet, can determine the
length of the path taken by that packet so far.

Definitions
• path(ab): the shortest path from node a to node b. As

some links are unidirectional, path(ab) may be different
from path(ba).

• path(av1v2 . . . vkb): the shortest path from a to b that
passes through vertices vi : 1 � i � k such that vi pre-
cedes vj if i < j .

• length(path(x)): number of wireless links in path(x),
where x is a sequence of vertices.

• directed path(ab): path(ab) is said to be a directed path
if it has at least one directed link.

Lemma 1. In a network of n nodes, O(n) size distance vec-
tor exchange is not sufficient to determine routes in the pres-
ence of unidirectional links.

Proof. The lemma is proved by contradiction. Let us con-
sider the graph G shown in figure 3. In the figure:

1. �de is a directed edge.
2. length(path(cd)) � 0.
3. length(path(ef)) � 0.
Let each node i maintain a vector Vi of length n to be

used as the routing table. Vi[j].dist is node i’s knowledge
of its path-length to node j . Let the shortest path from c

to D be the directed path path(cdefD) and let path(fD) be
an undirected path. Also, let path(fpc) be a path of length
greater than zero between f and c. There are two possibili-
ties regarding path(fpc):

Possibility 1. It is a directed path from f to c. As
the distance vectors are exchanged between neighboring
nodes, the reachability information about D reaches c along
path(Dfpc). Therefore, node c’s estimate of the distance
to D is length(path(Dfpc)), which may be different from
length(path(cdefD)).

Possibility 2. It is an undirected path, or directed from c

to f . If path(fpc) is directed from c to f , node c cannot

learn about its distance to D as no path exists from D to c.
This is a violation of the assumption that every pair of nodes
can communicate along a path.

If path(fpc) is undirected, length(path(fpc)) must be
greater than or equal to length(path(cdef)). Otherwise, the
shortest path from c to D would have been path(cpfD).

If length(path(fpc)) > length(path(cdef)) then due to
diffusion of distance vectors fromD towardsC nodeC’s dis-
tance estimate forD, i.e., Vc[D].dist = length(path(fpc))+
length(path(fD)). This is greater than the actual path length
which is equal to length(path(cdefD)). Hence, maintaining
only a distance vector will lead to erroneous calculation of
path lengths. �

Basic idea
Let us once again refer to figure 3 where path(cdef) is the
shortest path from c to f . Let

X= {
x: x is a node on path(cd)

}
, and

Y = {
y: y is a node on path(ef)

}
.

As path(cdef) is the shortest path from c to f , for all x
and y, path(xy) goes through vertices d and e. As edge
�de is directed, information about length(path(xy)) cannot

propagate from y to x along the path that goes through �de.
However, this information could be conveyed to x if every
node p on path(yf cx) propagates length(path(xy)), ∀x ∈
X, y ∈ Y . As setsX and Y can be as large as V , |X| = O(n)
and |Y | = O(n), where n = |V |.

Therefore, in the proposed solution node p needs to store
and forward O(n2) units of length information. It may be
possible to develop solutions with lower communication
overheads. Determination of the lower bound and devel-
opment of more efficient solutions is the subject of future
research.

5.2. Data structures and algorithm

It is assumed that each node emits a beacon at regular inter-
vals. A node can hear beacons transmitted by a neighboring
node provided the link between them is bidirectional, or di-
rected from the neighbor to itself. The transmission of bea-
cons by different nodes is not synchronized as there is no
global clock in the system.

5.2.1. Data structures
Each node p maintains the following data structures:

• Nodesheardp: set of nodes whose beacons have been
heard by node p within the last t time units. If q ∈
Nodesheardp and p ∈ Nodesheardq , then there ex-
ists a bidirectional link between p and q . However, if
q ∈ Nodesheardp and p �∈ Nodesheardq , then there is
a unidirectional link from q to p. This data structure
is modeled after the one by the same name used in the
Linked Cluster Algorithm [1,2].

