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Routing Schemes for Multiple Random
Broadcasts in Arbitrary Network Topologies

Emmanouel A. Varvarigos and Ayan Banerjee

Abstract—We consider the problem where packets are generated at each node of a network according to a Poisson process with
rate A, and each of them has to be broadcast to all the other nodes. The network topology is assumed to be an arbitrary bidirectional
graph. We derive upper bounds on the maximum achievable broadcast throughput, and lower bounds on the average time required
to complete a broadcast. These bounds apply to any network topology, independently of the scheme used to perform the
broadcasts. We also propose two dynamic broadcasting schemes, called the indirect and the direct broadcasting scheme, that can
be used in a general topology, and we evaluate analytically their throughput and average delay. The throughput achieved by the
proposed schemes is equal to the maximum possible, if a haif-duplex link model is assumed, and is at least equal to one half of the
maximum possible, if a full-duplex model is assumed. The average delay of both schemes is of the order of the diameter of the trees
used to perform the broadcasts. The analytical results obtained do not use any approximating assumptions.

Index Terms—General graphs, edge-disjoint trees, dynamic broadcasting, queuing systems.

1 INTRODUCTION

ROADCASTING is the operation where a packet is copied

from a node to all the other nodes of a network. In this
paper, we consider the dynamic broadcasting problem, where
broadcast requests are generated at random time instants at
each node of a multiprocessor network that has an arbitrary
topology. In particular, we assume that packets are gener-
ated at each node according to a Poisson process with rate
A, and that each of them has to be broadcast to all other
nodes. We are interested in finding efficient routing
schemes to perform the broadcasts in a general topology,
and in evaluating their performance. The assumption of
Poisson arrivals is made only because the mathematics of
the analysis require it, and it is inessential for the imple-
mentation of the schemes that we propose. The dynamic
broadcasting problem arises, for example, in iterations of
the form

x=fly, ..., x,), m

where x is an n-dimensional vector. Here we assume that
iteration (1) is executed asynchronously, with processor i
storing and updating the component x; and broadcasting
the new value of x; when it changes appreciably. The dy-
namic broadcasting problem arises in many other situa-
tions, and we believe it deserves a position among the ge-
neric network routing probleins. Schemes that run continu-
ously, and execute on-line the broadcast requests should be
part of the communication primitives of any multiprocessor
network.

Previous works (see, e.g., [2], [3], [10], [17]) have mainly
dealt with finding optimal schedules to execute prototype
(and usually well-structured) broadcast communication
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tasks in certain regular topologies. This is different from the
model that we adopt in this paper where packets are gener-
ated continuously, over an infinite time horizon. The dy-
namic broadcasting problem was first addressed by Sta-
moulis and Tsitsiklis in [14] for hypercubes, and Varvarigos
and Bertsekas in {20] and (18] for hypercubes and d-
dimensional meshes, respectively. The routing schemes and
analytical results that we develop in the present paper are
considerably more general, since they apply to arbitrary
network topologies, that may or may not have any symme-
try properties. Also the upper bounds on the throughput
and the lower bounds on the delay obtained for general
topologies use techniques that are considerably more gen-
eral and complicated than those used for hypercube or
mesh networks. The throughput and delay for unicast (one-
to-one) communication have been examined extensively in
the literature for a number of topologies (see, for example,
[6], (7], 8], [11], [19]), with the analysis being approximate,
except for the results given by Stamoulis and Tsitsiklis in
[15] for hypercubes and butterflies, which did not use any
approximating assumptions. We believe that the through-
put and the delay of a network for broadcast (one-to-many)
communication are equally important criteria in evaluating
network performance. The analysis to be presented on the
dynamic broadcasting problem will not use any independ-
ence or other approximating assumptions. We consider this
particularly important, since the analysis of problems that
involve networks of queues is in general extremely difficult.
For example, no accurate analysis exists for the throughput
and delay of the corresponding unicast communication
problem in a general network topology, despite the efforts
of many researchers.

We will use three criteria in order to evaluate the per-
formance of a dynamic broadcasting scheme in a given
network topology. The first criterion is the maximum broad-
cast throughput, which is the maximum generation rate A
per node that can be accommodated by a broadcasting
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scheme with the queueing delays being finite. The second
criterion is the average broadcast delay B, which is the aver-
age time that elapses between the generation of a packet at
a node and the time its broadcast to all the other nodes is
completed. The third criterion is the average reception delay
R, which is the average time that elapses between the gen-
eration of a packet at a node and the time a particular node
s receives a copy of the packet, averaged over all nodes s of
the network. Since for the broadcast of a packet to be com-
pleted all nodes must receive a copy of it, we have R < B,
for any broadcasting scheme. The average reception delay
is important in the case where a processor can start proc-
essing a packet as soon as it receives it, without having to
wait for the packet to be delivered to all the other proces-
sors. For example, if the iteration of (1) converges under the
totally asynchronous model (see [2, chapter 6]), then proc-
essors can be allowed to compute faster and execute more
iterations than others, without waiting at predetermined
points for messages from other processors to arrive. This
happens, for example, when the function f in (1) is a con-
traction mapping (as is the case when f(x) = Ax + b with the
spectral radius of | Al satisfying p (1 A1) <1, or when f(x) =
min}JE wale() + aP(u)x), corresponding to a Markovian deci-
sion problem), or a monotone mapping (as is the case when
[ = min_upla; + x;), corresponding to a Bellman-Ford
algorithm, or for certain network flow problems; see [2] for
more examples).

