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Abstract

Wk propose the recursive grid layout scheme for deriv-
ing efficient layouts of a variety of hierarchical networks
and computing upper bounds on the VLS area of general
hierarchical networks. In particular, we construct optimal
VLS layoutsfor butterfly networks, generalized hypercubes,
and star graphs that have areas within a factor of 1+ 0(1)
from their lower bounds. We also derive efficient layouts
for a number of other important networks, such as cube-
connected cycles (CCC) and hypernets, which are the best
results reported for these networks thus far.

1. Introduction

The layout of interconnection networks has important
cost and performance implications. It is self-evident that a
more compact layout leadsto lower cost, since reducing the
per-processor layout area directly trandates to fewer chips,
boards, and assemblies. Smaller physical size also leadsto
shorter wires, thereby improving the signal propagétion de-
lay and power requirements. Thus, the impact of efficient
VLSI layout on cost-performance is amplified by the lower
cost and higher performance. Efficient layouts for several
interconnection networks can be found in [5, 8, 15, 18, 23].

We propose the recursive grid layout scheme for effi-
cient VLSI layout of hierarchical networks. The proposed
scheme is generally applicable to a very wide variety of
interconnection networks. Based on this scheme, we de-
rive upper bounds on the VLSI areas of general hierarchi-
cal networks. We also derive layouts of butterfly networks
[16], generalized hypercubes [4, 12], hierarchical cubic
networks (HCNs) [9], hierarchical folded-hypercube net-
works (HFNS) [7], transposition networks[14], hierarchical
swapped networks (HSNs) [22, 23], and indirect swapped
networks (ISNs) [21], which have areas optimal within a
factor of 1+ o(1). Moreover, we present efficient lay-
outs for cube-connected cycles (CCC) [17], folded hyper-
cubes [1], hypernets [11], pancake graphs [2], bubble-sort
graphs[2], reduced hypercubes[27], recursively connected
complete (RCC) networks[10], hierarchical hypercube net-
works (HHNSs) [26], star-connected cycles (SCC) [13], re-
cursive hierarchical swapped networks (RHSNs) [22], and
enhanced cubes[20], which are the best results reported for
these networksthus far.

2. Therecursive grid layout scheme

In this section, we present agenerally applicable scheme
for laying out hierarchical networks. We use the extended
grid model, which is an extended version [8, 18, 23] of
Thompson's grid model [19], for the VLSI layout of net-
works with arbitrary node degree. In this model, a network

isviewed as a graph whose nodes correspond to processing
elements and edges correspond to wires. The graph is then
embedded in a 2-D grid, where wires have unit width and
a node of degree d occupies a square of side d. The wires
canrun either horizontally or vertically along gridlines. The
areaof alayout isthe areaof the smallest rectangle that con-
tains all the nodes and wires. When there are two layers of
wires, it isguaranteed that we can lay out the network within
that area.

2.1. Describing the layout scheme

Suppose we are given a degree-d network that is viewed
as having | levels of hierarchy. Each link of a node is as-
signed adistinct label i, whichis called the dimension of the
link. We assume that the network can be partitioned into
M, digoint subgraphs, each of which has (at most) N, nodes
and iscalled alevel-l cluster so that every dimension-i link,
i <d-—py,isconfinedwithinalevel-l cluster. Moreover, we
assumethat forh=1,1 —11 -2 ....3, alevel-h cluster can
be partitioned into My,_; level-(h— 1) clusters, each having
(at most) N,_1 nodes, so that every dimension-i link, i <d —
le:h p;j, is confined within alevel-(h— 1) cluster. Level-2
clusters are the basic building modules of the network and
arecalled nuclel in thispaper. For example, ad-dimensional
hypercube, or d-cube, isad-level hierarchical network with
pi=1 M =2 andN = 2-1fori=23,4,...,d, whose
nucleus consists of two connected nodes (i.e. a 1-cube). A
(d+1)-dimensional star graph, or (d + 1)-star, isanother d-
level hierarchical network with pj =1, M; =i+1,andN; =
i! fori =2,3,4,...,d, whose nucleus consists of two con-
nected nodes (i.e. a2-star). A d-dimensional hypercube can
aso be viewed as a [d/2]-level hierarchical network with
pi =2andM; =4fori=2,3,4,...,[d/2], whose nucleusis
al-cubewhendisodd andisa2-cubeotherwise. Ingeneral,
an|-level hierarchical network can becharacterized (notina
uniqueway) by theset of integers{ p;, M, N },i =2,3,... I,
and its nucleus.

