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Abstract— Although far from optimal, flooding is an in-
dispensable message dissemination technique for network-
wide broadcast within mobile ad hoc networks(MANETs). As
such, the plain flooding algorithm provokes a high number of
unnecessary packet rebroadcasts, causing contention, packet
collisions and ultimately wasting precious limited bandwidth.
We explore the phase transition phenomenon observed in
percolation theory and random graphs as a basis for defining
probabilistic flooding algorithms.

By considering ideal and realistic models, we acquire a
better understanding of the factors that determine phase
transition, the consequences of the passage to realistic
MANET conditions and to what extent we may benefit from
probabilistic flooding in real MANET networks.

I. I NTRODUCTION

Mobile ad hoc networks(MANETs) are self-organizing
mobile wireless networks that do not rely on a preexisting
infrastructure to communicate. Nodes of such networks
have limited transmission range, and packets may need to
traverse multiple other nodes before reaching their desti-
nation. Research in MANETs was initiated 20 years ago
by DARPA for packet radio projects [13], but has regained
popularity nowadays due to the widespread availability of
portable wireless devices such as cell phones, PDAs and
WiFi / Bluetooth enabled laptops.

Because of the ever-changing topology of MANETs,
broadcasting [19] is a fundamental communication prim-
itive, essential to ad hoc routing algorithms (e.g., [20], [5])
for route discovery. The usual approach for broadcasting is
through flooding. Flooding is well suited for MANETs as it
requires no topological knowledge. It consists in each node
rebroadcasting a message to its neighbors upon receiving it
for the first time.

Although straightforward, flooding is far from optimal
and generates a high number of redundant messages,
wasting valuable limited resources such as bandwidth and
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energy supplies. Besides research mentioned in Section II,
more effort has been devoted to defining MAC and routing
algorithms adapted to MANETs, than to flooding. Since
flooding is a low-level primitive, optimizing it will drasti-
cally improve the overall performance of MANETs.

One direction to optimize flooding is to take a probabilis-
tic approach. In order to flood, a node in the network broad-
casts a message with probabilityp and takes no action with
probability 1− p. In our paper we explore the possibility of
applying a phenomenon well studied in percolation theory
and random graphs,phase transition, as a basis for selecting
p. Above a certain threshold forp, in graphs of a certain
size for random graphs and lattices of a certain density for
percolation, aninfinite spanning clusterabruptly appears
instead of a set of finite clusters. Aninfinite spanning
cluster is a unbounded connected component, which if
transposed to a MANET would translate in the very high
probability of the existence of a multi-hop path between
any two nodes within the network.

To the best of our knowledge, besides [12], previous pub-
lications having studied probabilistic broadcast for flooding
in MANETs [6], [16] have not done so within the context
of phase transition. This paper contributes in a first stage to
a better understanding of the various factors that influence
phase transition in ideal MANET environments (no packet
collisions). By opposition to traditional theoretical phase
transition analysis and simulation, we specifically consider
factors that would typically intervene within probabilistic
algorithms deployed on MANETs. In a second stage, we
illustrate the consequences of considering realistic effects
such as packet collisions and node mobility. To the con-
trary of [12], we concentrate on pure flooding in order
to understand the variations in performance due solely to
the parameters simulating realistic MANET environments.
Our results therefore provide a general understanding of the
behavior to be expected from probabilistic flooding.

The remainder of the paper is organized as follows.
Section II gives an overview of other works that seek to
reduce the overhead of flooding in MANETs. In Section III



we introduce thephase transitionphenomenon, known
results, and how it may benefit flooding in MANETs. In
Section IV we present two models for which we study the
phase transition behavior. Section V contains simulations
and results of our algorithms. Finally, we conclude and
describe future work in Section VI.

II. RELATED WORK

In this section we examine related work which directly or
indirectly aims at reducing the number of broadcast packets
generated by the flooding algorithm.

The high number of redundant broadcast packets due to
flooding in MANETs has been referred to as theBroad-
cast Storm Problemin [16]. The paper proposes several
schemes, of which one probabilistic, in order to reduce
the number of broadcast packets while maintaining high
reliability. More recently, [6] provides a comparative study
of broadcasting algorithms, including probability based
methods. Given the scenarios and results in these two
papers, it is difficult to make any statement regarding phase
transition (Section III).