We assume that store-and-forward switching is used for
the transfer of data. All packets have equal length and they
require one unit of time (or slot) in order to be transmitted
over a link. We consider two communication models. In the
first model, called Multiple Link Availability Full Duplex
model (or F-D model, for brevity), a node is capable of
transmitting and receiving messages along all its incident
links concurrently, and -each link can be used for transmis-
sion along both directions simultaneously. In the second
model, called Multiple Link Availability Half Duplex
model (or H-D model, for brevity), a node can use all its
incident links simultaneously, but a link can be used for
transmission along only one direction at a time.

We show that a necessary stability condition under the
F-D model is A < min{2k,,./N, d../(N — 1)}, where k., is
the maximum number of edge-disjoint spanning trees, d;,
is the minimum node degree, and N is the number of nodes
of the network. When the H-D model is assumed, the corre-
sponding bound on the throughput is A < k,,,/N. We also
give lower bounds on the average broadcast delay B in
terms of the parameters k,, and d,;,. The bounds derived
hold for any network, and for any scheme that can be used
to perform the broadcasts.

We introduce two new routing schemes, called the indi-
rect broadcasting and the direct broadcasting schemes, which
can be used to perform the broadcasts in an arbitrary bidi-
rectional graph G. We evaluate the throughput of the
schemes under the F-D and the H-D model, and we com-
pare it to the corresponding upper bounds. We also obtain
analytical expressions for the average broadcast delay and
the average reception delay of the schemes.

The indirect broadcasting scheme is proved to be stable
for A < ky./N, under both the F-D and the H-D model.

Therefore, the maximum throughput achieved by the indi-
rect scheme for a given network under the H-D model is
equal to the maximum possible for that model. When the F-D
model is assumed, the throughput of the indirect scheme is
between 0.5 and 1 of the maximum possible (given by the
upper bound). We also show that, under the F-D model,
this is the best stability region that we could expect for an
algorithm that works for general topologies (that is, for
some—but not all—topologies, A < k,,,/N is also a neces-
sary stability condition under the F-D model). In the course
of developing the indirect broadcasting scheme, we intro-
duce a new communication task, called the generalized
multinode broadcast, and propose efficient algorithms to exe-
cute it in a general topology. The generalized multinode
broadcast, in addition to being an important component of
the direct broadcasting scheme, it is also important on its
own merit, since it arises in a number of other applications.
We also evaluate the average broadcast delay of the indirect
broadcasting scheme, and show that it is of the order of the
average diameter of the spanning trees used by the scheme
(or of the order of the maximum diameter of the spanning
trees used, if a simpler but less efficient GMNB algorithm is
used), for any load in the stability region.

The second broadcasting scheme that we consider is the
direct broadcasting scheme, which is a particularly simple
scheme to implement. We analyze its throughput under the
F-D model, and prove that the scheme is stable for A <
kmax/ N. We also obtain an expression for the average recep-
tion delay of the scheme and show that it is of the order of
the average mean internodal distance of the spanning trees
used, for any load in the stability region.

The remainder of the paper is organized as follows. In
Section 2, we describe the notation that we will use, and
give some preliminary results. In Section 3, we derive up-
per bounds on the throughput, and lower bounds on the
average broadcast delay that apply to any broadcasting
scheme in a given network. In Section 4, we describe and
analyze the proposed dynamic broadcasting schemes. In
particular, Subsection 4.1 deals with the indirect broad-
casting scheme, while Subsection 4.2 deals with the direct
broadcasting scheme. Finally, in Section 5, we conclude the

paper.

2 NOTATION AND PRELIMINARY RESULTS

In this section we introduce the notation, and present some
preliminary results.

The network topology is given by a general
(bidirectional) graph G = (N, &). A graph G = (N, &}) is
defined as a set N of nodes, viewed as the processors of
the network, and a collection £ of pairs of distinct nodes
in /N. Each pair e = [s, t] of £ is called an edge, and corre-
sponds to a bidirectional communication link between
processors s and f. The cardinality of the sets /N and £ is
denoted by N and E, respectively. An edge [s, t] of G con-
sists of the two unidirectional links (s, t) and (t, s) to be
referred to as arcs. Given an arc (s, t), we refer to node s as
the start of the arc and to node ¢ as the tail of the arc. The
digmeter & of a graph is defined as the maximum shortest
distance between any two nodes of the network. A span-



888 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 8, AUGUST 1996

ning tree is a subgraph of G that includes all the vertices of
G, and is a tree. A set of spanning trees are edge-disjoint, if
no two of them have any edges in common. If a given
node is considered as the root of a tree, the depth of the
tree is defined as the maximum distance between the root
and any other node of the tree.