• D: an n × n matrix of 2-tuples, where n is the number
of nodes in the network. D[i, j] = (seq, dist) means

ROUTING ALGORITHM WITH UNIDIRECTIONAL LINKS FOR WIRELESS NETWORKS 621

node p knows that the path from node i to node j is
of length dist, and the sequence number associated with
this information, pertaining to node j , is seq. Due to the
possibility of unidirectional links, D[i, j].dist may not
be equal to D[j, i].dist. The sequence number associ-
ated with a destination is monotonically increasing. Each
time node j sends updates to its neighbors, if j knows of
a link from i to j then j increases the sequence number
associated with the entry D[i, j] by a constant value. As
in AODV and DSDV, routing information with a higher
sequence number overrides the corresponding informa-
tion with a smaller sequence number. As a result, stale
routing information cannot suppress new routing infor-
mation. Consequently, knowledge about link disruptions
propagates quickly and the count to infinity problem (as-
sociated with distance vector algorithms) is avoided.

• To and From: vectors of length n, where each entry is a
3-tuple of the form (seq, dist, next) and (seq, dist, prev),
respectively. The To vector is similar to the distance vec-
tor of DSDV as it maintains information about the path
length from a node to all other nodes, and the next hop
on the path to those nodes. Fromp vector contains infor-
mation about paths from other nodes to p. Due to the
presence of unidirectional links in the network, and the
resultant routing asymmetry, the corresponding dist val-
ues in the To and From vectors may be different from
each other.

When routing information stabilizes, Top should have the
same dist and seq values as the corresponding entries in the
pth row of Dp. There should be a similar match between
Fromp and the pth column of Dp. This seems to suggest
that the D matrix could be modified to add one more field:
prev/next to each element. The To and From data structures
could be omitted with such a modification. However, this
approach is not adopted for the following reasons:

1. There is no point in node p maintaining the information
Dp[i, j].prev or Dp[i, j].next where p �∈ {i, j }.

2. Addition of the third field toD will increase the commu-
nication overheads when nodes exchange theirD matrix
with neighbors.

So, the presence of two seemingly redundant data structures
is actually due to performance considerations.

Determination of link orientation. We employ the Nodes-
heard set, in a manner similar to [1], to determine network
adjacency. Each node periodically transmits its Nodesheard
set with its beacon. It also continuously listens for simi-
lar transmissions from other nodes. If node p hears that
p ∈ Nodesheardq , node p knows that there exists a bidi-
rectional link between p and q . The next time p broadcasts
its beacon it includes q in its Nodesheard set. When q hears
this beacon it, too, knows of the presence of the bidirectional
link.

If node p finds that p �∈ Nodesheardq , p concludes that
there exists a unidirectional link from q to p. However, how

does q get to know of the presence of this link? For this
purpose we employ the matrix D, as described next.

5.2.2. Routing algorithm
Let V denote the set of nodes in the network. Initially, the
D matrix at each node p only contains its adjacency in-
formation. Each node periodically transmits its D matrix.
The time between successive transmissions of D is a mul-
tiple of the time between successive transmissions of the
Nodesheard set. This is so for two reasons:

1. Transmission of D consumes much more bandwidth
than the transmission of Nodesheard.

2. Transient noise that may interfere with the reception of
a few successive Nodesheard messages from a neighbor
does not lead a node into erroneously concluding that its
path to/from that neighbor is broken.

On link discovery. If p discovers a bidirectional link be-
tween p and q , then Dp[p, q].dist = Dp[q, p].dist = 1.
If p discovers that there exists a unidirectional link from q

to p, then Dp[q, p].dist = 1. The sequence number asso-
ciated with each entry is analogous to the sequence number
associated with routing table entries in DSDV and AODV
with one subtle difference: in the context of unidirectional
links they may be associated with the source as opposed to
the destination. This difference is explained in the following
footnote. The sequence numbers are initialized to zero, and
increase with time.

On receiving D matrix from neighbor. Let node p receive
matrix Drecv from node q . If pq is a bidirectional link or a
unidirectional link from q to p, p modifies its D matrix in
the following manner on receiving the matrix:

• For all nodes r ∈ V , different from p and q:

∗ If Drecv[r, q].seq < D[r, p].seq then perform no ac-
tion using Drecv[r, q].4

∗ If ((Drecv[r, q].seq == D[r, p].seq) OR
((Drecv[r, q].seq > D[r, p].seq) AND
(Fromp[r]! = q))):

∗ D[r, p].dist = min(Drecv[r, q].dist + 1,
D[r, p].dist);

∗ if D[r, p].dist has decreased as a result then
Fromp[r].prev = q .

∗ If ((Drecv[r, q].seq > D[r, p].seq) AND
(Fromp[r] == q)):

∗ D[r, p].dist = Drecv[r, q].dist + 1.

