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Abstract
We propose the recursive grid layout scheme for deriv-

ing efficient layouts of a variety of hierarchical networks
and computing upper bounds on the VLSI area of general
hierarchical networks. In particular, we construct optimal
VLSI layouts for butterfly networks, generalized hypercubes,
and star graphs that have areas within a factor of 1+ o(1)
from their lower bounds. We also derive efficient layouts
for a number of other important networks, such as cube-
connected cycles (CCC) and hypernets, which are the best
results reported for these networks thus far.

1. Introduction
The layout of interconnection networks has important

cost and performance implications. It is self-evident that a
more compact layout leads to lower cost, since reducing the
per-processor layout area directly translates to fewer chips,
boards, and assemblies. Smaller physical size also leads to
shorter wires, thereby improving the signal propagation de-
lay and power requirements. Thus, the impact of efficient
VLSI layout on cost-performance is amplified by the lower
cost and higher performance. Efficient layouts for several
interconnection networks can be found in [5, 8, 15, 18, 23].

We propose the recursive grid layout scheme for effi-
cient VLSI layout of hierarchical networks. The proposed
scheme is generally applicable to a very wide variety of
interconnection networks. Based on this scheme, we de-
rive upper bounds on the VLSI areas of general hierarchi-
cal networks. We also derive layouts of butterfly networks
[16], generalized hypercubes [4, 12], hierarchical cubic
networks (HCNs) [9], hierarchical folded-hypercube net-
works (HFNs) [7], transposition networks [14], hierarchical
swapped networks (HSNs) [22, 23], and indirect swapped
networks (ISNs) [21], which have areas optimal within a
factor of 1 + o(1). Moreover, we present efficient lay-
outs for cube-connected cycles (CCC) [17], folded hyper-
cubes [1], hypernets [11], pancake graphs [2], bubble-sort
graphs [2], reduced hypercubes [27], recursively connected
complete (RCC) networks [10], hierarchical hypercube net-
works (HHNs) [26], star-connected cycles (SCC) [13], re-
cursive hierarchical swapped networks (RHSNs) [22], and
enhanced cubes [20], which are the best results reported for
these networks thus far.

2. The recursive grid layout scheme
In this section, we present a generally applicable scheme

for laying out hierarchical networks. We use the extended
grid model, which is an extended version [8, 18, 23] of
Thompson’s grid model [19], for the VLSI layout of net-
works with arbitrary node degree. In this model, a network

is viewed as a graph whose nodes correspond to processing
elements and edges correspond to wires. The graph is then
embedded in a 2-D grid, where wires have unit width and
a node of degree d occupies a square of side d. The wires
can run either horizontally or vertically along grid lines. The
area of a layout is the area of the smallest rectangle that con-
tains all the nodes and wires. When there are two layers of
wires, it is guaranteed that we can lay out the network within
that area.

2.1. Describing the layout scheme
Suppose we are given a degree-d network that is viewed

as having l levels of hierarchy. Each link of a node is as-
signed a distinct label i, which is called the dimension of the
link. We assume that the network can be partitioned into
Ml disjoint subgraphs, each of which has (at most) Nl nodes
and is called a level-l cluster so that every dimension-i link,
i� d� pl, is confined within a level-l cluster. Moreover, we
assume that for h = l; l�1; l�2; :::;3, a level-h cluster can
be partitioned into Mh�1 level-(h�1) clusters, each having
(at most) Nh�1 nodes, so that every dimension-i link, i� d�
∑l

j=h p j , is confined within a level-(h� 1) cluster. Level-2
clusters are the basic building modules of the network and
are called nuclei in this paper. For example, a d-dimensional
hypercube, or d-cube, is a d-level hierarchical network with
pi = 1, Mi = 2, and Ni = 2i�1 for i = 2;3;4; :::;d, whose
nucleus consists of two connected nodes (i.e. a 1-cube). A
(d+1)-dimensional star graph, or (d+1)-star, is another d-
level hierarchical network with pi = 1, Mi = i+1, and Ni =
i! for i = 2;3;4; :::;d, whose nucleus consists of two con-
nected nodes (i.e. a 2-star). A d-dimensional hypercube can
also be viewed as a dd=2e-level hierarchical network with
pi = 2 and Mi = 4 for i = 2;3;4; :::;dd=2e, whose nucleus is
a 1-cube when d is odd and is a 2-cube otherwise. In general,
an l-level hierarchical network can be characterized (not in a
unique way) by the set of integers fpi;Mi;Nig; i= 2;3; : : : ; l,
and its nucleus.