A communication task that will be useful in the descrip-
tion of our algorithms is the generalized multinode broadcast
(abbreviated GMNB), where some arbitrary nodes of a
network G have a total of M packets to broadcast. During a
GMNB, a node may have more than one packets to broad-
cast (as opposed to the partial multinode broadcast task
defined in [18], where each node has at most one packet to
broadcast). Nodes that have at least one packet to broadcast
are called active nodes. The following lemma deals with the
GMNB task in a tree.

LEMMA 1. The GMNB in a tree network, under the F-D or the
H-D model, requires at most K + L — 1 slots, where L is the
diameter of the tree, and K is the total number of packets
that have to be broadcast.

PROOF (abbreviated). Consider the GMNB algorithm where
each node transmits the packets originated at that
node on all its incident links, one after the other. A
(nonleaf) node transmits each packet that it receives
from its neighbors on all its incident links, except for
the link over which it received it. No link remains idle
if there is a packet that wants to use it, and conflicts
over the use of the links are resolved according to a
FIFO discipline (although any other discipline would
also work). In the case of the H-D model we have the
additional constraint that a link can be used for
transmission only in one direction at a time. If two
neighboring nodes u and v have packets that wants to
use link [u, v], one of them is arbitrarily selected for
transmission, and the others are queued (we assume
that the two end nodes of a link have a way to decide
which of them will transmit first).

It takes [, transmissions for a packet to move from
node t to node s. Since there are K packets in the sys-
tem, and the paths followed by them are non-
overpassing (in the sense that if two paths share some
links and then split, they will never meet again), a
packet may be delayed for a total of at most K — 1 time
units. Therefore, node s will receive a packet from
node t after at most I, + K~ 1 slots. Hence, the broad-
cast of all packets is completed after at most K — 1 +
max,[,, = K~ 1 + L slots. Note that the worst case
completion time for both the F-D and the H-D model
arises when all the K packets are initially located at a
leaf of the tree. O

Given a network of diameter 9, it is always possible to
find a spanning tree 7 of depth § rooted at some node of
the network. Using the notion of the postorder traversal on 7,
we define an ordering of the network nodes of 7. In the
postorder traversal, the subtrees connected to the root are
visited first in the order from left to right, followed by the
root, with this order of traversal carried recursively on each
subtree. The ordering of the network nodes defined by
postorder traversal on 7 will be denoted by “<”.

Given a graph G, a spanning tree 7, and a set of active
nodes that have a total of M packets to broadcast, we define

the rank r, of node s as r, = 2 X,, where “<” is the order
E £ Xt

t<
defined by 7, and x, is the number of packets that node ¢
has to broadcast. The ranks of all nodes can be computed in
26 steps by performing a parallel prefix operation on 7 (see
[9, pp. 37-44]). During the parallel prefix operation each

node also learns the total number of packets M that have to
be broadcast.

LEMMA 2. Consider a graph G that has k edge-disjoint spanning
trees Ty, ..., T with diameters L, < --- <L, = L., respec-
tively. The GMNB task in G, under the F-D or the H-D
model, can be performed in at most

M
Tomng <+ Loy +26

k ‘max
slots, where M is the total number of packets that have to be
broadcast, and & is the diameter of G.
PROOEF. We first perform a parallel prefix operation to com-
pute the rank 7, of each node s, and the total number
of packets M. This requires 28 steps. Based on the

values of r, and M, each node s can decide (in a way
to be discussed shortly) the tree on which each of the
packets originated at s will be broadcast. Assume that

a total of n; packets are to be broadcast along tree T},
k
=1, ..., k where 2]_:1 n; = M. The completion time of

all transmissions on tree T; is (by Lemma 1) at most

equal to n; + L; — 1. Thus, the total time required to
perform the GMNB in G satisfies

Topns < jﬁ??fk(lij + L]-) -1+26. 2)

One way to decide which packets are broadcast on
each tree is the following. The x, packets originated at
each node s are given distinct sequense numbers in
the set {r,, r,+ 1, ..., 7.+ x,— 1}. Node s then transmits
the packet with sequence number 7, + j — 1 , along tree
T +jymodi - I this way, packets are divided equally

among the trees, so that at most [M/k| packets are
broadcast on each tree, In that case, we have 1 < Hﬂ

for all j, and the total time required to perform the
GMNGBB satisfies

M
Tomng < [7—1+maij+26al. a
j

The GMNB algorithm described in Lemma 2 is particu-
larly easy to implement. In the following lemma we present
an algorithm that requires more computation at the nodes,
but results in a smaller number of communication steps
(slots).

LEmMMA 3. Consider a graph G that has k edge-disjoint spanning
trees T,, ..., Ty with diameters L, < --- < L, respectively.
The GMNB task in G, under the F-D or the H-D model,
can be performed in at most



VARVARIGOS AND BANERJEE: ROUTING SCHEMES FOR MULTIPLE RANDOM BROADCASTS IN ARBITRARY NETWORK TOPOLOGIES 889

[l
N
(521

<M
Tk

TGMN B

slots, where
A
Y
L — i=1

is the average diameter of the spanning trees, M is the total
number of packets that have to be broadcast, and & is the
diameter of G.