4 As opposed to DSDV and AODV, the sequence number comparison is
done for entries with the same source. So, here the sequence number indi-
cates the age of the reachability information from source to two different,
but adjacent destinations. The reason is as follows. Let some link(s) on
a path from node i to j be unidirectional. When reachability information
with a sequence number tagged by i propagates towards j it indicates the
length of the path from i to j . Node j cannot use this information to draw
inferences about the length of the path from itself to i.

622 PRAKASH

∗ If D[r, p].dist has changed as a result, D[r, p].seq =
Fromp[r].seq = Drecv[r, q].seq.

∗ If Drecv[r, q].seq == D[r, q].seq:

∗ D[r, q].dist = min(Drecv[r, q].dist, D[r, q].dist).

∗ If Drecv[r, q].seq > D[r, q].seq:

∗ D[r, q] = Drecv[r, q].
These operations enable node p to determine its distance
from other nodes.

• For any arbitrary pair of nodes r and s in V , different
from p and q:

∗ If ((Drecv[r, s].seq > D[r, s].seq) OR
((Drecv[r, s].seq == D[r, s].seq) AND
(Drecv[r, s].dist < D[r, s].dist))):

∗ D[r, s] = Drecv[r, s].
If link pq is a bidirectional link, node p also performs the

following operations for all r ∈ V :

I. IfDrecv[q, r].seq<D[p, r].seq, then do not perform any
action using Drecv[q, r].

II. If Drecv[q, r].seq == D[p, r].seq:

∗ if Drecv[q, r].dist + 1 < D[p, r].dist:

∗ Top[r].dist = D[p, r].dist = Drecv[q, r].dist + 1,

∗ Top[r].next = q;

∗ if Drecv[q, r].seq == D[q, r].seq:

∗ D[q, r].dist = min(Drecv[q, r].dist, D[q, r].dist);

∗ if Drecv[q, r].seq > D[q, r].seq:

∗ D[q, r] = Drecv[q, r].
III. If Drecv[q, r].seq > D[p, r].seq then:

∗ Top[r].dist = D[p, r].dist = Drecv[q, r].dist + 1,

∗ Top[r].seq = D[p, r].seq = Drecv[q, r].seq,

∗ Top[r].next = q .

The preceding operations are similar to the updates per-
formed by DSDV and AODV. They enable node p to de-
termine its distance to other nodes.

If the received D matrix from node q is such that
Drecv[p, s].dist == 1 and s �∈ Nodesheardp, node p con-
cludes that there exists a unidirectional link from p to s.
Therefore:

• Top[s].dist = D[p, s].dist = 1,

• Top[s].seq = D[p, s].seq = Drecv[p, s].seq,

• Top[s].next = s.

Also, for every arbitrary node r that is different from p and
s, p updates its D matrix as follows:

• if D[p, r].seq is equal to Drecv[s, r].seq then updates are
performed similar to case II described above, substituting
q with s;

• if Drecv[s, r].seq is greater than D[p, r].seq then updates
are performed similar to case III described above, once
again substituting q with s.

Thus, each node updates its reachability information and
propagates this information to other nodes.

On detecting link break. Let p’s data structures indicate
the existence of a bidirectional link between p and q , or a
unidirectional link from q to p. If p does not hear a certain
predetermined number of successive beacons from q , then p
concludes that direct communication from q to p has been
disrupted. Hence, p removes q from Nodesheardp and per-
forms the following operations:

• increment Fromp[q].seq and D[q, p].seq,

• Fromp[q].dist = D[q, p].dist = ∞,

• Fromp[q].prev = NULL,

• ∀r: Fromp[r].prev == q:

∗ D[r, p].dist = ∞,

∗ increment D[r, p].seq,

• ∀r: Top[r].next == q:

∗ D[p, r].dist = ∞.

• Node p immediately broadcasts its updated D matrix to
all its neighbors. The idea is to propagate bad news fast.

Let node p be under the impression that it has a uni-
directional link to q . Let p receive a D matrix from
node s such that: (Drecv[p, q].seq > D[p, q].seq) ∧
(Drecv[p, q].dist == ∞). This indicates that the link from
p to q has been disrupted. So, p performs the following
operations:

• Top[q].seq = D[q, p].seq = Drecv[p, q].seq,

• Top[q].dist = D[p, q].dist = ∞,

• ∀r: Top[r].next == q:

∗ D[p, r].dist = ∞,

∗ increment D[p, r].seq.