To lay out an l-level hierarchical network, we first place
nodes belonging to the same level-l cluster within a block,
which we call a level-l block. We arrange the blocks as a
2-D grid, with neighboring rows (or columns) separated by
sufficient horizontal tracks (or vertical tracks, respectively)
(see Fig. 1). We then lay out dimension-i links, i = d;d�
1; :::;d� pl + 1, which are collectively called level-l inter-
cluster links, outside the blocks. Note that we will eventu-
ally connect each of the level-l inter-cluster links incident
to a level-l block to a certain node within the block. We can
then continue to lay out each level-l cluster, including the
Ml�1 level-(l�1) blocks within it and the links connecting
these level-(h�1) blocks, within a level-l block. This pro-
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Figure 1. Top-view of a layout based on the
recursive grid layout scheme. Level-l blocks
are arranged as a 2-D grid.

cess is repeated recursively until each block contains a nu-
cleus, or until the number of nodes within a block to be laid
out is small. Then we use any viable method to lay out all
the nuclei or small clusters.

Note that we can use a block of side plNl to accommo-
date the wires connecting level-l inter-cluster links to nodes
within the block. However, we may need extra space to
accommodate intra-cluster links connecting nodes within a
level-l cluster. This can be easily done by expanding the
blocks to the required size. All the blocks remain aligned as
a 2-D grid and all the tracks outside level-l blocks are moved
accordingly. Except for the increased width and height for
these blocks, the numbers of vertical and horizontal tracks
required outside these blocks are not changed. Similarly,
we can use blocks of side ∑l

j=h p jNh to accommodate the
wires from outside a level-h block, h = l�1; l�2; : : : ;3, be-
fore laying out the links within the block. If such a square
is not large enough to accommodate the wires from outside
the block, the level-(h� 1) blocks within it, and the links
connecting these level-(h�1) blocks, we simply expand the
level-h blocks and maybe the blocks of level h+ 1, h + 2,
and so on, to which they belong, if necessary. Sometimes we
may lay out a level-h cluster and connect its nodes to inter-
cluster links within an area smaller than that of the original
block. In such a case, we simply shrink these blocks and
keep them aligned as a 2-D grid (see Fig. 1).

This top-down layout method is quite simple, and can
lead to the best layout areas for a variety of networks, such as
butterfly, CCC, star graphs, generalized hypercubes, hyper-
nets, HCNs, and transposition networks. As shown in [23],
many of the resulting layouts are optimal within a factor of
1+o(1).

2.2. Deriving area upper bounds for general hier-
archical networks

In this subsection, we derive upper bounds on the VLSI
areas of general hierarchical networks based on the recur-
sive grid layout scheme.

Lemma 2.1 An N-node network can be laid out in a square
of side at most plN=2+Sld

p
Mle, where pl is the maximum

number of top-level inter-cluster links per node, Sl is the side
required for a top-level block, and Ml is the number of top-
level clusters in the network.

Proof: To lay out a link, we need at most one vertical and
one horizontal track, in addition to the two ending segments
connecting the link to (at most) two level-l blocks. Since
there are at most N=2 links of dimension i for each i 2 [d�
pl +1;d], where d is the degree of the network, we need at
most plN=2 vertical and horizontal tracks to accommodate
all the level-l inter-cluster links. If we arrange the level-l
blocks as a square 2-D grid, the increased width or height
required to accommodate these blocks is Sld

p
Mle and the

result follows. 2

From Lemma 2.1, it can be seen that the area required for
laying out the top-level inter-cluster links is approximately
proportional to the square of the number of nodes in the net-
work, when the proposed recursive layout scheme is used.
If each cluster at the same level has the same size, which is
the usual case for hierarchical networks, then we can obtain
the following theorems.

Theorem 2.2 An N-node hierarchical network can be laid
out in O(N2) area if the number of level-i inter-cluster links
pi = O(1) for all i and the area required for all the nuclei is
O(N2).

Proof: If all clusters at the same level have the same size,
then the size of a cluster is no more than 1/4 of that of a clus-
ter that is two levels higher. Therefore, we can view the net-
work as having l levels of hierarchy with pi = O(1), Mi � 4,
and Ni=Ni+1 � 1=4, by merging two levels when necessary.
The overall increase in width or height required for the ex-
pansion of the blocks in order to accommodate the level-i
inter-cluster links, i = 2;3; :::; l�1, is

O

 
l�1

∑
i=2

Ni+1

l

∏
j=i+1

dpMje
!

= O(N):

Thus, the overall width or height is O(N) from Lemma 2.1
and the area is O(N2). 2

When the top-level clusters of a hierarchical network are
not large, the upper bound on its area can be improved.