To lay out an I-level hierarchical network, we first place
nodes belonging to the same level-l cluster within a block,
which we call alevel-l block. We arrange the blocks as a
2-D grid, with neighboring rows (or columns) separated by
sufficient horizontal tracks (or vertical tracks, respectively)
(see Fig. 1). We then lay out dimension-i links, i = d,d —
1,...,d— p + 1, which are collectively caled level-l inter-
cluster links, outside the blocks. Note that we will eventu-
ally connect each of the level-l inter-cluster links incident
to alevel-l block to acertain node within the block. We can
then continue to lay out each level-I cluster, including the
M,_1 level-(l — 1) blocks within it and the links connecting
these level-(h — 1) blocks, within alevel-I block. This pro-
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Figure 1. Top-view of a layout based on the
recursive grid layout scheme. Level-l blocks
are arranged as a 2-D grid.

cess is repeated recursively until each block contains a nu-
cleus, or until the number of nodes within ablock to belaid
out is small. Then we use any viable method to lay out all
the nuclei or small clusters.

Note that we can use a block of side p/N, to accommo-
date the wires connecting level-I inter-cluster linksto nodes
within the block. However, we may need extra space to
accommodate intra-cluster links connecting nodes within a
level-l cluster. This can be easily done by expanding the
blocksto therequired size. All the blocksremain aligned as
a2-D gridand all thetracksoutsidelevel-I blocksare moved
accordingly. Except for the increased width and height for
these blocks, the numbers of vertical and horizontal tracks
required outside these blocks are not changed. Similarly,
we can use blocks of side Z|j=h p;jNn to accommodate the
wiresfromoutsidealevel-hblock,h=1-1,1 -2,...,3, be-
fore laying out the links within the block. If such a square
is not large enough to accommodate the wires from outside
the block, the level-(h — 1) blocks within it, and the links
connecting theselevel-(h— 1) blocks, we simply expand the
level-h blocks and maybe the blocks of level h+ 1, h+ 2,
and so on, towhichthey belong, if necessary. Sometimeswe
may lay out alevel-h cluster and connect its nodesto inter-
cluster links within an area smaller than that of the original
block. In such a case, we simply shrink these blocks and
keep them aligned asa 2-D grid (see Fig. 1).

This top-down layout method is quite simple, and can
lead to the best layout areasfor avariety of networks, such as
butterfly, CCC, star graphs, generalized hypercubes, hyper-
nets, HCNs, and transposition networks. As shownin [23],
many of the resulting layouts are optimal within a factor of
1+0(1).

2.2. Deriving area upper bounds for general hier-
archical networks

In this subsection, we derive upper bounds on the VLS|
areas of genera hierarchical networks based on the recur-
sive grid layout scheme.

Lemma 2.1 An N-node network can belaid out in a square
of sdeat most piN/2+ S [+/M; ], where p; isthe maximum

number of top-level inter-cluster linksper node, § istheside
required for a top-level block, and M; is the number of top-
level clustersin the network.

Proof: To lay out alink, we need at most one vertical and
one horizonta track, in addition to the two ending segments
connecting the link to (at most) two level-l blocks. Since
there are at most N/2 links of dimensioni for eachi € [d —
pi + 1,d], where d is the degree of the network, we need at
most pN/2 vertical and horizontal tracks to accommodate
all the level-l inter-cluster links. If we arrange the level-|
blocks as a square 2-D grid, the increased width or height
required to accommodate these blocks is § [\/M;] and the
result follows. |

FromLemma2.1, it can be seen that the arearequired for
laying out the top-level inter-cluster linksis approximately
proportional to the square of the number of nodesin the net-
work, when the proposed recursive layout scheme is used.
If each cluster at the same level has the same size, whichiis
the usual case for hierarchical networks, then we can obtain
the following theorems.

Theorem 2.2 An N-node hierarchical network can be laid
out in O(N?) area if the number of level-i inter-cluster links
pi = O(1) for all i and the area required for all thenuclei is

O(N?).

Proof: If al clusters at the same level have the same size,
then the size of acluster isno morethan 1/4 of that of aclus-
ter that istwo levelshigher. Therefore, we can view the net-
work ashaving| levelsof hierarchy with p; = O(1), M; > 4,
and Ni/N; .1 < 1/4, by merging two levels when necessary.
The overall increase in width or height required for the ex-
pansion of the blocks in order to accommodate the level-i
inter-cluster links, i =2,3,...,1 — 1,is

o (:i'\'wy ||_| f\/'\"_ﬂ) =O(N).

j=i+1

Thus, the overall width or height is O(N) from Lemma 2.1
and the areais O(N?). a

When the top-level clusters of a hierarchical network are
not large, the upper bound on its area can be improved.

