
2:5n-Step Sorting on n�n Meshes in the Presence of o(
p

n) Worst-Case Faults

Chi-Hsiang Yeh, Behrooz Parhami, Hua Lee, and Emmanouel A. Varvarigos
Department of Electrical and Computer Engineering

University of California, Santa Barbara, CA 93106-9560, USA

Abstract
In this paper, we propose the robust algorithm-configured

emulation (RACE) scheme for the design of simple and
efficient robust algorithms that can run on faulty mesh-
connected computers. We show that 1-1 sorting (1 key per
healthy processor) can be performed in 2:5n+ o(n) com-
munication steps and 2n + o(n) comparison steps on an
n� n mesh with an arbitrary pattern of o(

p
n) faults. This

running time has exactly the same leading constant as the
best known algorithms for 1-1 sorting on an n � n fault-
free mesh. We also formulate the mesh robustness theorem,
which leads to a variety of efficient robust algorithms on
faulty meshes.

1. Introduction
A d-dimensional mesh consists of n1n2 � � �nd proces-

sors of degree 2d arranged in an n1 � n2 � �� � � nd grid.
When wraparound links are used for all dimensions, a d-
dimensional torus results. Because of their scalability, com-
pact layout, constant node-degree, desirable algorithmic
properties, and many other advantages, meshes and tori have
become the most popular topologies for the interconnection
of parallel processors.

Since a parallel computer consists of a complex assem-
bly of many components, the probability that some fraction
of the system fails is nonnegligible. A large volume of litera-
ture exist on the subject of fault tolerance in parallel systems
[2, 3, 5, 8, 9, 11, 12, 13]. For computing on faulty meshes,
Cole, Maggs, and Sitaraman [3] have shown that an n� n
mesh can be emulated with constant slowdown on an n�n
mesh that has n1�ε faulty processors for any fixed ε > 0. In
[5], Kaklamanis et. al. showed that almost every n� n p-
faulty mesh and any mesh with at most n=3 faults can sort n2

packets in O(n) time. In [8], an elegant but suboptimal ro-
bust sorting algorithm based on shearsort has been proposed
for meshes with bypass capacity. In [11, 13], we showed
that 1-1 sorting (1 key per healthy processor) in row-major
or snakelike row-major order can be performed in 3n+o(n)
communication and comparison steps on an n�n mesh with
o(
p

n) faults.
In this paper, we tackle the fault tolerance issue in meshes

and tori using the robust-algorithm approach [9], which in-
corporates fault tolerance into the design of algorithms. We
assume the removal model [9], where a faulty processor or
link is removed from the network. No hardware redundancy
or bypass capability is required and no assumption is made
about the availability of a complete submesh. We propose
the robust algorithm-configured emulation (RACE) scheme
for the design of general robust algorithms. We show that
sorting can be performed in 2:5n + o(n) communication
steps and 2n+ o(n) comparison steps (excluding precalcu-
lation time which is needed only once following each con-
figuration change) on an n�n bidirectional mesh that has an
arbitrary pattern of o(

p
n) faults, assuming that each healthy

and connected processor has one of the keys to be sorted.
Surprisingly, this running time has exactly the same leading
constant as the best known algorithms for 1-1 sorting on an
n�n fault-free mesh and is the best result reported thus far
for sorting on faulty meshes for any ranking order.

We derive the mesh robustness theorem, which shows
that the slowdown factor for performing a algorithm on a
subset of healthy processors of a faulty mesh is 1+o(1) rel-
ative to a fault-free (n�o(S))�(n�o(S))mesh if the corre-
sponding algorithm in a fault-free mesh performs S consecu-
tive routing steps along the same dimension on the average,
and there are at most o(S) faulty processors in the mesh. Our
results demonstrate that meshes and tori are robust in that
they can solve many problems efficiently even when many
processors and/or links fail.

2. The robust algorithm-configured emulation
(RACE) scheme

In this section, we define the notion of virtual submeshes
in faulty meshes and introduce a simple and efficient scheme
for solving various problems on faulty meshes, without rely-
ing on hardware redundancy. We then develop several tech-
niques for sorting on virtual submeshes with negligible over-
head compared with fault-free meshes.