PROOF. The idea is to use the algorithm of Lemma 2, but as-
sign more packets to trees of small diameters so as to
minimize the max;(n; + L) in (2). This can be achieved
by running the following “water-mark” algorithm.

Initialize: 7; = 0 for all j .
For i = 1 to M: {Let ] = arg miny;, (L; + n).

Assign packet i to tree T}, and increment 7, .}

The watermark algorithm may assign no packets to
trees with large diameters. Let T,,, m < k, be the high-
est numbered tree that is assigned any packets. Equa-
tion (2) gives

T <

GMNB = Max (ﬂj +Lj)+26—] <

j=1...m

m
M+ ) L M+ ]
25—1+—%S25+ 211 )]

If m = k, the lemma follows immediately from (3). If
m # k, then, since T, is the last tree that is assigned
any packets and L; is increasing with 1, we have

M+iLi/m£Lmﬂ ZL/k m),

i=1 i=m+1

which gives, after some algebraic manipulation,
m k
e M+%i:1L,.

The last inequality together with (3) completes the
proof. O

M+
m

The algorithms described in Lemmas 2 and 3 are both
distributed; an active node s only needs to know its rank 7,
and the total number of packets M, both of which are avail-
able at s after the parallel prefix operation. For the algo-
rithm of Lemma 3, each node also needs to know the di-
ameters L, i = 1, 2, ..., k, of the edge-disjoint spanning tree,
so that it can locally execute the watermark algorithm. Since
all nodes run the same watermark algorithm (ties are re-
solved in the same way) with the same data, they all arrive
at consistent results regarding the trees on which the pack-
ets are broadcast. The time complexity given in Lemma 3
takes into account only the number of communication steps
(slots), and does not include computations at the nodes.

3 UNIVERSAL UPPER BOUNDS ON THE THROUGHPUT
AND THE DELAY

In this section, we derive upper bounds on the maximum
arrival rate 4 per node that can be accommodated by a

given network. The bounds apply to any network topology,
and they hold for any scheme that can be used to execute
the broadcasts in that topology. The analysis in both the
current and the next section will assume the F-D model for
the network links; whenever the H-D model is used, this
will be stated explicitly.

Given a general graph G = (N, &), a partition P of the
vertices of G is a collection of nonempty disjoint subsets of
N whose union is N. We let Ep(G) be the set of edges of G
that connect nodes belonging to different constituent sets of
P. We define the graph G, = (P, Ep(G)) as the graph ob-
tained by shrinking each member of P to a single vertex,
and keeping only the edges connecting nodes that belong to
different sets of P (note that G, may have more than one
edges connecting a given pair of vertices in P). It is known
(112, Theorem 1]) that a graph G has k edge-disjoint span-
ning trees if and only if

_E(G)
P[—1

for every partition P of N, where | | denotes the cardinality
of a set. Therefore, the maximum number of edge-disjoint
spanning trees is given by

Ko = min [Ex(G)

a A1 @

Edge-disjoint spanning trees can be constructed using
the Matroid Partition Algorithm (see [16] and [5, pp. 85-87]),
which returns in polynomial time k edge-disjoint spanning
trees, if they exist, and a negative answer if they do not exist.

The following lemma gives an upper bound on the
maximum broadcast throughput per node.

LEMMA 4. A necessary condition for stability for any broadcast-
2k

ing scheme is A < =&

PrROOF. Consider a particular partition P. Each packet gen-
erated has to undergo at least | Pl — 1 transmissions
on links of the set Ex(G). Since the total rate at which
broadcasts are generated in the network is equal to
NA, and there is a total of 21Ep(G)| unidirectional
links corresponding to the edges in Ex(G), a necessary
condition for stability is

AN(IPI —=1)<21Ex(G) ]
for every partition P, or equivalently,

rel ]E (G { 2K 5
where we have used (4). |

The following lemma gives an upper bound on the
maximum throughput in terms of the minimum degree d_,
of the nodes.

LEMMA 5. A necessary condition for stability for any broadcast-

ing scheme is

PROOF. Consider a node s of the network with indegree d,;,.
Since a total of AN — 1) packets will have to cross the in-
coming links of s per unit of time, the lemma follows. O
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Lemma 5 is also valid for directed (not necessarily bidi-
rectional) graphs with d,,;, being the minimum indegree of
the nodes. Equation (5) is a necessary stability condition for
any network and any broadcasting scheme in that network.
It should be noted, however, that there exist networks for
which more stringent stability conditions hold. In particu-
lar, it is easy to construct networks for which k. = diin
(such networks include d-dimensional meshes without
wraparound and trees). For such networks, the necessary

kmax
N-1"°
cannot hope to find a broadcasting scheme that will work
2,

N

a scheme would not work for networks for which k.. =

stability condition becomes 4 < This implies that we

for all topologies and will be stable for 4 < =% (since such

d»)- There are, however, networks for which stability can

be guaranteed for any 4 < 2k,,,/N (an example of such a
network is hypercube, as shown in [20], asymptotically, as
the number of nodes N becomes large).