Theorem 2.3 An N-node l-level hierarchical network can
be laid out in N2=4+ o(N2) area, if pl = 1, pi = O(1) for
all i � l�1, Ml is not a constant, and the area required for
all the nuclei is o(N2).

Proof: Similar to the proof of Theorem 2.2, the increase in
width or height required for inter-cluster links at all levels i,
i = 2;3; :::; l� 1, is O(Nl) = o(N). Thus, the overall width
or height is N=2 + o(N) from Lemma 2.1, and the area is
N2=4+o(N2). 2

As can be seen from the previous proofs, the recursive
layout scheme allows us to derive tight layouts for many hi-
erarchical networks easily by focusing on the layout of the
top-level inter-cluster links. We present some examples in
the following section.



3. Efficient layouts for several networks
3.1. Layouts for certain Cayley graphs

In this subsection we present efficient layouts for several
Cayley graphs [2], including star, pancake, and bubble-sort
graphs [2], star-connected cycles (SCC) [13], and transposi-
tion networks [14].

Theorem 3.1 An N-node star graph, pancake graph, or
bubble-sort graph can be laid out in N2=16+ o(N2) area.

Proof: An n-star contains n disjoint (n� 1)-stars as sub-
graphs, each pair of which are connected by (n� 2)! links.
If we view each (n�1)-star subgraph as a supernode, the n-
star becomes a complete graph with n supernodes and mul-
tiple edges. Therefore, all the dimension-n links can be laid
out based on the layout of an n-node complete graph Kn with
(n� 2)! edges between each pair of nodes. In [23, 24] we
have shown that the 2-D layout for a Kn with 2 edges be-
tween each pair of nodes requires n4=4+ o(n4) area. Sim-
ilarly, a Kn with (n� 2)! edges between each pair of nodes
can be laid out in

(n2(n�2)!)2=16+o(n2(n�2)!)2 = N2=16+o(N2)

area, where N = n!. This can be easily done be expanding
each side-(2n�2) node in a directed Kn into a side-(n�1)!
node and replicating each link into (n� 2)!=2 links. When
we continue to lay out level-(n�1) clusters, which are (n�
1)-stars, the level-l blocks may need to be expanded. The
maximum height or width increase due to such expansion is
no more than O(N=

p
n). As a result, the layout area for an

n-star is N2=16+o(N2).
An n-dimensional pancake graph (or bubble-sort graph)

also has n pancake graphs (or bubble-sort graphs) of dimen-
sion n� 1 as subgraphs, each pair of which are connected
by (n� 2)! links. Therefore, they can be laid out using the
preceding method, and the required area is asymptotically
identical to that of an n-star. 2

The layout area upper bounds for the star graph and pan-
cake graph, given in Theorem 3.1, are 72 times smaller than
the ones in [18]. By using the following lemma and theorem
[23], we can show that the preceding area for the star graph
is optimal within a factor of 1+o(1).

Lemma 3.2 d TE tasks can be executed in (N�1)Dave com-
munication time in a vertex- and edge-symmetric network
under the all-port communication model, where d is the de-
gree of the network, Dave is the average distance of the net-
work, and N is the size of the network.

Lemma 3.2 leads to the following universal lower bound
on the VLSI area of any vertex- and edge-symmetric net-
work.

Theorem 3.3
The VLSI area of a vertex- and edge-symmetric network is
at least

d2bN=2c2�dN=2e2

D2
ave(N�1)2 � d2N2

16D2
ave

;

where d is the degree of the network, Dave is the average dis-
tance of the network, and N is the size of the network.

An SCC can be viewed as a 2-level hierarchical network
with p2 = 1, M2 = n!, and N2 = (n� 1), whose nucleus
is an (n� 1)-node ring. The layout of the SCC can be ob-
tained by expanding each node in the layout of an n-star into
a block containing an (n� 1)-node ring, leading to the fol-
lowing theorem.

Theorem 3.4 An N-node SCC can be laid out in area

N2(log2 log2 N)2

16 log2
2 N

+o

�
N2(loglogN)2

log2 N

�
:

An n-dimensional transposition network can be viewed
as an (n� 1)-level hierarchical network with pi = i, Mi =
i+1, and Ni = i! for i = 2;3;4; :::;n, whose nucleus consists
of two connected nodes. An n-dimensional transposition
network has n transposition networks of dimension n � 1
as subgraphs, each pair of which are connected by (n� 1)!
links and can be laid out using a method similar to that for an
n-star by replicating a wire connecting i-star supernodes in
the layout i times, i= 3;4; : : : ;n�1, leading to the following
theorem.