2.1. Definition of virtual Submeshes (VSMs)
A virtual submesh (VSM) of a d-D faulty mesh is ob-

tained by embedding a smaller d-D mesh in it, where the em-
bedded rows of the same dimension do not overlap and the
embedded nodes and links are mapped onto healthy nodes
and paths. More precisely, each node of this smaller mesh
is mapped onto a different healthy node of the faulty mesh;
each link of this smaller mesh is mapped onto a healthy
path of the faulty mesh. The embedded rows (or columns)
of a certain dimension i, i = 1;2; :::;d, do not overlap with
each other, and are called dimension-i virtual rows (or vir-
tual columns) of the virtual submesh. Node (x1;x2; :::;xn)
of the obtained virtual submesh (called a VSM node) is lo-
cated at the intersection of virtual row x1 of dimension 1,
virtual row x2 of dimension 2, ... , and virtual row xn of
dimension n. Note that these virtual rows of different di-
mensions are allowed to have more than one node in com-
mon, in which case we select one of the nodes at the in-
tersection either arbitrarily or according to certain criteria
(e.g., the dilation of the resultant embedding). Then, VSM
nodes (x1; :::;xi�1;yi;xi+1; :::;xn) for certain x j, j 6= i, and all
yi = 1;2; :::;mi form a dimension-i row of the virtual sub-
mesh and is also called a VSM row, where mi is the length of
a dimension-i VSM row. A virtual subtorus is defined anal-
ogously. Figure 1 shows a 3�4 virtual submesh in a mesh
with 9 faults and the virtual rows and virtual columns of the
virtual submesh. Figure 4b is an example of a 7�10 virtual
submesh in a 9�12 mesh with 9 faulty processors.

There usually exist many virtual submeshes in a faulty
mesh. In general, to achieve better performance, we pre-
fer to maximize the number of VSM nodes and minimize,

1 2 3

4

5 6 7 8

9 10 11

12

(a) (b) (c)

Figure 1. (a) A 3-by-4 VSM in a faulty 6-by-7 mesh with
9 faults. (b) Virtual rows of the VSM. (c) Virtual columns
of the VSM.

for each dimension, the difference between the maximum
length of virtual rows and the length mi of a VSM row. The
largest of these difference for all dimensions is called the
width overhead of the virtual submesh. Clearly, when there
are o(n) faulty processors or links in a d-D n� n� �� � � n
mesh, it is guaranteed that a d-D (n� o(n))� (n� o(n))�
�� � � (n� o(n)) virtual submesh with width overhead o(n)
exists. The simplest way to find such a virtual submesh is to
select all the fault-free rows and columns as virtual rows and
columns, though a larger virtual submesh may exist. When
there are o(n2) random faults in a 2-D n� n mesh, we can
show that a 2-D (n�o(n))�(n�o(n)) virtual submesh with
width overhead o(n) exists with high probability. The de-
tails will be reported in the near future.

2.2. The RACE scheme and the stepwise emulation
technique (SET)

In this subsection we present the robust algorithm-
configured emulation (RACE) scheme, which redistributes
the data on a faulty network to a virtual subgraph (e.g., an
m1�m2 virtual submesh), and then uses the virtual subgraph
to emulate algorithms developed for a fault-free network.
We also present the stepwise emulation technique (SET) for
running mesh algorithms on virtual submeshes.

Let M be the total number of data items and a be the load
factor, the maximum number of items per processor, in the

virtual submesh. Then we have a =
l

M
m1m2

m
when the data

are spread approximately evenly on the virtual submesh.
The proposed RACE scheme for designing robust algo-

rithms involves 3 stages, as described below. We assume
that a preprocessing stage has identified a virtual submesh
to be used (perhaps at reconfiguration time).
The RACE Scheme

� Stage 1: The data items to be processed are redis-
tributed evenly to the processors on the virtual submesh
such that a processor has at most a items. On the virtual
submesh, a processor that has fewer than a items may
pad its list with suitable “dummy element(s)” (e.g., ∞
for sorting).

� Stage 2: The virtual submesh emulates a correspond-
ing algorithm on an m1 �m2 mesh, each processor of
which has at most a items.

� Stage 3: The results are redistributed back to healthy
processors of the original n1�n2 faulty mesh.

Stage 2 of the RACE scheme can be implemented using
the stepwise emulation technique (SET), which directly em-
ulates a transmission over the dimension-i link of a proces-
sor by sending the data item along the dimension-i virtual
row to which the processor belongs.

1 2 3

4

5 6 7 8

9 10 11

12

1 2 3

4

5 6 7 8

9 10 11 12

1

2

3 4

5 6 7

8

9 10 11

12

(a) (b) (c)

Figure 2. (a) A 3-by-4 VSM. (b) Compacted rows of the
VSM. (c) Compacted columns of the VSM.