In what follows we obtain lower bounds on the average
broadcast delay, which is defined as the average time that
elapses between the generation of a packet at node and the
time its broadcast to all the other nodes is completed. The
bounds to be derived hold for any scheme that executes the
broadcasts in a given network. The proofs of the lemmas
use techniques similar to those developed in [14] for hyper-
cube networks. Unless stated otherwise, the model as-
sumed is the F-D model.

LEMMA 6. For any graph G, the average broadcast delay ‘B satis-
fies

where N is the number of nodes, A is the rate at which
broadcasts are generated at each node, and k. is the
maximum number of edge-disjoint spanning trees of the
network.

PROOF. Consider any partition P = {S;, ..., 5,p} of the nodes
of the graph, and let Ep(G) be the set of edges con-
necting nodes in different sets of the partition. To ob-
tain a lower bound on the delay, we assume that
upon the generation or reception of a packet at a node
in S, it is immediately available at all other nodes in
S;. This favorable assumption clearly underestimates
the average broadcast delay. For a broadcast to be
completed, each packet has to undergo at least | P| —1
transmissions on links of the set Ex(G). If we focus on
the set of links Ex(G) and view them as servers, then
we obtain an M/D/m system with arrival rate equal
to NA (which is the total arrival rate to the network),
service time equal to | PI— 1, and number of servers
m =21 Ep(G) . Therefore, the average broadcast delay
B of any broadcasting scheme satisfies B > Tyy/p/m
where Ty p,, is the average delay of the M/D/m
system defined above. Using the lower bound on the
delay of M/D/m systems given in [4] we obtain

1
= Q| |
’ _AN(P[-1) ©

THTE)

Since (6) holds for any partition P, the lemma follows
from (4). |

The following lemma gives an lower bound on the average
broadcast delay in terms of the minimum degree d,;, of the
network nodes. Its proof is similar to a proof given in [14].

LEMMA 7. Let d;., be the minimum degree of the nodes of a net-
work. Then

1

d

min
for any broadcasting scheme.

Lemma 7 also gives a lower bound on the average re-
ception delay R for networks whose nodes have equal de-
grees. It also applies to directed graphs with d, being the
minimum of the indegrees of the nodes. The lower bound
of Lemma 6 is valid for any graph, independently of the
scheme used to execute the broadcasts. However, as the
following corollary shows, there exist networks for which
tighter bounds on the average broadcast delay hold.

COROLLARY 1. There exists a network for which the average
broadcast delay satisfies

1
N 1)
Tk

max

B=Q

for any broadcasting scheme.

PROOF. Consider a network that has k., = dn;, and use
Lemma 7. a

The bounds on the throughput and the average broad-
cast delay given in Lemmas 4 and 6 assume that informa-
tion can be transmitted on a link in both directions at the
same time (F-D model). When a link can be used only in
one direction at a time (H-D model), the bounds can be
modified as follows.

LEMMA 8 (half-duplex model). A necessary stability condition
under the H-D model is A < k. /N. Also the average
broadcast delay ‘B of any broadcasting scheme satisfies

Note that the bounds of Lemmas 5 and 7 also hold for
the H-D model; since, however, we always have k. < dy,

they are not as strict (for the H-D model) as those given by
Lemma 8.
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4 BROADCASTING ALGORITHMS

In this section we propose and analyze two dynamic broad-
casting schemes for arbitrary network topologies. Both
schemes use edge-disjoint spanning trees as distribution
trees on which the packets are broadcast. In the first
scheme, called the indirect broadcasting scheme, the broad-
casts are performed by executing successive GMINB algo-
rithms. In the second scheme, called the direct broadcasting
scheme, each packet generated selects randomly one of the
edge-disjoint spanning trees and is broadcast on it.

4.1 Indirect Broadcasting Scheme

One way to execute the broadcasts is by successively exe-
cuting generalized multinode broadcast (GMNB) algo-
rithms, each starting when the previous one has finished. If
the graph has k edge-disjoint spanning trees with maximum
diameter L and the algorithm described in Lemma 2
(where the packets are equally split among the trees) is
used, the GMNB can be performed in time

Tomnp € T+ Lo T 26.

If the GMNB algorithm of Lemma 3 (where packets are as-
signed to edge-disjoint spanning trees so that the delays
over all trees are nearly equal) is used, the GMNB can be
performed in time

. M _
Tomns < +L +20,

where L is the average diameter of the edge-disjoint span-
ning trees. Note that both algorithms complete the GMNB
task in at most MX + V slots, where M is the number of
packets and X and V are some known scalars.