As for deterministic studies of the problem, [18] and
[15] make use of local topology knowledge in order to
avoid unnecessary rebroadcasts by comparing the added
coverage between the rebroadcast of a destination node
to that of the source node at each hop. [18] enhances
the algorithm by taking into consideration statistical infor-
mation about broadcast duplicates, whereas [15] enhances
the algorithm by taking into account two-hop coverage.
[21] restricts flooding to a subset of nodes (”multipoint
relays”) by selecting for each node a minimum number
of one-hop neighbors covering all second-hop neighbors.
[17]1 and more recently [23] (with an optimized approach)
explore the idea of superimposing a communications graph
— a cluster — over the network so that only particular
nodes rebroadcast the packets. Albeit reducing the number
of rebroadcast packets, constructing and maintaining the
clusters introduce a new source of overhead in a mobile
network.

Other fields such aspercolation theoryand random
graphs have recently been a source of inspiration for
designing solutions within MANETs. Both are based on a
probabilistic model and exhibit an interesting phenomenon
called phase transition. They will be presented in more
detail in Section III.

Phase transition has been applied to reduce traffic for
multicast in wired networks [2], to study optimum power
ranges for connectivity [3], [11] and for enhancing connec-
tivity in hybrid MANET/Wired networks [7]. Only recently
however, and in parallel with our research, have character-
istics from these fields been applied to reduce flooding in
MANETs:

1The goal of this paper is primarily to providereliable broadcast
delivery.

• [14] points out that the phase transition phenomenon
also occurs in MANETs and may be taken advantage
for the elaboration of probabilistic algorithms such as
flooding and routing within such networks.

• [12] studies a gossip-based approach to flooding.
Through simulations the authors show that for large
networks, a simple gossiping uses up to 35% fewer
messages than flooding, and that the performance of
AODV routing [20] relying on gossip-based flooding
is improved even in small networks of 150 nodes.

This paper is based on the same inspiration as [14]
and [12], yet we obtain different results and gain a better
understanding of the phase transition behavior.

III. T HE PHASE TRANSITION PHENOMENON

A phase transitionis a phenomenon where a system
undergoes a sudden change of state: small changes of a
given parameter in the system induces a great shift in
the system’s global behavior. This abrupt transition occurs
at a specific valuepc called thecritical point or critical
threshold. Below pc the system is said to be in asubcritical
phase— the global behavior is non-existent. Abovepc the
system is in asupercritical phaseand the global property
may be almost surely observed. Figure 1 illustrates the
phase transition probabilityθ given the probabilityp of
a problem specific parameterλ. L denotes the size of the
system considered.

It would be extremely cost-efficient to observe phase
transition in a probabilistic flooding algorithm within all
or known subsets of MANET topologies. The implication
within such cases would be that there exists a certain
probability thresholdpc < 1 at which the flooded message
will almost surely reach all nodes within multihop broadcast
reach. Broadcasting with a probabilityp > pc will not
provide any significant improvement. We now present two
areas of research where phase transition applies in order to
extract models for MANETS in Section IV and study their
phase transition properties.

A. Percolation Theory

Percolation theory studies the flow of fluid in random
media and has been generally credited as being introduced
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in 1957 by Broadbent and Hammersley [4]. Two main
two-dimensional lattice square percolation models are stud-
ied, site percolation andbond percolation. In the bond
percolation model (Figure 2(a)), each edge of the lattice
is said to beopen with probability p and closed with
probability 1− p. The fluid flows through the open edges
of the lattice. The site percolation model on the other hand
considers the lattice squares or sites to be the relevant
entities (Figure 2(b)): A lattice site is open with probability
p and closed with probability 1− p, and the fluid flows
from open site to open site across the lattice. Figure 2(b)
illustrates an example of site percolation withp' 0.55.

Phase transition in percolation models is observed as
the change of state between having afinite number of
clusters and having oneinfinite cluster. A cluster is a set
of connected entities (edges for bond percolation and sites
for site percolation). A cluster that reaches from one side
of the lattice to the other is said to be aninfinite cluster.
Percolation theory studies the existence and valuepc for
which phase transition occurs, as well as cluster numbers,
sizes and structures.

Percolation theory has numerous interesting applications
to cases which involve some form of propagation or con-
nectivity such as the spreading of infectious diseases with
regard to population density or the spreading of forest fires.
The question is whether results may also be derived for
message propagation within real-world MANETs.