2.3. The compaction/expansion technique (CET)

In this subsection, we present the compaction/expansion
technique, abbreviated C/E technique or CET, which can
significantly reduces the time required for sorting and a va-
riety of other algorithms on a virtual submesh.

Sorting on each row of the same dimension on a virtual
submesh using CET (see Fig. 2 for an example) involves 4
phases:
CET Row Sort:

� Phase 0 (precalculation): Each dimension-i virtual row
performs semigroup and prefix computation to deter-
mine the total number t of processors in the virtual row,
and, for each VSM node, the number l of processors to
its left that are not VSM nodes.

� Phase 1 (compaction): The items in each VSM node
are shifted to the left by l � dt=2e positions if l �
dt=2e > 0 and the items are shifted to the right by
dt=2e� l positions if l�dt=2e< 0.

� Phase 2: A row sort is performed within each com-
pacted row (the virtual subrow composed of the mi
neighboring nodes currently holding the data.

� Phase 3 (expansion): The sorted items in each of the
mi-node compacted rows are shifted back to VSM
nodes; this is the inverse of Phase 1.

Phase 0 can be done in O(mi + tmax) time using algo-
rithms for semigroup and prefix computation on a virtual
row [9]. This precalculation phase only needs to be executed
once after each new processor or link failure. Sorting 2mi
items on an mi-node bidirectional linear array requires mi
communication steps and 2mi comparison steps by directly
emulating odd-even transposition sort on a 2mi-node linear
array [6, 7]. As a result, algorithm CET Row Sort can be per-
formed using mi+o(mi) communication steps and 2mi com-
parison steps (excluding precalculation time) when a = 2
and tmax = o(m2). Clearly, when fB = o(mi), the slowdown
factor for row sort on the virtual submesh is 1+o(1) for any
fault pattern.

3. Robust sorting on faulty meshes
In this section, we derive fast algorithms to perform 1-1

sorting on an n�n mesh that has f = o(
p

n) faulty proces-
sors, where each healthy and connected processor holds one
of the keys to be sorted.

3.1. Mapping a faulty mesh onto a VSM

In this subsection, we describe how to select a proper vir-
tual submesh and map the faulty mesh onto it.

We select nonoverlapping horizontal paths (or vertical
paths) that extend from the leftmost column (or top row,

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16

11
12

13
14

15
16

1
2

3
4

5
6

7
8

9
10

Horizontal Vertical

Mapping

blocks VSM blocks

(a) (b) (c)
 VSM slices VSM slices
n

1
3 n

1
3

2 n
2
3 n

2
3

2

Figure 3. (a) The horizontal slices of a virtual submesh.
(b) The vertical slices of a virtual submesh. (c) The intersec-
tions of these 4 horizontal slices and 2 vertical slices form 8
VSM blocks. The 16 blocks of the faulty mesh are mapped
onto the 8 VSM blocks.

respectively) to the rightmost column (or bottom row, re-
spectively) of the faulty mesh. Then the intersections of
m1 = n�o(

p
n) horizontal paths and the middle m2 = n=2+

o(
p

n) vertical paths form a virtual submesh. For simplic-
ity of algorithm description, we assume that n2=3 is even.
Then we partition the virtual submeshes into n1=3 horizontal
VSM slices and also into n1=3=2 vertical VSM slices. There
are n2=3=2 VSM blocks, each located at the intersections of
a horizontal VSM slice and a vertical VSM slice. Figure 3
illustrates a virtual submesh with 4 horizontal slices, 2 ver-
tical slices, and 8 VSM blocks. We have to properly select
m1 and m2 so that each of the VSM blocks contains at least
n4=3 nodes. Since there are no more than o(

p
n) faulty pro-

cessors, the existence of such virtual submeshes is guaran-
teed. We call each of the n2=3 n2=3-by-n2=3 submeshes of the
faulty mesh a block. Then we can map the faulty mesh onto
the virtual submesh by mapping two neighboring blocks of
the faulty mesh onto a corresponding VSM block. Figure 3c
shows such a mapping from the faulty mesh with 16 blocks
to a virtual submesh with 8 VSM blocks.