In the indirect broadcasting scheme, the time axis is di-
vided into GMNB periods, each starting when the previous
one has finished. Each GMNB period can (conceptually) be
divided into two parts. The first part is called the notification
interval, and its duration can be upper bounded by a known
constant V' that depends only on the size of the network
and is independent of the number of packets M (in par-
ticular, if the GMNB algorithm of Lemma 2 or 3 is used,

V = Lya + 2801 V = L + 28, respectively). During the noti-
fication interval, each active node s can be viewed as in-

forming the other nodes that it intends to broadcast its x,
packets (this is done by merely participating in the parallel
prefix operation). The second part of a GMNB period is
called the broadcast interval, and its duration is equal to XM.
The broadcast interval is empty if there are no packets to
broadcast (M = 0). Even though the duration of each GMNB
period is random (because packet arrivals are random), it is
known to all the nodes of the network, because each node
learns during the broadcast interval the total number of
packets M, and, from there, the duration of the following
broadcast interval. Therefore, if all nodes initiate the dy-
namic broadcast scheme at the same time, and accurate
local clocks are available, no further synchronization is
needed. If the local clocks are not accurate and nodes do
not start the parallel prefix phase at the same time, this re-

sults in an increase in the effective duration 26 of the paral-

lel prefix phase (or, alternatively, in some nodes missing the
opportunity to transmit packets during a period). The end of
the parallel prefix phase can then be used to resynchronize
nodes.

In order to analyze the performance of the indirect
broadcasting scheme the following auxiliary queueing sys-
tem, called gated vacation system, will be useful. Consider a
queuing system where customers arrive at a rate of AN
customers per unit of time (slot) and require X = 1/k time
units each in order to be served. In addition to serving
customers, the server occasionally takes a vacation in order
to perform some organizational work. In particular, the
time axis at the server is divided into service intervals,
where customers are served, and vacation intervals. When
the server returns from a vacation it serves all the custom-
ers that have arrived prior to the beginning of the preced-
ing vacation period. When all eligible customers have been
served, the system takes a vacation of duration V. The
gated vacation system has been analyzed in [1], where the
following theorem was proved.

THEOREM 1. Let the arrival process of customers at the gated
vacation system be a Poisson process with rate AN, and the
customer service times and vacation durations be constant
and equal to X and V, respectively. Then the mean waiting
time in queue for this system is

wo P VY. v @®
= —+ =5+ ,
21-p) 2 1-p
where p = ANX.

The next theorem gives the average broadcast delay and
the stability region of the indirect broadcasting scheme in
an arbitrary network topology.

THEOREM 2. Assume that for a given N-processor network there
exists an algorithm that performs the GMNB communica-
tion task in time XM + V, where M is the number of pack-
ets that have to be broadcast and X, V are scalars that are
independent of M (they may depend on the network under
consideration). Assume also that during the GMNB algo-
rithm each node learns the value of M. Then the indirect
broadcasting scheme that uses this GMNB algorithm has
the following performance characteristics. If the packets to
be broadcast are generated at each node of the network ac-
cording to a Poisson process with rate A, independently of
the other nodes, the average broadcast delay B satisfies

B<W+X+min(W-V, pW), )]
where p = ANX and W is given by (8).

PROOF. Each active node participates in a GMNB period
with all the packets generated at that node prior to the
beginning of the GMNB period (that is, prior to the
beginning of the vacation interval of that period). The
duration of the broadcast interval of a GMNB period
is at most MX time units, where M is the number of
eligible packets at the start of a period.

We will refer to the indirect broadcasting scheme
as system “b” (for “broadcast”), and to the gated va-
cation system as system “a” (for “auxiliary”). Let the
vacation and customer service times of system “a” be
constant and equal to V and X, respectively. Consider
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the following analogy between systems “a” and “b.”
Let a service interval of system “a” correspond to a
broadcast interval of system “b,” and an arrival of a
customer in system “a” correspond to the generation
of a broadcast request in system “b.” Note the simi-
larities between the two systems. During a service
interval of system “a” (or broadcast interval of system
“b”) all customers (or broadcast requests, respec-
tively) can be served, provided that they arrived prior
to the beginning of the current period. It is easy to see
that the probability distributions of the length of the
vacation intervals (which are fixed), the length of the
service (or broadcast) intervals, and the number of
customers (or broadcast requests) served in a service
interval are identical for both systems. In particular,
the duration of a vacation interval of system “a” and a
notification interval of system “b” are both equal to V
by construction. The duration of a broadcast interval
of system “b” is equal to MX, where M is the number
of packets present in the system at the beginning of
(the parallel prefix operation of) the notification inter-
val. Similarly, the duration of a service interval of
system “a” is equal to MX, where M is the number of
packets in the customers at the beginning of the pre-
ceding vacation interval. The only difference between
the two systems is that in system “b” a broadcast is
completed at the end of a GMNB period, while in
system “a” customers complete service at times
iX,j=1,2, .., M, from the beginning of the service
interval.