Great effort within percolation theory has been devoted to
finding the exact value ofpc at which the phase transition
occurs. Unfortunately,pc is not universal but specific to
each lattice geometry. Besides a few distinct cases, there is
no general analytical formula to obtainpc, which is usually
computed case by case through Monte Carlo simulations.

B. Random Graphs

Another predominant area of research for phase transition
is Random Graphs. A random graphG is a graph where the
number of nodes, edges and connections between them are
determined in some random manner. The phase transition
property has been well studied in the context of random
graphs. Erd̋os and Ŕenyi [8] have shown that the probability
of a random graph being connected tends to 1 if the number

(a) Bond Percolation (open
edges are in bold)
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Fig. 2. Bond and Site Percolation

of edgesE is greater thanpc(E) =
N logN

2
. Although the

results of Erd̋os and Ŕenyi are for large values ofN, Frank
and Martel have shown by simulation in [9] that phase
transition occurs also in graphs of moderate size (between
30 to 480 vertices). In other words, we may viewpc(E) as a
critical value for the number of edges above which a phase
transition will occur, resulting in a quick convergence for
obtaining a connected graph. As such, we are not able to use
random graphs to represent MANETs: In random graphs, an
edge may connect any two vertices’s in the euclidean plane.
In MANETs however, communication links connect nodes
that are within communication range only. In Section IV-
B we describe theFixed Radius Modelwhich is an ideal
representation of MANET topologies. It remains a question
whether results as in [8], [9] may be observed in the fixed
radius model.

C. Discussion

Phase transition properties depend greatly on the graph
geometry. There is no general theoretical result that enables
us to determine the critical thresholdpc at which the
transition will take place, if at all. Thereforepc will have to
somehow be approximated. Furthermore, the few results we
have from percolation theory are forinfinite lattices (L = ∞).
As we take smaller configurations (L � ∞), the transition
from the subcritical to the supercritical state becomes less
abrupt. The dashed tail of the graph in Figure 1 illustrates
that in non infinite lattice configurations, the probability of
percolation taking place becomes linear. We must therefore
determine graph characteristics for which border effects are
not significant.

IV. A PPLYING PHASE TRANSITION TO FLOODING

Similarly to wired networks, we may model a MANET
by a graph. LetG= (V,E) be an undirected graph. A vertex
vi ∈V represents a mobile node, and an edgeei j ∈E means
that the nodesi and j are within communication range of
each other. Within this paper we assume that all mobile
nodes possess the same constant transmission range, and
do not consider other properties such as energy levels or
consumption.

Given a broadcast source nodeS, let GB be the connected
subgraph ofG representing all nodes that will receive
the broadcast message by flooding (S∈ GB) (Figure 3).
Since the message reaches all the nodes in the graph,GB

may be thought of as aninfinite open clusteras defined
in Section III-A. An efficient probabilistic algorithm will
remove edges fromGB while still remaining aboveGB’s
percolation thresholdpc, thus maintaining the infinite open
cluster. By remaining in the supercritical phase, we expect
to observe a significant reduction of message traffic due to
flooding while minimizing the loss of reachability.

We must however ultimately take into consideration that
real-world MANETs differ from mathematical graphs on
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several points. The differences that impact phase transition
properties are:

1) Typical real-world MANETs as we see them are not
infinite but may be composed of a few tens to a
few thousand nodes. Border effects may therefore
eventually impact the system’s behavior.

2) Nodes may join or leave the network for various
reasons, constantly modifying the network’s density
over time. This directly affects the network’s phase
transition properties.

3) Packet loss: Packets within a MANET are lost due
to packet collisions and contention as well as node
mobility. In percolation theory there is no loss of
”fluid”.

We now consider two models as a basis for studying
the above points. The first model is quite simplistic but
is nonetheless useful for extracting best-case results for
a specific MANET topology, as we show that it may be
reduced to a well studied percolation case with known
theoretical results. Through the second and more realistic
model any MANET topology may be represented.

A. Square Grid Model

We define the square grid model as follows. Consider a
m×m square grid with nodes placed at each intersection
as illustrated in Figure 4(a). Each node communicates with
is direct vertical and horizontal neighbors, such that each
node has exactly four neighbors. We broadcast one message
from a single source positioned at the center of the grid.
Using the regular algorithm for flooding in order to achieve
our broadcast, a total ofm2 messages will be transmitted
(Algorithm 1).