• Node p immediately broadcasts its updated D matrix to
all its neighbors.

Example. Let us refer back to figure 2. Node i knows that
there is a path of length one from j to i. This informa-
tion is forwarded by i, through a to the rest of the network.
Later, when node j receives Drecv matrix from k, j finds
that Drecv[j, i] = 1. It is at this point that j realizes that
it has an outgoing link to i. Using this information, along
with distance estimates from i to other nodes, j can revise
its estimate of its distance to other nodes.

Also, when node b sends itsD matrix to node c, c realizes
that b is two hops away from i. Therefore, c concludes that
it must be three hops away from i.

Lemma 2. The algorithm for updating the D matrix and the
To vector results in loop-free routing.

ROUTING ALGORITHM WITH UNIDIRECTIONAL LINKS FOR WIRELESS NETWORKS 623

Proof. The proof is by contradiction. Let us assume that
prior to an update of the D matrix and the To vector there is
no loop. Therefore, To[r].next values form a directed acyclic
graph representing acyclic paths of finite length from nodes
in V to node r . Such a directed acyclic graph can be con-
structed for each destination node. Let the following oper-
ation result in the formation of a cycle in node r’s graph:
Top[r].next = q , where nodes q is a neighbor of node p.
There are two cases when this update to Top[r].next is per-
formed:

1. Node p gets to know that the sequence number of node
q’s path to r is greater than the sequence number of its own
path to r , i.e., Top[r].seq < Toq [r].seq. By construction
of the algorithm, node Toq [r].next should have a sequence
number that is greater than or equal to q’s sequence number.
Extending this argument, as the chain of To[r] pointers is
traversed, the sequence number must be nondecreasing. As
we now have a cycle, the chain should lead back from q

to p. This means that the Top[r].seq cannot be less than
Toq [r].seq: a contradiction.

2. The sequence numbers associated with paths from p

and q to r are the same. Top[r].next is set to q because
Drecv[q, r].dist + 1 < D[p, r].dist. As this has resulted in a
cycle, the path from q to r must lead through p. This would
imply that D[p, r].dist < D[q, r].dist: a contradiction. �

5.3. Storage and communication overheads

The storage requirement at each node is O(n2), where n

is the number of nodes in the system. This is significantly
greater than distance vector based protocols like DSDV and
AODV which only require O(n) units of information to be
stored by each mobile node. The increased storage complex-
ity of the proposed scheme is due to the topology matrix D
maintained by each node. Similarly, the largest message is
of size O(n2), once again greater than the communication
overheads of DSDV and AODV which are O(n).

5.4. The sinking feeling

Under some circumstances sink unreachability, as described
in section 4, can have an interesting impact on the perfor-
mance of the proposed routing algorithm. Consider two
strongly connected subnetworks N1 and N2.5 As shown in
figure 4, let there be a unidirectional link from node A ∈ N1
to a node B ∈ N2. Let there be a path (of one or more
links) from N2 to N1 shown by the dotted arc. As a result:
(i) information about link �AB can be diffused to node A,
(ii) A can propagate this information to other nodes in N1,
and (iii) nodes in N1 can route packets to nodes in N2
through the link �AB.

Subsequently, let the path from N2 to N1 be disrupted
making the sub-network N2 a sink with respect to sub-
network N1. Let this be followed by the disappearance of

5 A directed graph is said to be strongly connected if there exist directed
paths from every node to every other node.

Figure 4. Impact of weakly connected directed graph on routing.

link �AB. NodeB senses the disappearance of the link. How-
ever, there is no path to propagate this information to N1.
If an unreliable MAC sub-layer protocol is being used by
A and/or the solution does not enforce the restriction that
the directed network be strongly connected all the time then:
(i) nodes in N1 will continue to forward packets destined for
nodes inN2 toA, and (ii)Awill keep transmitting them with
the impression that they will get to B. This is wasteful.

However, as stated in section 5.1, if the protocol requires
strong connectivity of the network (every vertex can reach
every other vertex along a directed path) for correct opera-
tion then the following will happen: the fact that there is no
path from N2 to N1 will be propagated among the nodes in
N1 in finite time. Consequently, node A will realize that A
and B are in different strongly connected components and A
will stop communicating messages along �AB. Therefore, a
subsequent disappearance of link �AB will have no further
adverse impact on performance.

Hence, routing on unidirectional links has to be consid-
ered in conjunction with MAC sub-layer issues. A discus-
sion of such issues in presented in section 6.