The waiting time W, in queue for a packet of the
auxiliary system is given by Theorem 1. Let U be the
average time between the beginning of a service in-
terval of system “a” and the time that a customer
served in this interval starts service (see Fig. 1). Simi-
larly, let U, be the average time between the comple-
tion of service of a customer of system “g” and the
end of the corresponding service interval. It can be
seen that U, = U, < W, - V. We denote by K the num-
ber of customers found in the system by an arriving
customer. We then have

U, = L, < E(KOX = ANW,X = pW,,

Broadcast intervals

ST

i/ E Bepartore for System b
i -

»-

& &

Fig. 1. Notification (or vacation) and broadcast (or service) intervals for
the network broadcasting scheme (or the auxiliary queuing system,
respecitively).

where we have used Little’s theorem E(K) = ANW,.
The average broadcast delay B satisfies

B=W,+ X+ U< W, + X+ min(W,-V, pW,),
which completes the proof. O

The following theorem is the main result of this subsection.

THEOREM 3. Let G be a (bidirectional) network that has ky,,
edge-disjoint spanning trees. Let L., (or L) be the maxi-
mum diameter (or the average diameter, respectively) of the
edge-disjoint spanning trees, and & be the diameter of G.
The indirect broadcasting scheme that uses the GMNB al-
gorithm of Lemma 2 is stable for

k
A< “Z{?X ,
and has average broadcast delay ‘B that satisfies
pP—p+2  (Ly +28)(1+p)3-p)
k(1= ) 2(1-p)
where p = AN/k,,,. Moreover, the average broadcast delay
for light load satisfies

B<

, Qo)

1
BSl'SLmaX+35+Fn;’ p = 0.
If the GMNB algorithm of Lemma 3 is used, then L, in
the above expressions should be replaced by L .

PROOE. If we use the GMNB algorithm described in Lemma 2
(or Lemma 3), then the average broadcast delay B of
the indirect broadcasting scheme can be obtained
from Theorem 2 by substituting X = 1/k,, and
V= Lyay + 28 (or V = L + 26, respectively), which af-
ter some algebraic manipulation gives (10). The indi-
rect broadcasting scheme is, therefore, stable for

p=ANX =2 <1, O

max

The stability region of the indirect broadcasting scheme
is half of that given by the universal upper bound of (5).
This is the best that we could hope for a general network,
since the necessary condition of (5) is not tight for all net-
works. Indeed, as discussed in Section 3, a necessary stabil-
ity condition for a network with d,;, = ko is 4 < ﬁl‘j—* (such
networks include d-dimensional meshes without wrap-
around, and trees).

For any fixed load in the stability region, the average
broadcast delay B is O(Ly, + 0) or O +98), depending on
the GMNB algorithm that we use. For topologies where the
edge-disjoint spanning trees can be chosen so that the
maximum diameter L,,,, or the average diameter L is O(8),
the average broadcast delay of the indirect broadcasting
scheme is of the optimal order (networks where this is pos-
sible include trees, and meshes of arbitrary dimension with
or without wraparound). This is because, under our com-
munication model, the network diameter is a lower bound
on any broadcasting task. Since L <L__, the indirect
broadcasting scheme that uses the algorithm of Lemma 3
always performs better than the one that uses the algorithm
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of Lemma 2; this improvement in the performance, how-
ever, comes at the expense of a more complicated imple-
mentation and more computations at the nodes. Note also
that there is a trade-off between stability region and aver-
age broadcast delay. If we use the maximum possible num-
ber of edge-disjoint spanning trees (in order to have the
best stability region), we may have to select trees of large
diameter (increasing the delay for light load). A related in-
teresting problem is to consider whether edge-disjoint
spanning trees with diameter less than, say, some constant
B can be found in polynomial time (computing edge-
disjoint spanning trees without any constraint on the di-
ameter can be solved in polynomial time, as we mentioned
earlier).

4.2 Direct Broadcasting Scheme

In this subsection, we propose and analyze an alternative
dynamic broadcasting scheme, which we call the direct
broadcasting scheme. We assume that the graph G under con-
sideration has k edge-disjoint spanning trees, denoted by T,
j =1, ..., k. In the direct broadcasting scheme, each packet
selects upon its generation one of the k disjoint trees, and is
broadcast on it. A packet that is broadcast on tree T; will be
referred to as a packet of class j. At every slot, every node v
considers each of its incident links (v, w) e T;. If v has re-
ceived a packet of class j that it has neither sent already to w
nor it has yet received from w, then v sends such a packet
on link (v, w). If v does not have such a packet it sends
nothing on (v, w). When more than one packets are eligible
for transmission on link (v, w), one of them is transmitted
and the remaining are queued.

The direct broadcasting scheme is a particularly simple
scheme to implement. The only information carried by a
packet is its class j, and each node v only has to know
which incident links are associated with each spanning tree.
In what follows, we evaluate the broadcast throughput and
the average reception delay of the direct broad casting
scheme for an arbitrary network topology. The following
lemma, proved by Stamoulis and Tsitsiklis [14], will be use-
ful in our analysis.

LEMMA 9. Consider a tree T . Let 89 be the rool, s, s,, ..., s, be
the nonroot nodes of ’f andd, i=1, ..., n, be the distance
from node s; to s,. We assume that packets are generated at
each nonroot node s;, according to a Poisson process with

rate A, and each of them is destined for node s,. All packets
require one slot for transmission over a link, and the root
node s, can remove at most one packet per slot. The average
delay D between the arrival of a packet at a node, and the
time it is removed by the root is

1 n 1

Moreover, the system is stable if and only if An < 1.

