2.5n-Step Sorting on n x n Meshesin the Presence of o(,/n) Wor st-Case Faults

Chi-Hsiang Yeh, Behrooz Parhami, Hua Lee, and Emmanouel A. Varvarigos
Department of Electrical and Computer Engineering
University of California, Santa Barbara, CA 93106-9560, USA

Abstract

Inthis paper, we proposetherobust algorithm-configured
emulation (RACE) scheme for the design of simple and
efficient robust algorithms that can run on faulty mesh-
connected computers. We show that 1-1 sorting (1 key per
healthy processor) can be performed in 2.5n + o(n) com
munication steps and 2n + o(n) comparison steps on an
n x n mesh with an arbitrary pattern of o(,/n) faults. This
running time has exactly the same leading constant as the
best known algorithms for 1-1 sorting on an n x n fault-
free mesh. We also formulate the mesh robustness theorem,
which leads to a variety of efficient robust algorithms on
faulty meshes.

1. Introduction

A d-dimensional mesh consists of niny---ng proces-
sors of degree 2d arranged in an ny X ny X --- X Ng grid.
When wraparound links are used for all dimensions, a d-
dimensional torusresults. Because of their scalability, com-
pact layout, constant node-degree, desirable algorithmic
Bropertles, and many other advantages, meshesandtori have

ecome the most popular topol ogiesfor the interconnection
of parallel processors.

Since a parallel computer consists of a complex assem-
bly of many components, the probability that some fraction
of theg/stemfallsm_nonne‘gll ible. A largevolumeof litera-
tureexist on the subject of fault tolerancein parallel systems
[2,3,5,8,9, 11, 12, 13]. For computing on faulty meshes,
Cole, Ma%gs, and Sitaraman [3] have shown that an n x n
mesh can be emulated with constant slowdownonannx n
mesh that has n~¢ faulty processors for any fixed € > 0. In
[5], Kaklamanis et. al. showed that aimost every n x n p-
faulty mesh and any mesh with at most n/3faults can sort n?
packetsin O(n) time. In [8], an elegant but suboptimal ro-
bust sorting al gorithm based on shearsort has been proposed
for meshes with bypass caﬁacn . In[11, 13], we showed
that 1-1 sorting (1 key per healthy processor) in row-major
or snakelike row-mgjor order can be performedin 3n+ o(n)
communication and comparison stepson ann x nmesh with

o(y/n) faults.

Inthis paper, wetacklethefault toleranceissuein meshes
and tori using the robust-algorithmapproach [9], which in-
corporatesfault toleranceinto the design of algorithms. We
assume the removal model [9], where a faulty processor or
link isremoved from the network. No hardware redundancy
or bypass capability is required and no assumption is made
about the availability of a complete submesh. We propose
the robust algorithm-configured emulation (RACE) scheme
for the design of general robust algorithms. We show that

sorting can be performed in 2.5n + o(n) communication
steps and 2n + o(n) comparison steps (excluding precal cu-
lation time which is needed only once following each con-
figuration change) on an n x n bidirectional mesh that hasan

arbitrary pattern of o(y/n) faults, assuming that each healthy

and connected processor has one of the keys to be sorted.
Surprisingly, thisrunning time has exactly the same leading
constant as the best known algorithmsfor 1-1 sorting on an
n x n fault-free mesh and is the best result reported thus far
for sorting on faulty meshes for any ranking order.

We derive the mesh robustness theorem, which shows
that the slowdown factor for performing a algorithm on a
subset of healthy processorsof afaulty meshis1+ o(1) rel-
ativetoafault-free (n—o0(S)) x (n—0o(S)) meshif thecorre-
sponding algorithmin afault-freemesh performs Sconsecu-
tive routing steps along the same dimension on the average,
and thereare at most o(S) faulty processorsin the mesh. Our
results demonstrate that meshes and tori are robust in that
they can solve many problems efficiently even when many
processors and/or linksfail.