The number of items per processor of the virtual submesh
is at most a = 2 (for 1-1 sorting on such a faulty mesh). We
call data items from blocks 1, 3, 5, ... the first layer of data,
and data items from blocks 2, 4, 6, ... the second layer of
data. A block is crossed by at least n2=3 �O(f) horizon-
tal paths and vertical paths. The segment of a horizontal (or
vertical) path within a block is called a virtual block-row (or
virtual block-column, respectively).

Note that we assume that n is the third power of an even
number only for the simplicity of algorithm description. The
algorithms presented in this section can be easily extended
to more general n1�n2 meshes. Figure 4a illustrates an 8�
8 block and its virtual block-columns; figure 4b illustrates a
7�10 VSM block which contains 3 faulty processors within
its boundary. Two 8�8 blocks can be mapped onto a 7�10
VSM block with load factor a = 2. Note that in an n� n
mesh with o(

p
n) faults, there is usually no more than one

fault within the boundary of a VSM block, and fewer than
one VSM block out of Ω(n1=6) VSM blocks on the average
contains faults in it.

3.2. Data redistribution (DR)

In this subsection, we introduce an asymptotically op-
timal algorithm for performing data redistribution, which
moves data from healthy and connected processors, each
having one data item, to the corresponding processors in the
virtual submesh.

The algorithm DR for data redistribution is comprised of
4 phases:

(a) (b)

a VSM block

Figure 4. (a) An 8�8 block which contains 2 faulty pro-
cessors within its boundary. The thick gray lines represent
virtual block-columns. (b) A 7�10 VSM block which con-
tains 3 faulty processors within its boundary. The thick dark
lines represent virtual rows; the thick gray lines represent
virtual columns; the shaded circles represent VSM nodes.

Data Redistribution (DR):

� Phase 1: In each block, all data items are routed to a
nearby virtual block-row.

� Phase 2: In each block, all data items are spread ap-
proximately evenly along the virtual block-row onto
processors at the intersections of virtual block-rows
and virtual block-columns.

� Phase 3: Each data item is sent along the vertical path
(to which it currently belongs) to the horizontal path to
which the data item will belong in the virtual submesh.

� Phase 4: Each data item is sent along the horizontal
path (to which it currently belongs) to the desired posi-
tion in the virtual submesh.

Phase 1 can be done by first routing each data item to
one of the virtual block-rows/columns that surround the
item, and then routing it along the virtual block-columns (if
needed) to a nearby virtual block-row within its block. The
desired location for each data item at the end of Phase 2 can
be determined by performing prefix computation in each vir-
tual block-row, which is a precalculation step and requires
only O(n2=3) time.

Theorem 3.1 Data redistribution from an n� n mesh with
o(
p

n) faulty processors onto an appropriate virtual sub-
mesh can be performed in n=4+o(n) steps.

By reversing the process of algorithm DR, data redistri-
bution from a virtual submesh to all healthy processors can
be done in the same time n=4+o(n).

3.3. Robust sorting algorithms on faulty meshes

In this subsection, we show that 1-1 sorting can be per-
formed in 2:5n+ o(n) communication steps and 2n+ o(n)
comparison steps on an n�n mesh that has an arbitrary pat-
terns of o(

p
n) faults.

The proposed robust sorting algorithm uses the RACE
scheme, which redistributes the data items to the virtual sub-
mesh, then emulates a 2-2 mesh sorting algorithm in block-
wise snakelike order on the virtual submesh, and finally re-
distributes the sorted items back to healthy processors. If we
emulate the sorting algorithm proposed in [6], the data items
will be sorted by our robust sorting algorithm according to

%ORFNV

%
OR
F
N
V

1 2 3 4

5678

9 10 11 12

13141516

17 18 19 20

21222324

25 26 27 28

32 31 30 2933 34 35 36

37383940

41 42 43 44

45464748

49 50 51 52

53545556

57 58 59 60

61626364

n
1
3

n
1
3

Figure 5. The folded odd/even snake (FOE-snake) order
of the blocks of a faulty mesh. Blocks with ascending and
descending orders are interleaved, leading to a folded snake
with interleaved blocks.