(11)

Consider now the direct broadcasting scheme in a net-
work that has k edge-disjoint spanning trees, T, j = 1,2, ..., k.
We assume the F-D model, where a node can transmit or
receive packets over all its incident links simultaneously,

and a link can be used for transmission in both directions at
the same time. We let p; be the probability with which a
packet selects T; as the spanning tree on which it will be
broadcast. We also let I, be the distance between nodes s
and t using only links of tree T, We will initially focus on a
particular node s and spanning tree T, and calculate the
average reception delay Ri(s) for packets received at s over
tree T; (the average reception delay can then be calculated
by averaging over all nodes s and trees T). In order to
evaluate R(s), it is useful to view node s as the root of T;
and let T;,(s), T;5(s), ..., T},(s) be the subtrees in which T;is
partitioned when s is removed (see Fig. 2). We denote by
() the number of nodes of tree T,(s) (therefore,

21;:1 n; ,(s) = N -1). Using Lemma 9, it can be seen that

the average reception delay R, (s) for packets received at

1 Apn, (s Ze : lsjt
R (5) =5+ Plia(®) | eer, (12)
’ 2(1 - l;ojnj,q(s)) 1; . (s)

node s over the subtree T} is given by

The average reception delay R(s) for packets received at
node s over tree T, is given by

Zm,l maOR () 1 ip. o [n) q(s)]z

== 7 y 3

"o =="x= B AR STy zq:l =, 13)
where

2ol
U= T
s N-1
is the average internodal distance from every node of the
network to node s using only links of T;.

(14)

Tree TJ

Hode s

Subtree T1{g)

|

NSZNE

Fig. 2. Atree T, and the subtrees Ty, T, ...

The average reception delay at node s (averaged over all
trees T, j=1,2,..., k) is

2
x 1k 1 Kk om p?[n (s)]
R(s) = R. = —+ V o+ L . (15)
(s) ; PiR(s) = 5 ; Pis T 3N 1) ; <1 Jp, ,(5)

The average reception delay R can be found by averaging
(15) over all nodes s, that is,
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where

T. The direct

is the average internodal distance of tree T;

broadcasting scheme is stable if and only if
A<

foralls,j,g. a7

Pitt(s)
Let § be a leaf node of the spanning tree T, When § is
viewed as the root of T; (equivalently, when considering

packets received at node § over tree T)), there is only one

subtree T, connected to §, having n, ,(8) = N =1 nodes.

Thus, the condition of (17) is equivalent to A < 1/(p(N — 1))
for all j. The maximum stability region is achieved when
the number of edge-disjoint spanning trees used is equal to
the maximum possible, and each packet selects with equal
probability the tree on which it is broadcast (that is, when

k = kpao and p; = 1/ky,, for all j). In that case, the direct
broadcasting scheme is stable if and only if

k

max

N-1-
Therefore, the stability region of the direct broadcasting
scheme is one half of the universal upper bound given in
(5) for the F-D model, and (in view of the discussion in Sec-
tion 3) it is the best that a general broadcasting scheme
could achieve. In that case, the average reception delay at
node s is

A< (18)

A [ Hj,q(s)z
2k (N = 1) 4 T=11;  (5) YKo

j=1 g=1 max

1
R(s) = skt (19
where [ = 21(':“;“ lsf /kmx . The average reception delay R can

similarly be found as

1
4l
2T T o NIN-T) N(Nl

where [ = Zil 1

spanning trees, averaged over all nodes in a tree and over

nm(s)Z
1- nm(s) Mk

max

R =

Mz

(20)
s=1 j=1g=1

/N is the mean internodal distance of the

all trees. Since n,,(s) < N - 1 for all j, g, and s, the average
reception delay is O(I) for any load in the stability region. In
the usual case where the network under consideration is
symmetric, (20) may be considerably simplified. When the
network is operating at a load that is considerably smaller
than k.. /N, maximizing the stability region may not be
the primary concern. In such a case one should choose the

probabilities p; so as to minimize R for a given load 4. For

example, when 4 = 0, the best strategy is to broadcast all
packets on the tree that has the smallest mean internodal
distance.

5 CONCLUSIONS

We have proposed dynamic broadcasting schemes for a
general network topology. We have obtained analytic ex-
pressions for the average broadcast delay, the average re-
ception delay, and the stability region of the schemes with-
out using any simplifying approximating assumptions. The
performance results obtained were compared with corre-
sponding universal bounds that were also derived. The
broadcasting schemes are efficient, simple to implement,
and do not make any assumption about the underlying
network topology. The approach taken in this paper may be
useful in dealing with other problems that do not necessar-
ily involve broadcasts (for example, Theorem 2 essentially
gives a general relationship between static and dynamic
problems, which could be useful in analyzing other routing
problems). Another line of future research may be to apply
the results obtained to particular topologies of interest, by
finding edge-disjoint spanning trees with small diameter in
these topologies (see [2]).
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