2. Therobust algorithm-configured emulation

(RACE) scheme
_ Inthis section, we define the notion of virtual submeshes
in faulty meshesandintroduce asimpleand efficient scheme
for solving various problemson faulty meshes, without rely-
ing on hardware redundancy. We then develop several tech-
niquesfor sorting onvirtual submesheswith negligibleover-
head compared with fault-free meshes.

2.1. Definition of virtual Submeshes (VSMs)

A virtual submesh (VSM) of a d-D faulty mesh is ob-
tained by embeddingasmaller d-D meshinit, wheretheem-
bedded rows of the same dimension do not overlap and the
embedded nodes and links are mapped onto healthy nodes
and paths. More precisely, each node of this smaller mesh
is mapped onto a different healthy node of the faulty mesh;
each link of this smaller mesh is mapped onto a healthy
path of the faulty mesh. The embedded rows (or columns)
of acertain dimensioni, i = 1,2,...,d, do not overlap with
each other, and are called dimension-i virtual rows (or vir-
tual columns) of the virtual submesh. Node (Xq, X, ..., Xn)
of the obtained virtual submesh (called a VSM node) islo-
cated at the intersection of virtual row x; of dimension 1,
virtual row x, of dimension 2, ... , and virtual row x, of
dimension n. Note that these virtual rows of different di-
mensions are allowed to have more than one node in com-
mon, in which case we select one of the nodes at the in-
tersection either arbitrarily or according to certain criteria
(e.g., the dilation of the resultant embedding). Then, VSM
nodes (X1,...,Xi—1,Yi,Xi+1,.-.,Xn) fOr certainx;, j #i, andall
yi = 1,2,...,m; form a dimension-i row of the virtual sub-
mesh and isalso called aVSM row, wherem isthe length of
adimension-i VSM row. A virtual subtorusis defined anal-
ogoudly. Figure 1 shows a3 x 4 virtual submesh in a mesh
with 9 faultsand the virtual rows and virtual columns of the
virtual submesh. Flzqure 4bisan exampleof a7 x 10 virtual
submeshin a9 x 12 mesh with 9 faulty processors.

There usually exist many virtual submeshes in a faulty
mesh. In general, to achieve better performance, we pre-
fer to maximize the number of VSM nodes and minimize,

OO R K O-O-@
(D..QQQ
OROOR OO
60000 R

O—O@O@I—Q
O—0-O0-1—-0-O0 &

@

Figure 1. (a) A 3-by-4 VSM in afaulty 6-by-7 mesh with
9 faults. (b) Virtua rows of the VSM. e::) Virtual columns
of the VSM.

for each dimension, the difference between the maximum
length of virtual rows and thelen?thm of aVSM row. The
largest of these difference for all dimensions is called the
width overhead of the virtual submesh. Clearly, when there
are o(n) faulty processorsor linksinad-Dnxnx---xn
mesh, it is guaranteed that ad-D (n—o(n)) x (n—o(n)) x
-+ x (n—o0(n)) virtual submesh with width overhead o(n)
exists. Thesimplest way to find such avirtual submeshisto
select all thefault-freerowsand columnsasvirtual rowsand
columns, though alarger virtual submesh may exist. When

there are o(n?) random faults in a 2-D n x n mesh, we can
show that a2-D (n—o(n)) x (n—o(n)) virtual submeshwith
width overhead o(n) exists with high probability. The de-
tailswill be reported in the near future.

2.2. The RACE scheme and the stepwise emulation
technique (SET)

In this subsection we present the robust algorithm-
configured emulation (RACE) scheme, which redistributes
the data on a faulty network to a virtual subgraph (e.g., an
my x My virtual submesh), and then usesthevirtual subgraph
to emulate algorithms developed for a fault-free network.
We al so present the stepwise emul ation technique (SET) for
running mesh algorithms on virtual submeshes.

Let M bethetotal number of dataitems and a be theload
factor, the maximum number of items per processor, in the
virtual submesh. Then we havea = [%1 when the data
are sgread approximately evenly on the virtual submesh.

