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ABSTRACT

‘We propose a new protocol for one-to-one communication in multiprocessor networks,
which we call the Dynamic Scheduling Communication (or DSC) protocol. In the DSC
protocol, the capacity of a link is partitioned into two channels: a data channel, used
to transmit packets, and a control channel used to make reservations. We initially
describe the DSC protocol and the data structures needed to implement it for a general
network topology. We then analyze the steady-state throughput of the DSC protocol for
random node-to-node communication in a hypercube topology. The analytical results
obtained are in very close agreement with corresponding simulation results. For the
hypercube topology, and under the same set of assumptions on the node architecture
and the routing algorithm used, the DSC protocol is found to achieve higher throughput
than packet switching, provided that the size of the network is sufficiently large. We
also investigate the relationship between the achievable throughput and the fraction of
network capacity dedicated to the control channel, and present a method to select this
fraction so as to optimize throughput.

Keywords: Communication protocols, routing, performance evaluation, hypercubes.

1. Introduction

The Dynamic Scheduling Communication (DSC) protocol, proposed in this pa-
per, is a reservation-based protocol for organizing the transmission of data in a
multiprocessor network. In a typical VLSI implementation of a parallel computer,
there are usually many wires connecting a pair of neighboring nodes. In the DSC
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protocol, a subset of these wires is allocated to the transmission of data and the
remaining wires are allocated to the transmission of control information, used to
schedule future data.

In the DSC protocol, a packet enters the network only after having reserved
the links and buffer space it requires to make it to the destination. An advantage
of reservation-based communication protocols, such as the DSC protocol, is that
they can provide lossless communication with minimal buffer space, even when the
network is operating under heavy load conditions. Such protocols also avoid the
waste of resources that arises when a packet is transmitted for several hops before
being dropped (as may happen with packet switching), or the blocking of resources
that occurs when a packet has to wait at some intermediate link, preventing other
packets from using the link it occupies {(as may happen with wormhole routing,?
unless virtual channels are used). As a result, reservation-based protocols have the
potential of using more efficiently the available capacity and buffer space than other
switching formats, provided that the overhead associated with reservations can be
kept low.

The most common example of a reservation-based scheme is circuit switch-
ing,}>%° where the entire path from the source to the destination is reserved prior
to the transmission of a message, and is released only when the message reaches
its destination. Circuit switching has many well-known advantages, but it is inef-
ficient for multiprocessors networks, because a link is reserved for more time than
is required, and additional overhead is needed to “tear-down” a circuit when the
transmission is completed. Another reservation-based protocol is the Conflict Sense
Routing (CSR) protocol,!! which is a hybrid of circuit and packet switching. In
the CSR protocol, the time axis is divided into alternating control and data inter-
vals, with reservations for data intervals being made during control intervals. A
disadvantage of the CSR protocol is that the reservation overhead is completely de-
termined by the network diameter and the length of the control and data packets,
it is not flexible, and it is not under the control of the designer. As a result, at
heavy loads, the reservation overhead may severely limit the achievable throughput.
The CSR protocol also requires the time-division multiplexing of data and control
information on the same wires, which complicates implementation, and introduces
additional overhead to distinguish between the two kinds of information. A com-
munication scheme that avoids the dropping of packets without using a reservation
mechanism is deflection routing,®*7 which, however, has several drawbacks,® the
most serious of which is that packets may arrive at their destination out of order,
or they may circulate indefinitely without reaching their destination (live-lock) if
special precautions are not taken. The Dynamic Scheduling Communication (DSC)
protocol proposed in this paper, offers an alternative way to provide lossless commu-
nication with minimal buffer requirements, and its performance compares favorably
to the previously mentioned protocols.

In the DSC protocol, a resource (links and buffer space) is reserved for a packet
only for the slot (or slots if it is a buffer) during which it will be used. This is more
efficient than circuit switching, since resources are now used on a demand basis.
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The DSC protocol is also more efficient than packet switching, under heavy load
network conditions, because it avoids the dropping of packets and the associated
waste of bandwidth. Our analysis for the hypercube topology will indicate that the
improvements in performance obtained by using the DSC protocol instead of packet
switching become more significant when the network diameter is large. The DSC
protocol guarantees that a packet accepted into the network is eventually delivered
to its destination even when minimal buffer space is available, and it does not
require any additional feedback mechanism to acknowledge the receipt of packets,
as required by packet switching. Moreover, data packets in the DSC protocol do
not have to carry any routing information, since their transmission is scheduled in
advance, and the information kept at the nodes is sufficient to perform the routing
function. As we argue in Section 2, the control overhead required for the DSC
protocol is only slightly more than that required for packet switching, while the
improvements in the throughput can be significant.