Theorem 2.3 An N-node |-level hierarchical network can
be laid out in N2 /4 + o(N?) area, if py = 1, pj = O(1) for
alli <I -1, M, isnot a constant, and the area required for
all the nuclei is o(N?).

Proof: Similar to the proof of Theorem 2.2, theincrease in
width or height required for inter-cluster links at all levelsi,

i=2,3,...,1 —1,isO(N;) = o(N). Thus, the overall width
or height is N/2 + o(N) from Lemma 2.1, and the area is
N2/4+ o(N?). O

As can be seen from the previous proofs, the recursive
layout scheme allows usto derivetight layoutsfor many hi-
erarchical networks easily by focusing on the layout of the
top-level inter-cluster links. We present some examplesin
the following section.



3. Efficient layoutsfor several networks
3.1. Layoutsfor certain Cayley graphs

In this subsection we present efficient layoutsfor several
Cayley graphs[2], including star, pancake, and bubble-sort
graphs[2], star-connected cycles (SCC) [13], and transposi-
tion networks [14].

Theorem 3.1 An N-node star graph, pancake graph, or
bubble-sort graph can be laid out in N?/16 4+ o(N?) area.

Proof: An n-star contains n digoint (n — 1)-stars as sub-
graphs, each pair of which are connected by (n— 2)! links.
If we view each (n— 1)-star subgraph as a supernode, the n-
star becomes a complete graph with n supernodes and mul-
tiple edges. Therefore, all the dimension-n links can be laid
out based on the layout of an n-node complete graph K, with
(n—2)! edges between each pair of nodes. In [23, 24] we
have shown that the 2-D layout for a K, with 2 edges be-
tween each pair of nodes requires n*/4 + o(n*) area. Sim-
ilarly, a Kn with (n — 2)! edges between each pair of nodes
can belaid outin

(n?(n—2)1)2/16+ o(n?(n— 2)!)2 = N?/16 + o(N?)
area, where N = n!. This can be easily done be expanding
each side-(2n— 2) nodein adirected K, into aside-(n— 1)!
node and replicating each link into (n— 2)! /2 links. When
we continueto lay out level-(n— 1) clusters, which are (n —
1)-stars, the level-l blocks may need to be expanded. The
maximum height or width increase dueto such expansionis
no more than O(N/+/n). Asaresult, the layout areafor an
n-star isN?/16 + o(N?).

An n-dimensional pancake graph (or bubble-sort graph)
also has n pancake graphs (or bubble-sort graphs) of dimen-
sion n— 1 as subgraphs, each pair of which are connected
by (n—2)! links. Therefore, they can be laid out using the
preceding method, and the required area is asymptotlcally
identical to that of an n-star.

Thelayout area upper boundsfor the star graph and pan-
cake graph, givenin Theorem 3.1, are 72 times smaller than
theonesin[18]. By using thefollowing lemmaand theorem
[23], we can show that the preceding areafor the star graph
is optimal within afactor of 1+ 0(1).

Lemma 3.2 d TEtaskscanbeexecutedin (N — 1) Dgye cCOM
munication time in a vertex- and edge-symmetric network
under the all-port communication model, where d isthe de-
gree of the network, Daye is the average distance of the net-
work, and N is the size of the network.

Lemma 3.2 leadsto the following universal lower bound
on the VLS area of any vertex- and edge-symmetric net-
work.

Theorem 3.3
The VLS area of a vertex- and edge-symmetric network is
atleast 42 |Nj2j2 x [N/2]? N2

nge(N - 1)2 - 16D%ve ’
whered isthe degree of the network, Daye isthe averagedis-
tance of the network, and N is the size of the network.

An SCC can be viewed as a 2-level hierarchical network
with p, = 1, My = nl, and N, = (n— 1), whose nucleus
isan (n— 1)-node ring. The layout of the SCC can be ob-
tained by expanding each nodein the layout of ann-star into
ablock containing an (n— 1)-node ring, leading to the fol-
lowing theorem.

Theorem 3.4 An N-node SCC can belaid out in area

N?(log, log, N)? ‘o <N2(IoglogN)2>
16logsN log?N '

An n-dimensional transposition network can be viewed
asan (n— 1)-level hierarchical network with p; =1, M; =
i+1,andN; =il fori=234,...,n,whosenucleus consists
of two connected nodes. An n-dimensiona transposition
network has n transposition networks of dimensionn— 1
as subgraphs, each pair of which are connected by (n— 1)!
linksand can belaid out usingamethod similar to that for an
n-star by replicating awire connecting i-star supernodesin
thelayoutitimes,i =3,4,...,n—1, leadingto thefollowing
theorem.