a special ordering, called the folded odd/even snake (FOE-
snake) order in this paper, where blocks are indexed along a
folded blockwise snake that contains odd-numbered blocks
in the forward direction interleaved with even-numbered
blocks on the return portion of the snake (Fig. 5). More pre-
cisely, nodes in blocks 1;3;5; :::;n1=3 � 1, blocks 2n1=3 �
1;2n1=3�3;2n1=3�5; :::;n1=3+1, blocks 2n1=3+1;2n1=3+
3;2n1=3 + 5; :::;2n1=3 � 1, ..., and blocks n2=3 � 1;n2=3 �
3;n2=3 � 5; :::;n2=3 � n1=3 + 1 are indexed in standard row-
major snake order, followed by nodes in blocks n2=3�n1=3+
2;n2=3 � n1=3 + 4;n2=3 � n1=3 + 6; :::;n2=3, blocks n2=3 �
n1=3;n2=3�n1=3�2;n2=3�n1=3�4; :::;n2=3�2n1=3+2, ...,
and blocks n1=3;n1=3�2;n1=3�4; :::;2 indexed in backward
row-major snake order. Note that we can use any ordering
for nodes within the blocks, leading to different subclasses
of the FOE-snake order. Figure 5 illustrates the FOE-snake
order in a mesh with 64 blocks.

Stages 1 and 3 of the RACE scheme can be performed
using algorithm DR and its inverse process, which collec-
tively require n=2+ o(n) communication steps. Since 2-2
sorting can be performed using n1 +2n2+o(n1+n2) com-
munication steps and 2n1 + o(n1) comparison steps on an
n1 � n2 mesh [6] and this algorithm can be emulated on an
(n�o(

p
n))�(n=2+o(n)) virtual submesh with a factor of

1+ o(1) slowdown, Stage 2 of the RACE scheme requires
2n+o(n) communication and comparison steps, leading to
the following theorem.
Theorem 3.2 1-1 sorting (1 key per healthy and connected
processor) on an n�n bidirectional mesh that has an arbi-
trary pattern of o(

p
n) faulty processors can be performed

in 2:5n+o(n) communication steps and 2n+o(n) compar-
ison steps (excluding precalculation time).
Proof: We can obtain such a robust sorting algorithm by
emulating 2-2 sorting algorithms that require 2:5n + o(n)
communication steps and 2n + o(n) comparison steps on
(n� o(n))� (n=2+ o(n)) fault-free meshes. By plugging
the sorting algorithm proposed in [6] (as Phases 2 through
7) into the RACE scheme, we can obtain the following ro-
bust sorting algorithm.

FOE-Snake Sorting:

� Phase 1: Redistribute data items from each of the
healthy and connected processors in the faulty mesh
to the virtual submesh using algorithm DR. Pad each
VSM node that has fewer than 2 data items with ∞ as
its “dummy element(s)”.

� Phase 2: Sort all the VSM blocks in parallel using CET.

� Phase 3: Partition each of the horizontal VSM slices
into n1=3 smaller horizontal slices, and perform row-to-
column mapping [6] in each of them using SET.

� Phase 4: Sort each of the vertical VSM slices into
layer-last ordering [6] using CET.

� Phase 5: Perform row-to-column mapping in each of
the horizontal VSM slices using SET.

� Phase 6: Sort all neighboring VSM blocks 2 and 3,
VSM blocks 4 and 5, VSM blocks 6 and 7, ..., and VSM
blocks n2=3 � 2 and n2=3 � 1 using CET according to
layer-last blockwise snake-like order [6].

� Phase 7: Sort all neighboring VSM blocks 1 and 2,
VSM blocks 3 and 4, VSM blocks 5 and 6, ..., and VSM
blocks n2=3�1 and n2=3 using CET according to layer-
last blockwise snake-like order.

� Phase 8: Move the sorted items back to the VSM nodes
that held data items, rather than dummy element(s),
upon the completion of Phase 1.

� Phase 9: Redistribute each of the data items from the
virtual submesh to the appropriate healthy processor in
the faulty mesh using the inverse of algorithm DR.

Phases 2 through 7 sort the data items on the VSM ac-
cording to layer-last blockwise snake-like order [6]. We re-
fer the reader to [6] for the details of the algorithm and its
proof of correctness. We can see that Phases 8 and 9 pre-
serve the order of the sorted data according to the FOE-
snake order. Therefore, following the proof for the sorting
algorithm proposed in [6], we can show that FOE-snake sort
is correct.