_ The proposed RACE scheme for designing robust algo-
rithms involves 3 stages, as described below. We assume
that a preprocessing stage has identified a virtual submesh
to be used (perhaps at reconfiguration time).

The RACE Scheme

e Stagel: The data items to be processed are redis-

tributed evenly to the processorson thevirtual submesh

such that aprocessor has at most aitems. On thevirtual

submesh, a processor that has fewer than a items may
ad its |ist with suitable “dummy element(s)” (e.g., ©
or sorting).

e Stage 2: The virtual submesh emulates a correspond-

inﬁ.algorithm on an my x mp mesh, each processor of
which has at most a items.

e Stage 3: The results are redistributed back to healthy
processors of the original ny x n, faulty mesh.

Stage 2 of the RACE scheme can be implemented using
the stepwise emulation technique (SET), which directly em-
ulates a transmission over the dimension-i link of a proces-
sor by sen_dlnghthe data item along the dimension-i virtual
row to which the processor belongs.

OO R K OO@
OROOROO
60000 K

O—O@O&I—.
O O e O O]
@

Figure 2. (a) A 3-by-4 VSM. §b) Compacted rows of the
VSM. (c) Compacted columns of the VSM.

2.3. The compaction/expansion technique (CET)

In this subsection, we present the compacti on/expansion
technique, abbreviated C/E technique or CET, which can
significantly reduces the time reguired for sorting and ava-
riety of other algorithms on avirtual submesh.)

rting on each row of the same dimension on a virtual
Sllg]bm@h using CET (see Fig. 2 for an example) involves 4
phases:

CET Row Sort:

e Phase O (precalculation): Each dimension-i virtual row
performs semigroup and prefix computation to deter-
minethetotal numbert of processorsinthevirtual row,
and, for each VSM node, the number | of processorsto
its left that are not VSM nodes.

e Phase1 (compaction): The items in each VSM node
are shifted to the left by | — [t/2] positions if | —
[t/2] > 0 and the items are shifted to the right by
[t/2] —| positionsif | — [t/2] < 0.

e Phase2: A row sort is performed within each com-
pacted row (the virtual subrow pomﬁosed of the my
neighboring nodes currently holding the data.

e Phase 3 (expansion): The sorted items in each of the
m-node compacted rows are shifted back to VSM
nodes; thisis the inverse of Phase 1.

Phase 0 can be done in O(my + tmax) time using algo-
rithms for semigroup and prefix computation on a virtua
row [9]. Thisprecalculation phaseonly needsto be executed
once after each new processor or link failure. Sorting 2m
items on an m;-node bidirectional linear array requires m
communication steps and 2m; comparison steps by directly
emulating odd-even transposition sort on a 2m-node linear
array [6, % . Asaresult, algorithm CET Row Sort can be per-
formed using m; + o(m;) communi cation stepsand 2m; com-
parison steps (excluding precalculation time) when a = 2
and tpax = 0o(my). Clearly, when fg = o(my), the Slowdown
factor for row sort onthevirtual submeshis1+o(1) for any
fault pattern.

3. Robust sorting on faulty meshes

In this section, we derive fast algorithmsto perform 1-1
sorting on an n x n mesh that has f = o(y/n) faulty proces-

sors, where each heal égy and connected processor holds one
of the keysto be sorted.

3.1. Mapping a faulty mesh ontoa VSM

In this subsection, we describe how to select aproper vir-
tual submesh and map the faulty mesh onto it.)