Theorem 3.5 An N-nodetransposition network can belaid
outin area

N2logs N N2log?N
16(log, log, N)2 (loglogN)2

Thislayout for transposition network is optimal within a
factor of 1+ o(1) from the lower bound givenin [23].

3.2. Layoutsfor generalized hypercubesand related
networks

In this subsection we present efficient layoutsfor several
networksthat are recursively constructed by connecting the
clusters as generalized hypercubes[4, 12].

If we view each level-l cluster of an |-level hierar-
chical swapped network, HSN(I,G), as a supernode, the
HSN(I,G) becomes a complete graph with M supernodes
and N/M? edges connecting each pair of supernodes, where
M isthesize of itsnucleus G. Similar to the proofsfor The-
orems 3.1 and 3.5, we can show that if thetop-level clusters
are connected as a complete graph with single or multiple
edges and there are at most p; inter-cluster link(s) per node
(where p, = 1for HSNs), thetop-level inter-cluster linkscan
belaid outin p?N?/16+ o p?N?) area. Thisleadstothefol-
lowing theorems.

Theorem 3.6 An N-node HSN(I,G) can be laid out using
N?/16+ o(N?) area if
(a) | =2andthenucleusG canbelaidoutinasquare
ofsjdeo(Mg), or
(b) | =3andthenucleusG canbelaid out in a square
of side o(M?), or
() 1>4,

assuming that M, the size of a nucleus G, is not a constant.



The layouts for HSNs are optimal within a factor of 1+
o(1) fromthelower bound givenin [23, 25] if the nucleusG
is dense enough (i.e., the nucleus G can execute | TE tasks
in M steps under the all-port communication model [23]).

A hierarchical hypercubenetwork (HHN) [26] isan HSN
whosenucleusisahypercube. A hierarchical cubic network
(HCN) [9] without diameter links (or a hierarchical folded-
hypercube network (HFN) [7]) isa2-level HSN that uses a
v/N-node hypercube (or a folded hypercube, respectively)
asthenucleus. Their layout areas are given in thefollowing
corollary.

Corollary 3.7 An N-node HCN, HFN, or HHN can belaid
out using N?/16 + o(N?) area.

Thelayoutsfor HCNsand HFNsare optimal within afac-
tor of 1+ o(1).

An r-deep recursive hierarchical swapped network

(RHSN) [22] is defined as RHSN(l,l;_q,...,11,G)
= HSN(ly, RHSN(l;_1,1;_»,...,17,G)). Clearly, RHSN can
belaid out by recursively laying out HSNs.
Theorem 3.8 An N-node RHSN(l,l,_4,...,11,G) can be
laid out using N?/16 + o(N?) area, assuming that the
depth r is at least 2 and the number of nodes in an
RHSN(l;_q,lr_2,-..,11,G) is not a constant; in other words,
I, = o(logN).

An |-level recursively connected complete (RCC) graph
[10] isequivalent to an RHSN(2,2,...,2,G), leading to:

N——

-1
Corollary 3.9 AnN-nodel-level RCC can belaid out using
N?/16+ o(N?) area if

(a) | =2andthenucleuscan belaid out in a square
ofsideo(M%),or
(b 1>3,

where M is the size of the nucleus.

By viewing each nucleus of an HSN as a supernode, we
obtain ageneralized hypercubewith radix-M [4, 12]. There-
fore, the layout of Theorem 3.6 leads to the following theo-
rem for the layout of high-radix hypercubes.

Theorem 3.10 A radix-M generalized hypercube can be
laid out using M?N?/16 + o(M?N?) area, assuming that M
is not a constant.

Since a radix-M generalized hypercube is vertex- and
edge-symmetric, we can show that the layout for general-
ized hypercubesis optimal within afactor of 1+ o(1) from
Theorem 3.3. The above layout can be easily extended to
mixed-radix generalized hypercubes[4].

Hypernets are constructed by recursively connecting
identical networks using complete graphs[11]. A hypernet
isan |-level hierarchical network with M; = \/N/2/-1 and
N, = vN2' -1, whose nucleusis a cubelet, treelet, or buslet.
Theorem 3.11 An I-level hypernet can be laid out using
N2/22+2 1 o(N?/2?') area, where N isthe number of nodes
in the network.

Proof: The top-level inter-cluster links of an I-level hy-
pernet are connected as a y/N/2'~1-node complete graph,
which requires N2/22+2 4 o(N?/2?') area. The additional
area required to accommodate all the level-i inter-cluster
links, i = 2,3,4,...,1 — 1, diameter links, and all the nuclei
is of asmaller order of magnitude. a

3.3. Layoutsfor some hypercubic networks

Hypercubic networks are among the most important net-
worksfor parallel processing and have been intensely stud-
iedin theliterature[1, 16, 17, 20, 25].