Let’s now consider a probabilistic approach. Instead of
systematically rebroadcasting a message upon receiving it
for the first time, we slightly modify Algorithm 1 in order to
rebroadcast the message with a probabilityp (Algorithm 2).
The exception is the source that broadcasts always (p = 1)
to initiate the flooding. With Algorithm 2 and besides
the non-probabilistic broadcast source, our case becomes
equivalent to the site percolation on the plane square lattice
as described in Section III-A. Indeed, sincep is constant
throughout the flooding operation, and has the same value
at all nodes, it is like saying that we initially decide to

remove links from the graph with probabilityp, and then
executing a regular non-probabilistic flooding operation.
The threshold value for percolation in such a case is known
to be pc ' 0.59 [22]. We furthermore note that there has
been no loss of generality by assuming that all sites are
populated, as flooding with probabilitypf on a grid of
occupation probabilitypo is equivalent to site percolation
on the square lattice of occupation probabilitypf ∗ po. By
choosingp > pc for Algorithm 2, we expect to observe an
infinite open cluster, translating in our flooding reaching
nearly all nodes in the graph.

Algorithm 1 flood(m)
1: upon reception of messagem at noden:
2: if messagem received for the first timethen
3: broadcast(m){this is the basic local broadcast prim-

itive to nodes within range only}
4: end if

Algorithm 2 p-flood(m,p)
1: upon reception of messagem at noden:
2: if messagem received for the first timethen
3: broadcast(m) with probabilityp {this is the basic

local broadcast primitive to nodes within range only}
4: end if

B. Fixed Radius Model

The previous model is useful for reducing a particular
MANET configuration to a well studied percolation model
in order to compare results. Unfortunately, the model only
enables us to consider particular graphs of maximum node
degree 4. A general model adapted to MANETs may be
defined as follows. LetR be the nodes’ communication
range. The nodes are randomly placed on anm× n area
according to a probability distribution such asPoisson. A
link l i j connecting nodesi and j is added to the graph if
the Euclidean distance between the nodes is less thanR. We
have thus obtainedfixed radius random graphas described
in [14] and illustrated in Figure 4(b). We must however
note an that probabilistic flooding in such a model implies
that a node may choose not to broadcast a message to all
its neighbors within range with probability 1− p, resulting
in the ”fluid” not flowing in any of the links attached to
the node using percolation terminology. In random graph
models, edges are added or removed independently.

V. SIMULATION AND RESULTS

Given the two models presented in Section IV, we are
interested in analyzing the phase transition properties of
probabilistic flooding as defined in Algorithm 2. Through-
out the cases, we define thesuccess rate SRas the ratio of
distinct packets received at each node by the total number of
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distinct packets broadcast in the network, averaged across
all nodes.

A. Probabilistic Flooding with Ideal Network Conditions

The motivation behind our first series of simulations
is to obtain best case results. We have written a discrete
event simulator in Java to simulate the Square Grid Model
described in Section IV-A. Mobility is not considered, and
the wireless medium is collision-free. We measure the
success rate of probabilistic flooding for a single packet
broadcast at the center of 3×3, 5×5, 10×10 and 50×50
size square lattices. The center broadcasts with probability
p = 1, and we consider lattices of average node degrees 4
and 8. Figure 5 presents the results for simulations averaged
over 10 and 300 runs.

We conclude from the results in Figure 5 that there are
three factors that affect the phase transition properties in
our chosen scenarios: network size, average node degree,
and the number of simulation runs over which the success
rate is averaged.
Network Size: In all four graphs phase transition becomes
apparent as of 100 nodes (10× 10 lattices). The success
rate graphs tend to become linear as the number of nodes
in the network decreases, due to boundary effects.
Average Node Degree:Higher success rate values are
obtained for lower values ofp when the average node
degree is of 8 instead of 4. A potentially interesting and
exploitable result is that success rates of over 90% are
achieved as ”early” asp ≥ 0.65 for small networks in
absence of phase transition (linear success rate curves).
Number of Simulation Runs: The success rate average
curves become less robust to the number of simulation runs
as the number of nodes considered decreases. We observe
nonetheless in Figure 5(d) that in this case likewise a high
average node degree compensates for a small number of
simulation runs, even for small networks.