We select nonoverlapping horizontal paths (or vertical
paths) that extend from the leftmost column (or top row,

Mapping

: 1|2[3]a]| | [F2fa
] 5/6/7(8 Igh %6li8
9[1012{12 %ot
. 7]
| 1k 13)14)is[1e] | |45
. %% V
ns Horizontal 22 Vertical n blocks é VEM blocks
VSM slices VSM slices
@ ® ©

Flgl_u re 3. (a) The horizontal slices of avirtual submesh.
(b) Thevertica dicesof avirtua submesh. (c) Theintersec-
tions of these 4 horizontal slicesand 2 vertical slicesform 8
VSM blocks. The 16 blocks of the faulty mesh are mapped
onto the 8 VSM blocks.

respectively) to the rightmost column (or bottom row, re-
spectively) of the faulty mesh. Then the intersections of

my = n—o(+/n) horizontal pathsand themiddlem, =n/2+
o(y/n) vertical paths form a virtual submesh. For simplic-
ity of algorithm description, we assume that n?/2 is even.
Then we partition the virtual submeshesinto n/2 horizontal
VM dlices and also into n'/3/2 vertical VSM dlices. There

are n?/3/2 VM blocks, each located at the intersections of
ahorizontal VSM dlice and avertical VSM dlice. Figure 3
illustrates a virtual submesh with 4 horizontal slices, 2 ver-
tical slices, and 8 VSM blocks. We have to properly select
my; and my, so that each of the VSM blocks contains at |east

n*3 nodes. Since there are no more than o(,/n) faulty pro-
cessors, the existence of such virtual submeshesis guaran-

teed. We call each of the n?/3 n?/3-by-n?/3 submeshesof the
faulty mesh ablock. Then we can map the faulty mesh onto
the virtual submesh by mapping two neighboring blocks of
the faulty mesh onto acorresponding VSM block. Figure 3c
shows such a mapping from the faulty mesh with 16 blocks
to avirtual submesh with 8 VSM blocks.

_ Thenumber of items per processor of thevirtual submesh
isat most a= 2 (for 1-1 sorting on such afaulty mesh). We
call dataitemsfrom blocks1, 3, 5, ... thefirst layer of data,
and data items from blocks 2, 4, 6, ... the second layer of

data. A block is crossed by at least n?/3 — O(f) horizon-
tal pathsand vertical paths. The segment of a horizontal Eor
v_erncal%path withinablock is called avirtual block-row (or
virtual block-column, respectively).

Note that we assume that n isthe third power of an even
number only for thesimplicity of algorithmdescription. The
algorithms presented in this section can be easily extended
to more general ny x N, meshes. Figure4aillustrates an 8 x
8 block and its virtual E)I ock-columns; figuredb illustrates a
7% 10V SM block which contains 3 faulty processorswithin
itsboundary. Two 8 x 8 blocks can be mapped ontoa 7 x 10
VSM block with load factor a = 2. Note that in an nx n
mesh with o(+/n) faults, there is usually no more than one
fault within the boundary of a VSM block, and fewer than

one VSM block out of Q(n'/®) VSM blocks on the average
containsfaultsin it.

3.2. Dataredistribution (DR)

In this subsection, we introduce an asymptotically op-
timal algorithm for performing data redistribution, which
moves data from health)(1 and connected processors, each
having one dataitem, to the corresponding processorsin the
virtual submesh.

The algorithm DR for dataredistribution is comprised of
4 phases:

a VSM block

@ (b)

Figure 4. (a) An 8 x 8 block which contains 2 faulty pro-
cessors within its boundary. The thick gray lines represent
virtual block-columns. (b) A 7 x 10 VSM block which con-
tains 3 faulty processorswithin itsboundary. Thethick dark
lines represent virtual rows; the thick gray lines represent
virtual columns; the shaded circles represent VSM nodes.

Data Redistribution (DR):

e Phase 1: In each block, all data items are routed to a
nearby virtual block-row.

e Phase2: In each block, all data items are spread ap-
proximately evenly along the virtual block-row onto
processors at the intersections of virtual block-rows
and virtual block-columns.

e Phase 3: Each dataitem is sent alongi]the vertical path
(towhichit currently belongs) to thehorizontal path to
which the dataitem will belong in the virtual submesh.

e Phase 4: Each data item is sent alon%the horizontal
path (to whichit currently belongs) to the desired posi-
tion in the virtual submesh.