An enhanced-cubeis a hypercube that has an additional
outgoing link per node leading to a random node [20]. In
[23, 25] we have shown that an N-node hypercube can be
laid out in §N2 + 0(N?) area, leading to the following theo-
rems.

Theorem 3.12 An N-nodefolded hypercube can belaid out

in 32N2+ o(N2) areaand an N-node enhanced-cube can be

laid out in 2N2 + o(N?) area.

Proof: We first lay out an N-node hypercubein a square of
side 3N+ o(N). To lay out an additional link, we need at
most a vertical track and a horizontal track, in addition to
the two ending segments connecting the link to two nodes.
Since there are N/2 diameter links in a folded hypercube,
we need at most N/2 extra vertical and horizontal tracksto
accommodate all the diameter links. Therefore, the areafor
the layout of afolded hypercubeis

(EN+0m ) x (g+om) = SoN2-+o(n2),

Since there are N additional links in an enhanced-cube,
we need at most N vertical and horizontal tracks to accom-
modate all the additional links. Therefore, the area for the
layout of an enhanced-cubeis %NZ +0(N?). ad

Note that by arranging these additional links appropri-
ately so that atrack may be shared by two or morelinks, the
areas of the above layouts may be considerably improved.

We can view an n-dimensional CCC as a 2-level hierar-
chical network with p, = 1 and M, = 2", whose nucleusis
ann-nodering. We can lay out all theN/2inter-cluster links
of an n-dimensional CCC using the layout for an n-cube,
which requires22/9 4 o(2") area[23, 25]. A reduced hy-
percube, RH(log, n,log, n) [27], can be obtained by replac-
ing each n-node cycle in a CCC with alog, n-dimensional
hypercube and can be laid out in asymptotically the same
area.

Theorem 3.13 An N-node CCC or RH(log,n,log,n) can
belaid out in area

4N? ‘o ( N? )
9loga N log?N/

Theareaof our layout is smaller than the area of the lay-
out givenin[6] by afactor of 1.125 and iswithin afactor of
1.7+ o(1) from the lower bound givenin [6].

A indirect swapped network (1SN) (also called unfolded
swapped network (USN) [21]) is a multistage network ob-
tained by unfolding the structure of a swapped network [22,
23]. If weplace every M, rows of the ISN into the same top-
level block, then each pair of the blocks are connected by 2

links, where M, isthe number of top-level clustersinthe cor-
responding swapped network unfolded to generate the |SN.

Theorem 3.14 An N-node SN can belaid out in

N2 N2
+0
4logzN <I092N>

area, assuming M is not a constant.




Thepreviouslayout areaimprovestheresult givenin[21]
by a factor of 4 and is optima within a factor of 1+ o(1)
from the lower bound givenin [23, 25].

Theorem 3.15 An N-node butterfly network can belaid out
inan area equal to

N2 N2
+0 .
logzN (Iog2 N)
Proof: By unfolding an HSN(2,'°972N—cube), we obtain a

(logy, N+ 2)-stage ISN that uses 106N _gimensional butter-
fly networks as the basic modules. If2 we double up thelinks
connecting the middle two stages of the | SN, remove nodes

inthe ('OgTzN + 2)-th stage, and reconnect each of the repli-
cated linksto one of thetwo linksbetweenthe 'OQTZN +2)-th

andthe (‘%% 4 3)-th stage through aremoved node, we can
obtain an automorphism of an (log, N)-dimensional butter-
fly. Therefore, the area of the butterfly is approximately 4
timesthat of an ISN; that is

N2 N2
+0 .
logzN (Iog2 N ) O

Recently, Avior et al proposed an area-optimal VLS| lay-
out for butterfly networks[3] under Thompson’sgrid model
[19], assuming that the width of anetwork nodeisequal to 1
(i.e., thesame asthe width of awire). The areaof the layout

. 2N\2 2N\2

proposed in [3], however, becomes }’(‘)’gé“N +0 (}’(‘)’gg‘N) when
the width of network nodesisW. Asacomparison, our lay-
out isthe only butterfly layout reported in the literature that
has area optimal within a factor of 1+ o(1) under the ex-
tended grid model (W = 4).

4. Conclusion

We proposed the recursive grid layout scheme for effi-
cient VLSI layout of hierarchical networks. The proposed
schemeisgenerally applicableto avery wide variety of net-
worksaswell asgeneral hierarchical networks. Many of our
layoutsare optimal within afactor of 1+ o(1); othersarethe
best results reported in the literature thus far.
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