From Theorem 3.1, Phases 1 and 9 can be performed in
n=2+o(n) communication steps collectively. To perform 2-
2 sorting on all VSM blocks for Phase 2 or VSM block-pairs
for Phases 6 and 7 in parallel, each VSM block or block-pair
can be sorted by emulating shearsort on it. These phases re-
quire O(n2=3 logn) time based on CET Row Sort. Phases
3 and 5 (row-to-column mapping) consist of some routing
steps and can each be performed using n=2+o(n) commu-
nication steps in a fault-free mesh. Since the width of the vir-
tual submesh is n=2+o(n) hops, Phases 3 and 5 can be emu-
lated in the virtual submesh using SET with a slowdown fac-
tor of 1+o(1), for a total of n+o(n) communication steps.
Phase 4 can be performed by using the robust sorting algo-
rithm proposed in [11, 13], which requires n+o(n) commu-
nication steps and 2n+o(n) comparison steps.

Note that we can select m1 and m2 so that a VSM block
has n4=3=2+O(n2=3)VSM nodes. Therefore, upon the com-
pletion of Phase 7, there are at most O(n4=3) dummy ele-
ments “∞” located at the second layer of the first O(1) VSM
blocks. In order for Phase 9 (inverse of algorithm DR) to
work, we have to move the data items in sorted order to the
processors that originally had data items (upon the comple-
tion of Phase 1). We first compute the number of dummy
elements at each VSM block after Phase 1 of the algorithm,
and then compute the position for Phase 9 for each sorted
item. This can be done in a precalculation step using semi-
group and prefix computations on the VSM, which require
O(n) time. Since these data items are at most O(n2=3) hops
away from their positions for Phase 9, Phase 8 can be easily
performed using O(n2=3) communication steps.

The execution time for FOE-snake sort is dominated by
Phases 1, 3, 4, 5, and 9, which collectively require 2:5n+
o(n) communication steps and 2n+ o(n) comparison steps
2

Surprisingly, this running time has exactly the same lead-
ing constant as the fastest 1-1 sorting algorithm reported in
the literature for n�n fault-free meshes [6, 7]. It is the best
result reported thus far for sorting on faulty meshes for any
ranking order.

We can generalize algorithm FOE-snake sort for meshes
with f faults. The time required for sorting on an n�n mesh
with f faults is O(n+ f 2), where f < (1� ε)n for any fixed
ε > 0. The extra O(f 2) communication steps are required
by algorithms DR for worst-case fault patterns. We can also
extend the sorting algorithm to robust h-h sorting with h> 1,
by emulating a-a sorting on an appropriate VSM, where a is
equal to h+1 when f is not very large.

4. The Mesh Robustness Theorem
A variant of the RACE scheme, where data items are in-

put/output to/from VSM nodes, can be applied to various
other problems to derive efficient robust algorithms, as in-
dicated by the following theorem.
Theorem 4.1 (Mesh Robustness Theorem)
If an algorithm for a mesh performs S consecutive routing
and computation steps along the same dimension on the av-
erage, and there exists an m1 �m2 � �� � �md virtual sub-
mesh whose width overhead is o(S), then the slowdown fac-
tor for performing the algorithm on a virtual submesh of the
faulty mesh is 1+o(1) relative to a fault-free m1�m2��� ��
md mesh.

When there are f = o(n) faults, it is guaranteed that a vir-
tual submesh with comparable size and width overhead o(n)
exists, leading to the following corollary.
Corollary 4.2 If an algorithm for a mesh performs S con-
secutive routing and computation steps along the same di-
mension on the average, and there are f faulty processors in
an n1�n2��� �nd mesh, f = o(S) and f = o(nmin), then the
slowdown factor for performing the algorithm on a virtual
submesh of the faulty mesh is 1+o(1) relative to a fault-free
(n1 � o(nmin))� (n2 � o(nmin))� �� �(nd � o(nmin)) mesh,
where nmin = min(n1;n2; :::;nd).

A wide variety of algorithms have S = O(n), and thus
can run with a slowdown factor 1+ o(1) when the number
of fault is o(n). This mesh robustness theorem can be ap-
plied to N-node meshes with o(N) random faults (or for p-
faulty meshes [5] with p = o(1)) with high probability. A
congestion-free virtual subarray (virtual submesh or virtual
subtorus) is a virtual subarray embedded in a faulty array
with congestion 1. It is guaranteed that an (n1 �o(nmin))�
(n2 � o(nmin))� �� � (nd � o(nmin)) congestion-free virtual
subarray with width overhead o(nmin) exists in an n1�n2�
�� ��nd array with o(nmin) faults. Many important commu-
nication algorithms can be executed on congestion-free vir-
tual subarrays with a factor of 1+ o(1) slowdown relative
to a fault-free array. The details will be reported in the near
future.