Phase 1 can be done by first routing each data item to
one of the virtual block-rows/columns that surround the
item, and then routing it along the virtual block-columns (if
nee_dgc:? to a nearby virtual block-row within its block. The
desired | ocation for each dataitem at the end of Phase 2 can
be determined by performing prefix computationin each vir-
tual block-row, which is a precalculation step and requires

only O(n?/3) time,

Theorem 3.1 Data redistribution from an n x n mesh with
o(y/n) faulty processors onto an appropriate virtual sub-
mesh can be performed in n/4 + o(n) steps.

By reversing the process of algorithm DR, data redistri-
bution from a virtual submesh to al healthy processors can

be donein the sametimen/4+ o(n).
3.3. Robust sorting algorithms on faulty meshes

In this subsection, we show that 1-1 sorting can be per-
formed in 2.5n+ o(n) communication steps and 2n+ o(n)
comparison steps on an n x n mesh that has an arbitrary pat-
ternsof o(,/n) faults.

The proposed robust sorting algorithm uses the RACE
scheme, which redistributesthe dataitemsto the virtual sub-
mesh, then emulates a 2-2 mesh sorting algorithm in block-
wise snakelike order on the virtual submesh, and finally re-
distributesthe sorted items back to healthy processors. [f we
emulate the sorting algorithm proposedin [6], thedataitems
will be sorted by our robust sorting algorithm according to

f——— N3 Blocks —)
1|64| 2|63| 3|62 4|61
8|57| 7|58| 6 59| 5|60
9[56|10(55(11|54 12| 53
16/ 49| 15| 50| 14|51 13 | 52
17| 48[18| 47| 19| 46| 20|45
24| 41| 23| 42| 22| 43| 21| 44

25(40(26 (39| 27| 38| 28|37

32|33|31|34|30|35/ 29|36

—

@l

S

syoo|g

Figure 5. The folded odd/even snake (FOE-snake) order
of the blocks of a faulty mesh. Blocks with ascending and
descending orders are interleaved, leading to afolded snake
with interleaved blocks.

aspecial ordering, called the folded odd/even snake (FOE-
snake) order in this paper, where blocks areindexed along a
folded blockwise snake that contains odd-numbered blocks
in the forward direction interleaved with even-numbered
blockson the return portion of the snake (Fig. 5). More pre-
cisely, nodes in blocks 1,3,5,...,nY/3 — 1, blocks 2n%/3 —
1,2n%/3 -3 2n'/3_5 .. n%34+1, blocks2n'/3 4 1,2n%/3 4
3,2nY/3 4+ 5 ... 2nt/3 — 1, .., and blocks n?/3 — 1,n?/3 —
3,n3—5,... .n?3—n'3 41 are indexed in standard row-
major snake order, followed by nodesin blocksn?/3 —n1/3+
2,n%/3 —nY/3 4 4?3 —nl/3 +6,...,n%/3, blocks n?/3 —
n/3n2/3_nl/3_2 3 _nl3_4, . . n?P-2n34y2 ..,
and blocksn!/3 nt/3—2 n¥/3_4, .. 2indexedin backward
row-major snake order. Note that we can use any ordering
for nodes within the blocks, leading to different subclasses
of the FOE-snake order. Figure 5 illustrates the FOE-snake
order in amesh with 64 blocks.

Stages 1 and 3 of the RACE scheme can be performed
using algorithm DR and its inverse process, which collec-

tively require n/2+ o(n) communication steps. Since 2-2
sorting can be performed using n; + 2n, + o(ny + ny) com-
munication steps and 2n; 4+ o(n;) comparison steps on an
Ny, x n, mesh [6] and this algorithm can be emulated on an
(n—o0(+/N)) x (n/2+4 0o(n)) virtual submesh with afactor of
1+ o(1) slowdown, Stage 2 of the RACE scheme requires
2n+ o(n) communication and comparison steps, leading to
the following theorem.