The DSC protocol is also found to be more efficient than the CSR protocol!!
when the diameter of the network is large, or when the length of the data packets
is small. An additional advantage of the DSC protocol over the CSR protocol, is
that a node can easily distinguish between data and control packets, since they are
transmitted along different wires, considerably simplifying the logic design at the
switches. Also, in the DSC protocol, the control overhead is determined by the
ratio of the control wires to the total number of wires, and it can be chosen so as
to maximize the throughput. This is not possible with the CSR protocol, where
the designer does not have such flexibility. The analysis that we will give for the
hypercube network shows that the DSC network (when optimized) achieves larger
throughput than that achieved by the CSR protocol.

We initially present the DSC protocol in its generality, without assuming a
particular network topology and routing algorithm. The control information that
has to be exchanged, and the data structure required are also described. We next
evaluate the packet delay for light load and the overhead due to reservations, for a
general network. We also specialize the DSC protocol to the case of a hypercube
network of processors, where each node has buffer space only for the packet being
transmitted. We assume a particular node architecture and routing algorithm,
where packets traverse the hypercube dimensions in descending order. The switches
required by this routing algorithm are more simple and inexpensive than crossbar
switches. We obtain analytical results on the throughput for random one-to-one
(unicast) communication, for the case where the destinations of the packets are
uniformly distributed. The analytical results obtained are in very good agreement
(within 2%) with corresponding simulation results. Our results for the hypercube
topology indicate that the throughput of the DSC protocol is superior to that of
packet switching and the CSR protocol when the size of the network is sufficiently
large, under the same set of assumptions on the node architecture and the routing
algorithm. We also provide a graphical method to find the optimal fraction of
capacity that should be dedicated to the transmission of control information in
order to maximize the throughput. The optimal allocation of the capacity depends
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Fig. 1. Control information is transmitted over a link by using 2 dedicated
fraction v of the capacity of the link. Each contro} frame is subdivided into
control ruinislots as explained in the text. During a frame, k data packets
can be transmitted along the data wires using the remaining (1 - 4)C of the
capacity.

on the diameter of the network and the length of the data and the control packets.

The remainder of the paper is organized as follows. In Section 2 we discuss the
DSC protocol and the data structures needed to implement it in a general network
topology. We also derive bounds on the packet delay under light load conditions,
and obtain estimates for the overhead associated with reservations. In Section 3 we
describe a particular implementation of the DSC protocol for a hypercube network
of processors, evaluate its throughput through both analysis and simulations, and
provide performance comparisons with other switching formats. Finally, in Section 4
we present our conclusions. ’

2. Description of the DSC Protocol

In this section we present the DSC protocol for a general network topology, and
we describe the data structures necessary for its implementation. The wires of a
link that are dedicated to the transmission of data (or control) information form
the date (or control, respectively) channel of the link. We let v be the fraction of
wires of a link that are used for the transmission of control information. The time
axis in the control channel is divided into conirol frames of duration 8 (see Fig. 1),
where [ is a parameter that will be specified shortly. We assume that the network
is synchronized so that frames start synchronously at all nodes, and that all packets
have equal length, and they require one data slot in order to be transmitted over
the data channel of a link. The duration of a data slot is equal to
L
a=c +tm, (1)
where L is the length of the packet in bits, t,, is an upper bound on the propagation
and processing delay of a packet, and {1 — +)C is the capacity dedicated to the
transmission of data, measured in bits/sec. The duration 8 of a control frame is
assumed to be equal to an integer number £ of data slots. We also assume that
a routing algorithm exists that selects a path for each source-destination pair, and
provides a way to resolve conflicts.
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A packet enters the network only after having reserved all the resources (links
and buffer space) along its route. These reservations are made through the transmis-
sion of special control packets, called flow control units (or flits®), over the control
channel. A flit requires one minislot in order to be transmitted over a link, with
the duration of a minislot being equal to

F
;E + iy,

where F is the length of the flit in bits, and ¢ is an upper bound on the propagation
and processing delay of a flit on a link.