Conventional wisdom is that low-degree networks are
less robust than high-degree networks. But our results in-
dicate that low-dimensional meshes and tori are very ro-
bust in that an array with a large number of faulty proces-
sors and links has, for a large variety of problems, com-
putation and communication powers similar to those of a

fault-free array. For example, an N-node 2-D mesh with
N1=3 faults can execute many algorithms almost as fast as a
slightly smaller fault-free mesh. Dally [4] and Agarwal [1]
have shown that lower-dimensional networks achieve bet-
ter performance than high-dimensional networks under var-
ious constraints, such as constant bisection bandwidth, fixed
channel width, and fixed node size. Our robustness results
for meshes and tori, combined with their previously estab-
lished cost/performance benefits [1, 4], make the case for
low-dimensional architectures even stronger.

5. Conclusion
In this paper, we have proposed the RACE scheme for

designing efficient robust algorithms, and the fastest algo-
rithms for sorting on faulty meshes. We showed that sort-
ing on an n� n mesh that has o(

p
n) faulty processors can

be performed in 2:5n+o(n) communication steps and 2n+
o(n) comparison steps, which has the same leading constant
as the best sorting algorithm for fault-free meshes. We also
formulated the mesh robustness theorem, which extends the
techniques and algorithms used in this paper to a variety of
other important problems to obtain low-overhead robust al-
gorithms for faulty meshes.

References
[1] Agarwal, A., “Limits on interconnection network perfor-

mance,” IEEE Trans. Parallel Distrib. Sys., Vol. 2, no. 4, Oct.
1991, pp. 398-412.

[2] Bruck, J., R. Cypher, and C. Ho, “Fault-tolerant meshes and
hypercubes with minimal numbers of spares,” IEEE Trans.
Comput., vol. 42, no. 9, Sep. 1993, pp. 1089-1104.

[3] Cole, R., B. Maggs, and R. Sitaraman, “Multi-scale self-
simulation: a technique for reconfiguring arrays with faults,”
ACM Symp. Theory of Computing, 1993, pp. 561-572.

[4] Dally, W.J., “Performance analysis of k-ary n-cube intercon-
nection networks,” IEEE Trans. Comput., Vol. 39, no. 6, Jun.
1990, pp. 775-785.

[5] Kaklamanis, C., A.R. Karlin, F.T. Leighton, V. Milenkovic,
P. Eaghavan, S. Rao, C. Thomborson, and A. Tsantilas,
“Asymptotically tight bounds for computing with faulty ar-
rays of processors,” Proc. Symp. Foundations of Computer
Science, vol. 1, 1990, pp. 285-296.

[6] Kunde, M., “Concentrated regular data streams on grids:
sorting and routing near to the bisection bound,” Proc. Symp.
on Foundations of Computer Science, 1991, pp. 141-150.

[7] Nigam, M. and S. Sahni, “Sorting n2 numbers on n � n
meshes,” IEEE Trans. Parallel Distrib. Sys., vol. 6, no. 12,
Dec. 1995, pp. 1221-1225.

[8] Parhami, B. and C.-Y. Hung, “Robust shearsort on incom-
plete bypass meshes,” Proc. Int’l Parallel Processing Symp.,
1995, pp 304-311.

[9] Parhami, B. and C.-H. Yeh, “The robust-algorithm approach
to fault tolerance on processor arrays: fault models, fault di-
ameter, and basic algorithms,” Proc. First Merged Interna-
tional Parallel Processing Symposium and Symp. Parallel
and Distributed Processing, Apr. 1998, pp. 742-746.

[10] Parhami, B., Introduction to Parallel Processing: Algorithms
and Architectures, Plenum Press, 1999.

[11] Yeh, C.-H. and B. Parhami, “Optimal sorting algorithms on
incomplete meshes with arbitrary fault patterns,” Proc. Int’l
Conf. Parallel Processing, Aug. 1997, pp. 4-11.

[12] Yeh, C.-H., “Efficient low-degree interconnection networks
for parallel processing: topologies, algorithms, VLSI lay-
outs, and fault tolerance,” Ph.D. dissertation, Dept. Electrical
& Computer Engineering, Univ. of California, Santa Barbara,
Mar. 1998.

[13] Yeh, C.-H. and B. Parhami, “Efficient sorting algorithms on
incomplete meshes,” J. Parallel Distrib. Comput., to appear.