Theorem 3.5 An N-node transposition network can be laid
out in area

N2 log2
2 N

16(log2 log2 N)2 +o

�
N2 log2 N
(loglogN)2

�
:

This layout for transposition network is optimal within a
factor of 1+o(1) from the lower bound given in [23].

3.2. Layouts for generalized hypercubes and related
networks

In this subsection we present efficient layouts for several
networks that are recursively constructed by connecting the
clusters as generalized hypercubes [4, 12].

If we view each level-l cluster of an l-level hierar-
chical swapped network, HSN(l;G), as a supernode, the
HSN(l;G) becomes a complete graph with M supernodes
and N=M2 edges connecting each pair of supernodes, where
M is the size of its nucleus G. Similar to the proofs for The-
orems 3.1 and 3.5, we can show that if the top-level clusters
are connected as a complete graph with single or multiple
edges and there are at most pl inter-cluster link(s) per node
(where pl = 1 for HSNs), the top-level inter-cluster links can
be laid out in p2

l N2=16+o(p2
l N2) area. This leads to the fol-

lowing theorems.

Theorem 3.6 An N-node HSN(l;G) can be laid out using
N2=16+o(N2) area if

(a) l = 2 and the nucleus G can be laid out in a square

of side o(M
3
2 ), or

(b) l = 3 and the nucleus G can be laid out in a square
of side o(M2), or

(c) l � 4;

assuming that M, the size of a nucleus G, is not a constant.



The layouts for HSNs are optimal within a factor of 1+
o(1) from the lower bound given in [23, 25] if the nucleus G
is dense enough (i.e., the nucleus G can execute l TE tasks
in M steps under the all-port communication model [23]).

A hierarchical hypercube network (HHN) [26] is an HSN
whose nucleus is a hypercube. A hierarchical cubic network
(HCN) [9] without diameter links (or a hierarchical folded-
hypercube network (HFN) [7]) is a 2-level HSN that uses ap

N-node hypercube (or a folded hypercube, respectively)
as the nucleus. Their layout areas are given in the following
corollary.
Corollary 3.7 An N-node HCN, HFN, or HHN can be laid
out using N2=16+o(N2) area.

The layouts for HCNs and HFNs are optimal within a fac-
tor of 1+o(1).

An r-deep recursive hierarchical swapped network
(RHSN) [22] is defined as RHSN(lr; lr�1; :::; l1;G)
= HSN(lr; RHSN(lr�1; lr�2; :::; l1;G)). Clearly, RHSN can
be laid out by recursively laying out HSNs.
Theorem 3.8 An N-node RHSN(lr; lr�1; :::; l1;G) can be
laid out using N2=16 + o(N2) area, assuming that the
depth r is at least 2 and the number of nodes in an
RHSN(lr�1; lr�2; :::; l1;G) is not a constant; in other words,
lr = o(logN).

An l-level recursively connected complete (RCC) graph
[10] is equivalent to an RHSN(2;2; :::;2| {z }

l�1

;G), leading to:

Corollary 3.9 An N-node l-level RCC can be laid out using
N2=16+o(N2) area if
(a) l = 2 and the nucleus can be laid out in a square

of side o(M
3
2 ), or

(b) l � 3;
where M is the size of the nucleus.

By viewing each nucleus of an HSN as a supernode, we
obtain a generalized hypercube with radix-M [4, 12]. There-
fore, the layout of Theorem 3.6 leads to the following theo-
rem for the layout of high-radix hypercubes.
Theorem 3.10 A radix-M generalized hypercube can be
laid out using M2N2=16+o(M2N2) area, assuming that M
is not a constant.

Since a radix-M generalized hypercube is vertex- and
edge-symmetric, we can show that the layout for general-
ized hypercubes is optimal within a factor of 1+o(1) from
Theorem 3.3. The above layout can be easily extended to
mixed-radix generalized hypercubes [4].

Hypernets are constructed by recursively connecting
identical networks using complete graphs [11]. A hypernet
is an l-level hierarchical network with Ml =

p
N=2l�1 and

Nl =
p

N2l�1, whose nucleus is a cubelet, treelet, or buslet.
Theorem 3.11 An l-level hypernet can be laid out using
N2=22l+2+o(N2=22l) area, where N is the number of nodes
in the network.
Proof: The top-level inter-cluster links of an l-level hy-
pernet are connected as a

p
N=2l�1-node complete graph,

which requires N2=22l+2 + o(N2=22l) area. The additional
area required to accommodate all the level-i inter-cluster
links, i = 2;3;4; :::; l� 1, diameter links, and all the nuclei
is of a smaller order of magnitude. 2

3.3. Layouts for some hypercubic networks
Hypercubic networks are among the most important net-

works for parallel processing and have been intensely stud-
ied in the literature [1, 16, 17, 20, 25].