A control frame is divided into two phases, which will be referred to as the
reservation phase and the confirmation phase. During the reservation phase, a flit
is sent towards the destination in order to reserve the required links and buffer space.
As we will explain shortly, the reservation of a resource is made only for the data
slots during which the resource will be used, and it is available for other packets for
the remaining of the time. A flit that has been successful in making the appropriate
reservations is sent, during the confirmation phase, on the reverse path from the
destination to the source, in order to notify the source and confirm the reservations
made at the intermediate nodes. A flit that was blocked at an intermediate node,
because it could not make all necessary reservations, may be transmitted during the
confirmation phase from the intermediate node to the source, in order to notify the
source of this failure, and release any resources (links and buffer space) it may have
reserved during the reservation phase; alternatively, blocked flits could be dropped,
and resources whose reservations are not confirmed are automatically released.

Flits can start transmission from a source only during the first control minislot
of a control frame, and, as we will see, acknowledgements are guaranteed to return
to the source by the end of that frame. A flit generated at a source follows the path
determined by the underlying routing algorithm of the network. Reservations for
links and buffer spaces are made for data slots that start after the termination of
the control frame in which the flit is transmitted. To make sure that a (positive
or negative) acknowledgement returns to the source by the end of the frame in
which the flit is transmitted, we request that the duration 3 of a frame is (greater
than or) equal to 2bd minislots, where d is the diameter of the network, and b is
the buffer size (measured in packets) per link. The durations of the reservation
and the confirmation phase are both chosen to be equal to 3/2. To see that the
reservation phase is completed in time $/2, note that if a flit is not blocked, it
can be delayed by at most b — 1 other flits on a given link during the reservation
phase. This is because if more than b flits request a link, at most b of them are
allowed to proceed, and the remaining are blocked. Therefore, after time 8/2, all
flits have either arrived at their destinations or they have been blocked. To ensure
that the confirmation phase is also completed in time /2, we require that if a
flit is transmitted on a link during minislot i,i = 1,2,...,bd, of the reservation
phase, it is transmitted on the same link (but in the reverse direction) during

%Note that our definition of a flit differs from that given in Ref. [2].
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minislot 2bd — ¢ + 1 of the subsequent confirmation phase. This ensures that flits do
not collide during the confirmation phase, and feedback information arrives at the
source reliably. Flits that are blocked during the reservation phase return to their
source carrying negative acknowledgements (NACKs), while those that reach their
destination return carrying positive acknowledgements (ACKs). A packet for which
a NACK is received is not allowed to enter the network, and has to reattempt to
make a reservation in one of the following frames.

The number of data slots & contained in a control frame is an important design
parameter and is related to 8 by the relation

p=2ma( g +tr) =k (5 +om) @

Solving with respect to v, we get

_ Q+ut+v)—y/(1+u+v)?—dup

2u !
where
=& kt,, — 2bat))
TR I
and
oo 2dF
- Lk

Assuming that the difference between 2bdt; and kt,, is negligible (this happens, for
example, when i,,,%; & 0), the previous equations simplify to

1
Y= —, 3)
1+ 2
and Lk + 2bdF
B = — (4)

Equation (3) gives the relationship between the fraction of the capacity v dedicated
to the transmission of control information and the number & of data slots contained
in a frame. In the remainder of the paper we use the notation DSC(%) to refer to a
DSC protocol where the duration of control frame is equal to the time required to
transmit k data packets.

The mechanism according to which reservations are made the data structures
required at the links, and the information that a flit has to carry are described next.
Each link of the network is assumed to have a link buffer and an entry buffer (see
also Fig. 2, for an implementation of the DSC protoco! in a hypercube network).
The entry buffer is used by packets that have not yet entered the network, while
the link buffer is used by packets that have already been accepted in the network.
A packet in an entry buffer sends out a flit, and, if it receives an ACK at the end
of the frame, it enters the network at the beginning of the next frame by moving
from the entry buffer to the corresponding link buffer. For every link queue 9,
there is a list £;, called reservation list, whose elements represent future data slots.
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In particular, the #*" element of the list represents the t** data slot relative to the
start of the current frame. At the end of k¥ data slots (or, equivalently, one control
frame), the first k elements of £; are deleted and the reservation list is updated.
The element £;(t) that corresponds to data slot ¢ consists of two fields, denoted
by Li(t)dink and £;(t)-buf fer. The field £;(t)link is equal to one, if link ! has
already been reserved for data slot ¢, and is equal to zero, otherwise. The field
Li(t)-buf fer takes integer values between zero and the buffer size b, and it is equal
to the number of buffer spaces of Q; that have already been reserved for data slot
t.