The main result of this series of simulations is that for
higher average node degrees, probabilistic flooding may
be used to significantly reduce the amount of broadcast
packetseven for small size networks and in absence of
phase transition. This result is obtained in an ideal case of
a perfectly symmetrical topology, no packet collisions and
an absence of node mobility. The question is whether and

how is the success rate and phase transition affected by
network conditions of realistic MANETs.

B. Probabilistic Flooding with Realistic Network Condi-
tions

We now examine node distribution and topology cor-
responding to the Fixed Radius Model described in Sec-
tion IV-B. We have used the ns2 network simulator [1]
to simulate various scenarios for probabilistic flooding.
We have considered small to medium-sized networks of
9, 25 and 100 nodes with little to no mobility using
the 802.11b MAC layer [10] in DCF mode. Due to the
large number of simulations conducted and ns2’s limited
scalability, simulation duration for potentially significant
larger networks would have been prohibitive. Node trans-
mission ranges of 150 and 250 meters and simulation
areas of 0.25km2 and 1km2 were chosen to vary network
density. Note that the 802.11b MAC layer specification uses
CSMA/CA and enforces RTS/CTS/ACK control frames for
unicast communication only. Collision control for broadcast
is limited to basic collision avoidance carrier sensing and
broadcast is therefore extremely prone to packet collisions.
A straightforward tweak to reduce collisions is to have
nodes wait for a random small amount of time before
rebroadcasting (JITTER). We had

√
N broadcast sources

emit a maximum of one hundred 64 byte packets at constant
bit rate with an interval of 0.05 second, whereN is the
total number of nodes in the network. The radio model is
ns2’s default, which simulates Lucent’s WaveLAN wireless
card with a 2Mb/sec bit rate. Simulation duration is of 30
seconds. Figures 6 and 7 present the success rate for the
various scenarios while varying the probabilistic flooding
probability p. In order to evaluate the MANET connectivity,
we have displayed the upper bound for success rate when
relevant. This upper bound was obtained by running the
simulations with regular flooding (p = 1) over a collision-
free ideal MAC layer. The ideal success rate is of 1.0 in
the highly dense networks represented by Figure 7, and has
therefore been omitted from the plots.

We observe that probabilistic flooding behaves differently
for low density and high density networks. For low density
networks as illustrated in Figure 6 the success rate varies
linearly with regard top, regardless of the number of nodes
and packet rate considered. A purely probabilistic approach
for flooding is therefore inefficient.

Upon augmenting the network density by raising the
power range from 150m to 250m, we notice that the success
rate graph resembles a bell curve, with the maxima reached
for lower values ofp as the network becomes more dense
(Figure 7). The observation is explained by the fact that a
sufficiently high value forp is necessary to perpetuate the
flooding. Beyond an ideal valuepideal for p however, packet
collisions become more frequent and the overall network
performance degrades from this point onward. The value
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Fig. 5. Ideal network (no collisions): success rate for probabilistic flooding inn×n square lattice configurations with no collisions as a function
of the broadcast probabilityp
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Fig. 6. Realistic network: probabilistic flooding success rate for 9 and 25 nodes of 150m power range

pideal is as low as 0.1 in Figure 7. In all scenarios, a mobility
of 5m/s has little effect on the success rate.

VI. SUMMARY AND FUTURE WORK

We have studied a purely probabilistic approach to flood-
ing attempting to exploit the phase transition phenomenon.
Our results show that there is a major difference between
the behavior obtained in ideal situations inspired from
random graphs and percolation theory and simulations
undertaken in MANETs prone to packet collisions. For
the latter, the success rate for probabilistic flooding does

not exhibit a bimodal behavior as percolation theory and
random graphs would suggest. The success rate curve for
probabilistic flooding tends to become linear for MANETs
of low average node degree, and resembles a bell curve
for MANETs of high average node degree. Although phase
transition is not observed, probabilistic flooding nonetheless
greatly enhances the successful delivery of packets in dense
networks.

For future work, it would be interesting to explore
algorithms in which nodes would dynamically adjust the
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Fig. 7. Realistic network: probabilistic flooding success rate for 25 and 100 nodes of 250m power range

probability p for probabilistic flooding based on local
graph topology information. In our paper we have made
the assumption that all nodes possess the same transmis-
sion range. Another potential area for study would be
to understand within probabilistic flooding the combined
effects on MANETs performance of modifying the nodes’
transmission ranger with regard top.
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