Theorem 3.2 1-1 sorting (1 key per healthy and connected
processor) on an n x n bidirectional mesh that has an arbi-

trary pattern of o(1/n) faulty processors can be performed
in 2.5n+ o(n) communication steps and 2n+ o(n) compar-
ison steps (excluding precal culation time).

Proof: We can obtain such a robust sorting algorithm by
emulating 2-2 sorting algorithms that require 2.5n + o(n)
communication steps and 2n + o(n) comparison steps on
(n—o(n)) x (n/2+ o(n)) fault-free meshes. By plugging
the sorting slgorithm proposed in [6] (as Phases 2 through
7) into the RACE scheme, we can obtain the following ro-
bust sorting algorithm.

FOE-Snake Sorting:

e Phasel: Redistribute data items from each of the

thy and connected processors in the faulty mesh

to the virtual submesh using algorithm DR. Pad each

VSM node that has fewer than 2 data items with o as
its “ dummy element(s)”.

e Phase 2: Sort al theVSM blocksin paralel using CET.

e Phase 3: Partition each of the horizontal VSM dlices

into n'/3 smaller horizontal slices, and perform row-to-
column mapping [6] in each of them using SET.

e Phase4: Sort each of the vertical VSM dlices into
l[ayer-Tast ordering [6] using CET.

e Phase5: Perform row-to-column mapping in each of
the horizontal VSM dicesusing SET.

e Phase6: Sort al neighboring VSM blocks 2 and 3,
VSM blocks4 and5, VSM blocks6and 7, ..., and VSM

blocks n?/3 — 2 and n%/3 — 1 using CET according to
layer-last blockwise snake-like order [6].

e Phase7: Sort all neighboring VSM blocks 1 and 2,
VSM blocks3and 4, VSM blocks5and, ..., and VSM

blocksn?/3 — 1 and n?/3 using CET according to layer-
last blockwise snake-like order.

e Phase 8: Movethe sorted items back to the V SM nodes
that held data items, rather than dummy element(s),
upon the completion of Phase 1.

e Phase 9: Redistribute each of the data items from the
virtual submesh to the appropriate healthy processor in
the faulty mesh using the inverse of algorithm DR.

Phases 2 through 7 sort the data items on the VSM ac-
cording to layer-last blockwise snake-like order [IES]. We re-
fer thereader to [6] for the details of the algorithm and its
proof of correctness. We can see that Phases 8 and 9 pre-
serve the order of the sorted data according to the FOE-
snake order. Therefore, following the proof for the sorting
a gorithntw proposed in [6], we can show that FOE-snake sort
iscorrect.

From Theorem 3.1, Phases 1 and 9 can be performed in
n/2+ o(n) communication steps collectively. To perform2-
2 sortingonal VSM blocksfor Phase 2 or VSM block-pairs
for Phases6 and 7 in parallel, each VSM block or block-pair
can be sorted by emulating shearsort onit. These phasesre-
quire O(n?/3logn) time based on CET Row Sort. Phases
3 and 5 (row-to-column mapping) consist of some routing
steps and can each be performed using n/2 + o(n) commu-
nication stepsin afault-freemesh. Sincethewidth of thevir-
tual submeshisn/2+-o(n) hops, Phases 3 and 5 can beemu-
lated inthevirtual submesh using SET with aslowdownfac-
tor of 1+ 0(1), for atotal of n+ o(n) communication steps.
Phase 4 can be performed by using the robust sorting algo-
rithm proposed in[11, 13], which requiresn+ o(n) commu-
nication steps and 2n + o(n) comparison steps.

Note that we can select m; and m, so that a VSM block
hasn*/3/2+0(n?/3) VSM nodes. Therefore, upon the com-

pletion of Phase 7, there are at most O(n*/3) dummy ele-
ments*“c” |ocated at the second layer of thefirst O(1) VSM
blocks. In order for Phase 9 (inverse of algorithm DR) to
work, we have to move the dataitems in sorted order to the
processors that originally had dataitems (upon the comple-
tion of Phase 1). We first compute the number of dummy
elements at each VSM block after Phase 1 of the algorithm,
and then compute the position for Phase 9 for each sorted
item. This can be donein a precal culation step using semi-
group and prefix computations on the VSM, which require

O(n) time. Since these data items are at most O(n%3) hops
away from their positionsfor Phase 9, Phase 8 can be easily

performed using O(n?/3) communication steps.