Each flit f carries with it a counter ¢y, which signifies the data slot (relative to
the start of the current control frame) for which the next link is requested. The
counter ¢y is initially set to k + 1. This is because a packet enters the network only
after receiving a positive confirmation, which happens at the end of the frame during
which the flit is sent. Therefore, the first link on the path should be requested for
the first data slot that starts after the current frame is completed, which is data
slot k + 1. Flits arriving at a node are processed in the order they arrive. If more
than one flits arrive at a node during the same minislot, the order in which they
are processed is determined in an arbitrary way (or in some way specified by the
underlying routing/priority scheme).

We let ¢y be value of the counter of flit f upon its arrival at link I, and £; be the
reservation list at the time flit f is processed at . We also define T as the minimum
integer satisfying

® Cy < Ta
o L;(T)ldink = 0,
o Li(t)-buf fer <b, forallt € {¢s,cs +1,...,T - 1}.

In other words, T is the first data slot, following the data slot for which the
link is requested, for which no reservation has been made yet, and enough buffer
space is available at the link to store the packet between its scheduled arrival and its
departure from the link. If a T that satisfies the relations above does not exist, the
flit f is blocked (the reservation fails). If, however, such a T exists, a reservation is
made on ! for data slot T, and the flit counter and the reservation list are updated
according to

e c;=T+1,
o L)(T)dink =1
o Li(t)buffer=Li(t)-buffer+1, for all t € {¢5,cs +1,..., T —1}.

Note that buffer space is reserved for the packet at link ! starting at data slot
cy (this is when the packet is scheduled to arrive at !) and ending at data slot T
(this is the slot for which reservation on ! is made for the packet). During the
confirmation phase, all reservations made by flits that were eventually blocked are
cancelled, and the corresponding resources are released. This can happen either
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explicitly (8its carrying NACKs follow the reverse path to the source freeing the
links and buffer space), or implicitly (a resource is released if the reservation is not
confirmed by the end of the frame during which it was made). A packet for which
an ACK is received at the end of a frame, enters the network at the beginning of
the next frame, and is forwarded to its destination using the links and buffer space
that were reserved for it. If we also record (in a separate field in list £; the slot and
incoming link over which the packet is expected to arrive) then, when the packet
is transmitted, it does not have to carry any information about its destination,
and it can be routed based solely on the information kept locally in the list. This
reduces the length of the packets, since no routing information has to be included
in its header. Therefore, the only additional control overhead required by the DSC
protocol over packet switching is the counter ¢;; the routing information carried by
a flit does not have to be included in the packet itself when it is transmitted. Note
also that in the unbuffered case, where there is buffer space only for the packet
being transmitted, the list elements consist of only one field (the fields £;(T).Jink
and £;(t)-buf fer are then identical). "

We next evaluate the worst case delay incurred by a packet under light load net-
work conditions. This delay does not include queueing delays at the entry buffers or
delays due to retrials, both of which are small under light load conditions. A newly
generated packet first has to wait for at most 8 (and on the average, 3/2) time
units for the current frame to end, and for another § time units for the appropriate
reservations to be made and for an acknowledgement to return to the source. Fol-
lowing the receipt of an acknowledgement, another d data slots are required for the
packet to arrive at its destination (under light load conditions all links requested
by a link are available and are reserved for consecutive data slots). Thus, the worst
case packet delay under light-load conditions satisfies

D(light load) < ((f‘%}‘é + tm) - (2k +d), (5)

where we have used Eq. (2).
Note that when the parameter k is increased, the light load delay increases, but
the fraction of capacity that is available for the transmission of data

1
T
{and, therefore, the maximum possible throughput) also increases. In Section 3, we
examine in more detail the tradeoffs involved, and we obtain methods to optimally
choose the values of these parameters so as to maximize throughput.