An enhanced-cube is a hypercube that has an additional
outgoing link per node leading to a random node [20]. In
[23, 25] we have shown that an N-node hypercube can be
laid out in 4

9 N2 +o(N2) area, leading to the following theo-
rems.
Theorem 3.12 An N-node folded hypercube can be laid out
in 49

36 N2+o(N2) area and an N-node enhanced-cube can be
laid out in 25

9 N2 +o(N2) area.
Proof: We first lay out an N-node hypercube in a square of
side 2

3 N + o(N). To lay out an additional link, we need at
most a vertical track and a horizontal track, in addition to
the two ending segments connecting the link to two nodes.
Since there are N=2 diameter links in a folded hypercube,
we need at most N=2 extra vertical and horizontal tracks to
accommodate all the diameter links. Therefore, the area for
the layout of a folded hypercube is�

7
6

N+o(N)

�
�
�

7
6

N+o(N)

�
=

49
36

N2 +o(N2):

Since there are N additional links in an enhanced-cube,
we need at most N vertical and horizontal tracks to accom-
modate all the additional links. Therefore, the area for the
layout of an enhanced-cube is 25

9 N2 +o(N2). 2

Note that by arranging these additional links appropri-
ately so that a track may be shared by two or more links, the
areas of the above layouts may be considerably improved.

We can view an n-dimensional CCC as a 2-level hierar-
chical network with p2 = 1 and M2 = 2n, whose nucleus is
an n-node ring. We can lay out all the N=2 inter-cluster links
of an n-dimensional CCC using the layout for an n-cube,
which requires 2n+2=9+o(2n) area [23, 25]. A reduced hy-
percube, RH(log2 n; log2 n) [27], can be obtained by replac-
ing each n-node cycle in a CCC with a log2 n-dimensional
hypercube and can be laid out in asymptotically the same
area.
Theorem 3.13 An N-node CCC or RH(log2 n; log2 n) can
be laid out in area

4N2

9 log2
2 N

+o

�
N2

log2 N

�
:

The area of our layout is smaller than the area of the lay-
out given in [6] by a factor of 1:125 and is within a factor of
1:7̄+o(1) from the lower bound given in [6].

A indirect swapped network (ISN) (also called unfolded
swapped network (USN) [21]) is a multistage network ob-
tained by unfolding the structure of a swapped network [22,
23]. If we place every Ml rows of the ISN into the same top-
level block, then each pair of the blocks are connected by 2
links, where Ml is the number of top-level clusters in the cor-
responding swapped network unfolded to generate the ISN.
Theorem 3.14 An N-node ISN can be laid out in

N2

4 log2
2 N

+o

�
N2

log2 N

�
area, assuming Ml is not a constant.



The previous layout area improves the result given in [21]
by a factor of 4 and is optimal within a factor of 1+ o(1)
from the lower bound given in [23, 25].

Theorem 3.15 An N-node butterfly network can be laid out
in an area equal to

N2

log2
2 N

+o

�
N2

log2 N

�
:

Proof: By unfolding an HSN(2;
log2 N

2 -cube), we obtain a

(log2 N+2)-stage ISN that uses log2 N
2 -dimensional butter-

fly networks as the basic modules. If we double up the links
connecting the middle two stages of the ISN, remove nodes
in the (

log2 N
2 + 2)-th stage, and reconnect each of the repli-

cated links to one of the two links between the ( log2 N
2 +2)-th

and the ( log2 N
2 +3)-th stage through a removed node, we can

obtain an automorphism of an (log2 N)-dimensional butter-
fly. Therefore, the area of the butterfly is approximately 4
times that of an ISN; that is

N2

log2
2 N

+o

�
N2

log2 N

�
:

2

Recently, Avior et al proposed an area-optimal VLSI lay-
out for butterfly networks [3] under Thompson’s grid model
[19], assuming that the width of a network node is equal to 1
(i.e., the same as the width of a wire). The area of the layout

proposed in [3], however, becomes W2N2

log2
2 N

+o
�

W2N2

log2 N

�
when

the width of network nodes is W . As a comparison, our lay-
out is the only butterfly layout reported in the literature that
has area optimal within a factor of 1 + o(1) under the ex-
tended grid model (W = 4).

4. Conclusion
We proposed the recursive grid layout scheme for effi-

cient VLSI layout of hierarchical networks. The proposed
scheme is generally applicable to a very wide variety of net-
works as well as general hierarchical networks. Many of our
layouts are optimal within a factor of 1+o(1); others are the
best results reported in the literature thus far.
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