The execution time for FOE-snake sort is dominated by
Phases 1, 3, 4, 5, and 9, which collectively require 2.5n+
o(n) communication steps and 2n + o(n) comparison steps
O

_Surprisingly, thisrunning time has exactly the same |ead-
ing constant as the fastest 1-1 sorting agorithm reported in
the literature for n x n fault-freem &616, 7]. Itisthe best
result reported thus far for sorting on faulty meshesfor any
ranking order.)

We can generalize algorithm FOE-snake sort for meshes

with f faults. Thetimerequiredfor sortingonannx nmesh
with f faultsisO(n+ f2), where f < (1—¢€)nfor any fixed
€ > 0. The extra O(f2) communication steps are required
by algorithms DR for worst-case fault patterns. We can also
extend the sorting algorithmto robust h-h sortingwithh > 1,
by emulating a-a sorting on an appropriate VSM, whereais
equal to h+ 1 when f isnot very large.

4. The M esh Robustness Theorem

A variant of the RACE scheme, where dataitems arein-
put/output to/from VSM nodes, can be applied to various
other problems to derive efficient robust algorithms, as in-
dicated by the following theorem.

Theorem 4.1 (Mesh Robustness Theorem))

If an algorithm for a mesh performs S consecutive routing
and computation steps along the same dimension on the av-
erage, and there exists an my x My x --- x My virtual sub-

mesh whose width overhead is o(S), then the slowdown fac-
tor for performing the algorithmon a virtual submesh of the
faulty meshis1+ 0o(1) relativetoafault-freemy x mp x - - - x
my mesh.

Whenthereare f = o(n) faults, it isguaranteed that avir-
tual submesh with comparablesize and width overhead o(n)
exists, leading to the following corollary.

Corollary 4.2 If an algorithm for a mesh performs S con-

secutive routing and computation steps along the same di-
mension on theaverage, and there are f faulty processorsin
anng x Ny x ---ng mesh, f =o(S) and f = o(ngn), thenthe
slowdown factor for performing the algorithm on a virtual
submesh of thefaulty meshis 1+ o(1) relativeto a fault-free
(N1 = 0(Nmin)) % (N2 = 0(Nmin)) X -+ (Ng — O(Nmin)) Mesh,
where npin = min(ng, Ny, ..., Ng).

A wide variety of algorithms have S= O(n), and thus
can run with a dlowdown factor 1+ o(1) when the number
of fault is o(n). This mesh robustness theorem can be ap-
plied to N-node meshes with o(N) random faults (or for p-
faulty meshes [5] with p = o(1)) with high probability. A
congestion-free virtual subarray (virtual submesh or virtual
subtorus) is a virtual subarray embedded in a faulty array
with congestion 1. It is guaranteed that an (n; — 0(Npin)) X
(nz — 0(Nmin)) X -+-(ng — 0(Nin)) congestion-free virtual
subarray with width overhead o(nyn) existsinanng x ny x
-+ X Ng array with o(ngin) faults. Many important commu-
nication algorithms can be executed on congestion-freevir-
tual subarrays with a factor of 1+ o(1) slowdown relative
%otafault-free array. The detailswill be reported in the near

uture.

Conventional wisdom is that low-degree networks are
less robust than high-degree networks. But our results in-
dicate that low-dimensional meshes and tori are very ro-
bust in that an array with a large number of faulty proces-
sors and links has, for a large variety of problems, com-
putation and communication powers similar to those of a

fault-free array. For example, an N-node 2-D mesh with

NY/3 faults can execute many agorithms almost as fast as a
dightly smaller fault-free mesh. Dally [4] and Agarwal [1]
have snown that lower-dimensional networks achieve bet-
ter performance than high-dimensional networks under var-
ious constraints, such as constant bisection bandwidth, fixed
channel width, and fixed node size. Our robustness results
for meshes and tori, combined with their previously estab-
lished cost/performance benefits [1, 4], make the case for
low-dimensional architectures even stronger.