5.5. Impact of alternative strategy on route stability

A pertinent question to ask at this juncture is: Is it possible to
reduce the storage and communication cost incurred in route
maintenance for a network with potentially unidirectional
links?

One possibility could be to ignore all unidirectional links
and restrict all operations to bidirectional links. As described
in section 4, this can lead to longer routes, or may lead to the
impression that the network is partitioned when in reality all
node pairs are reachable from each other. Also, links that are
bidirectional most of the time may briefly become unidirec-
tional. This may temporarily invalidate some routes. If one
were to assume that the link has entirely disappeared for the
duration it is unidirectional then this may: (i) invalidate an
even greater number of routes for that period, (ii) generate
more route update messages.

This will result in reduced stability of routes, where sta-
bility of a route between a pair of nodes indicates the du-
ration for which the route remains unchanged. It is to be
noted that protocols like AODV and DSR cache routing in-
formation to reduce the overhead of route discovery. Re-
duced route stability will result in reduced effectiveness of
caching, and shorter cache invalidation time.

624 PRAKASH

If link unidirectionality is a rare phenomenon and its im-
pact on route length and stability is small, one could ig-
nore all unidirectional links and only incur O(n) storage and
communication overheads. The reduction in overheads from
O(n2) to O(n) throughout the lifetime of the network may be
more desirable than occasional increase in path lengths and
reduction in route stability. However, an implementer should
make the decision as to whether link unidirectionality needs
to be considered or ignored only after careful interference
modeling and extensive simulation experiments.

The observation that adjacent nodes need to exchange
more than O(n) information raises an interesting question.
Link-state routing algorithms require a total of O(n2) infor-
mation, i.e., entire network topology to be conveyed to each
router. The proposed algorithm, which started out as a modi-
fication of DSDV, also requires O(n2) information to be sent
along each incident edge of a node. So, in the presence of
unidirectional links would it be prudent to concentrate on
link-state routing algorithms. Further study is required be-
fore making any assertion about the superiority of one rout-
ing algorithm over the other in the ad hoc network scenario.

The presence of unidirectional links may also affect hi-
erarchical routing algorithms. Unidirectional links may re-
sult in routing asymetry between cluster-heads. So, the m
cluster-head (m � n) may have to exchange O(m2) infor-
mation to maintain routes if the algorithm described in this
paper is employed. However, once again, further investiga-
tion is required before reaching a conclusion.

6. MAC sub-layer issues for unidirectional links

Various wireless MAC sub-layer protocols, including IEEE
802.11, require the receiver to send an acknowledgement (or
a NACK) to the sender. This assumes bidirectional commu-
nication between the sender and the receiver. However, if
a node sends packets to another node along a unidirectional
link the receiver cannot send MAC sub-layer acknowledge-
ments along the same link. Instead, the acknowledgements
have to be routed to the sender.

Routing MAC sub-layer acknowledgements mixes the
network and data link layer issues. If a path exists from
the receiver to the sender one possible solution could be
to tunnel the MAC sub-layer acknowledgements as a net-
work layer packet much the same way the UniDirectional
Link Routing (UDLR) Working Group of the IETF has sug-
gested for networks involving satellite links and/or cable
connections [7]. Tunneling acknowledgements would re-
quire the designer to consider its impact on performance.
As the acknowledgements have to traverse a multi-hop path
the latency of MAC sub-layer communication is increased.
So, the node sending data along a unidirectional link would
need to maintain bigger MAC sub-layer windows (if a slid-
ing window protocol is being used) to sustain a steady flow
of data along the link. The increased latency at the MAC
sub-layer could also impact the upper layers of the protocol
stack. One possible example at the transport layer could be
the impact on TCP timers and throughput.

If for a unidirectional link from A to B a reverse path
from B (receiver) to A (sender) does not exist B cannot tun-
nel acknowledgements to A. In such a situation if A wishes
to continue using the link �AB to route packets A has to use
an unreliable MAC sub-layer protocol, i.e., one that does not
expect acknowledgements and cannot do any flow control
using sliding windows. A reliable MAC sub-layer protocol
can be used in conjunction with unidirectional links only if
the network is strongly connected.

7. Conclusion and future work

Most of the research in mobile computing tends to assume
that all links are bidirectional. However, due to a variety
of reasons, only unidirectional communication may be pos-
sible between some pairs of adjacent nodes. Existing dis-
tance vector based algorithms will fail in the presence of
such links.