5. Conclusion

In this pa¥t_)e_r, we have proposed the RACE scheme for
designing efficient robust algorithms, and the fastest algo-
rithms for sorting on faulty meshes. We showed that sort-
ing on an n x n mesh that has o(+/n) faulty processors can
be performed in 2.5n + o(n) communication steps and 2n+
o(n) comparison steps, which has the sameleading constant
as the best sorting algorithm for fault-free meshes. We also
formulated the mesh robustness theorem, which extendsthe
techniques and algorithms used in this paper to a variety of
other important problems to obtain low-overhead robust al-
gorithmsfor faulty meshes.

References

[1] Agarwal, A., “Limits on interconnection network perfor-
mance,” |EEE Trans. Parallel Distrib. Sys., Val. 2, no. 4, Oct.
1991, pp. 398-412.

[2] Bruck, J., R. Cypher, and C. Ho, “Fault-tolerant meshes and
hypercubes with minimal numbers of spares,” IEEE Trans.
Comput., vol. 42, no. 9, Sep. 1993, pp. 1089-1104.

[3] Cole, R., B. Maggs, and R. Sitaraman, “Multi-scale self-
simulation: atechnique for reconfiguring arrays with faults,”
ACM Symp. Theory of Computing, 1993, pp. 561-572.

[4] Dally, W.J., “Performance analysis of k-ary n-cube intercon-
nection networks,” |EEE Trans. Comput., Vol. 39, no. 6, Jun.
1990, pp. 775-785.

[5] Kaklamanis, C., A.R. Karlin, FT. Leighton, V. Milenkovic,
P. Eaghavan, S. Rao, C. Thomborson, and A. Tsantilas,
“Asymptotically tight bounds for computing with faulty ar-
rays of processors,” Proc. Symp. Foundations of Computer
Science, vol. 1, 1990, pp. 285-296.

[6] Kunde, M., “Concentrated regular data streams on grids:
sorting and routing near to the bisection bound,” Proc. .
on Foundations of Computer Science, 1991, pp. 141-150.

[7] Nigam, M. and S. Sahni, “Sorting n? numbers on n x n
meshes,” |EEE Trans. Parallel Distrib. Sys., vol. 6, no. 12,
Dec. 1995, pp. 1221-1225.

[8] Parhami, B. and C.-Y. Hun%], “Robust shearsort on incom-
plete bypass meshes,” Proc. Int’| Parallel Processing Symp.,
1995, pp 304-311.

[9] Parhami, B. and C.-H. Yeh, “The robust-algorithm approach
to fault tolerance on processor arrays. fault models, fault di-
ameter, and basic algorithms,” Proc. First Merged Interna-
tional Parallel Processing Symposium and Symp. Parallel
and Distributed Processing, Apr. 1998, pp. 742-746.

[10] Parhami, B., Introduction to Parallel Processing: Algorithms
and Architectures, Plenum Press, 1999.

[11] Yeh, C.-H. and B. Parhami, “Optimal sorting algorithms on
incomplete meshes with arbitrary fault patterns,” Proc. Int’|
Conf. Parallel Processing, Aug. 1997, pp. 4-11.

[12] Yeh, C.-H., “Efficient low-degree interconnection networks
for parallel processing: topologies, agorithms, VLS lay-
outs, and fault tolerance,” Ph.D. dissertation, Dept. Electrical
& Computer Engineering, Univ. of California, SantaBarbara,
Mar. 1998.

[13] Yeh, C.-H. and B. Parhami, “Efficient sorting algorithms on
incomplete meshes,” J. Parallel Distrib. Comput., to appear.