We described the adverse impact of unidirectional links
on existing distance vector based routing algorithms. We
showed that diffusing distance vectors with one component
per node is not enough. We also described simple data struc-
tures and proposed a strategy to propagate routing informa-
tion in networks with a combination of unidirectional and
bidirectional links. The proposed strategy is a modification
of DSDV and AODV: well known routing algorithms pro-
posed for wireless ad hoc networks. It incurs higher com-
munication and storage overheads of O(n2).

We intend to work on efficient storage and information
propagation strategies to reduce the absolute size of mes-
sages exchanged between neighboring nodes. This is of sig-
nificance due to the low bandwidth of wireless links. Also,
the O(n2) size of route dissemination messages points to-
wards the need to evaluate link-state routing strategies for
networks with unidirectional links. In the future we intend to
investigate the impact of unidirectional links on hierarchical
routing algorithms. We will also try to gain a better under-
standing of the role of sink nodes in a network, and the role
of MAC sub-layer protocols in networks with unidirectional
links.

Acknowledgements

The author wishes to thank Mukesh Singhal, Daniel Russo
and Sanket Nesargi for valuable comments and discussions.

References

[1] D.J. Baker and A. Ephremides, The architectural organization of a
mobile radio network via a distributed algorithm, IEEE Transactions
on Communications COM-29(11) (November 1981) 1694–1701.

[2] D.J. Baker, A. Ephremides and J.A. Flynn, The design and simulation
of a mobile radio network with distributed control, IEEE Journal on
Selected Areas in Communications (1984) 226–237.

[3] B. Das and V. Bharghavan, Routing in ad-hoc networks using mini-
mum connected dominating sets, Proceedings of ICC (1997).

ROUTING ALGORITHM WITH UNIDIRECTIONAL LINKS FOR WIRELESS NETWORKS 625

[4] B. Das, R. Sivakumar and V. Bharghavan, Routing in ad-hoc networks
using a spine, in: Proceedings of IEEE IC3N (1997).

[5] E. Gafni and D. Bertsekas, Distributed algorithms for generating loop-
free routes in networks with frequently changing topology, IEEE
Transactions on Communications (January 1984) 11–18.

[6] IEEE, P802.11, IEEE Draft Standard for Wireless LAN Medium Ac-
cess Control (MAC) and Physical Layer (PHY) Specification, D2.0
(July 1995).

[7] Internet Engineering Task Force, www.ietf.org/html.
charters/udlr-charter.html (1999).

[8] D.B. Johnson and D.A. Maltz, Dynamic source routing in ad-hoc
wireless networks, in: Mobile Computing, eds. T. Imielinski and
H. Korth (Kluwer Academic, 1996).

[9] V.D. Park and M.S. Corson, A highly adaptive distributed routing al-
gorithm for mobile wireless networks, in: Proceedings of IEEE IN-
FOCOM (April 1997).

[10] C. Perkins and E.M. Royer, Ad hoc on demand distance vec-
tor (AODV) routing, Internet Draft, draft-ietf-manet-aodv-
02.txt (November 1998).

[11] C.E. Perkins and P. Bhagwat, Highly dynamic destination-sequenced
distance-vector routing (DSDV) for mobile computers, in: Proceed-
ings of ACM SIGCOMM Conference on Communication Architec-
tures, Protocols and Applications (August 1994) pp. 234–244.

[12] F. Tobagi and L. Kleinrock, Packet switching in radio channels:
Part II – The hidden terminal problem in carrier sense multiple access
and the busy tone solution, IEEE Transactions on Communications
(December 1975) 1417–1433.

Ravi Prakash received the B.Tech. degree in com-
puter science and engineering from the Indian In-
stitute of Technology, Delhi, in 1990, and the M.S.
and Ph.D. degrees in computer and information sci-
ence from the Ohio State University in 1991 and
1996, respectively. He joined the Computer Sci-
ence Department at UT Dallas in July 1997 where
is an Associate Professor. During 1996–1997 he
was a Visiting Assistant Professor in the Computer
Science Department at the University of Rochester.

He was awarded the Presidential Fellowship by the Ohio State University
for the year 1996. He is also the recipient of the best paper awards at sev-
eral prestigious conferences. His areas of research are mobile computing,
distributed computing, and operating systems. He has published his results
in various journals and conferences.
E-mail: ravip@utdallas.edu