3. The DSC(k) Protocol on the Hypercube

In this section we describe and analyze a particular implementation of the DSC
protocol in a hypercube parallel computer. We start by describing the node model
and the routing algorithm assumed. We then present an approximate analysis for
the throughput, and compare it to simulation results. We also obtain results on the
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Fig. 2. Ilustrates two neighboring descending-dimension switches in a 3-
dimensional hypercube.

fraction of capacity that needs to be dedicated to the control channel to optimize
the throughput.

3.1. Node Model and Implementation of the DSC(k) Protocol for the Hypercube

Each node of a N = 2¢-node hypercube is represented by a unique d—bit binary
string, and the hypercube links connect nodes whose binary representations differ
in exactly one bit. Given two nodes s and ¢, s ®t denotes the result of their bitwise
exclusive OR operation, and is called the routing tag between the two nodes. We let
ei,t =0,1,...,d—1, be the binary string whose i*" bit is equal to one and all other
bits are equal to zero. A link connecting node s to node s @ e;,i = 0,1,...,d -1,
is called a link of dimension i (or link ¢). Each link i of a node s has an entry
buffer &;(s), which can store up to one packet originating at that link, and a queue
Q;(s), which is used to store transit packets. The entry buffer can accept a new
packet only if the previous packet has reserved its entire path to the destination,
and a positive feedback has been received. An entry buffer holding a packet for
which no feedback has been received is said to be backlogged. New packets arriving
at backlogged entry buffers are discarded.

The queue Q;(s) is composed of two buffers, denoted by QJ(s) and Q! (s), each
of which can hold one packet. The first buffer Q}(s) is called the forward buffer and
is used by packets that need to cross the i** dimension, that is, packets that have
the ¢*® bit of their routing tag equal to one. The second buffer Q9(s) is called the
internal buffer and is used by packets that do not have to cross the itt dimension.
The internal buffer Q9(s) is connected to queue Q(i-1) moda a(8) of the same node
and the forward buffer Q}(s) is connected to queue Q(;_1) moa 4($) of the neighbour
node s @ e; (see Fig. 2). This router architecture is called a descending-dimensions
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switch, and it leads to switches that are simpler, faster, and less expensive than
crossbar switches (see Ref. [2] and Ref. [10]).

In the routing algorithm that we assume, a flit traverses the hypercube dimen-
sions in descending order starting with a random dimension I. When a flit that
arrives at queue Q;(s) of node s, the i*® bit of its routing tag is checked. Depending
on whether it is equal to one or zero, the flit claims buffer Q}(s) in order to be
transmitted to queue Q;_1) moa 4(s @ €;) of the neighbour node s & e;, or it claims
buffer QY(s) in order to be internally passed to the next link queue Q(;_1) mod 4(8)
of the same node. Since we assume that there is buffer space only for the packet
being transmitted (that is, b = 1), flits that find a link already reserved are blocked.
When two flits attempt to make a reservation for the same (available) data slot
during the same control frame, one of them is selected at random and the other
is blocked. The number of minislots in the reservation phase or the confirmation
phase is equal to d, and the parameter 8 is equal to the time required by a flit to
travel a distance of 2d links.

Flits that are successful in reserving all the links on the path to their destination,
return during the confirmation phase to their origin, following the reverse path than
the one followed in the reservation phase, and carrying a positive acknowledgement
(ACK). A fiit is transmitted over a link during control minislot 2d — 7 ~ 1,7 =
0,1,...,d ~ 1, of the confirmation phase if it was transmitted over the same link
during control minislot ¢ of the reservation phase; this guarantees that there are no
collisions among flits during the confirmation phase. Flits that fail to make all the
required reservations are discarded, and all unconfirmed reservations are cancelled
at the end of a confirmation phase. Note that for the hypercube network and this
particular implementation of the DSC protocol, each node needs to store at most
two flits per link at any given time.

3.2. Throughput Analysis of the DSC(k) Protocol for the Hypercube

In this section we present an analysis of the DSC(k) protocol for a d—dimensional
hypercube. We assume that the descending-dimension switches and the routing
algorithm described in Section 3.1 are used. We also assume that d is a multiple of
k, and, in particular, d = kr.

It is possible for a flit to reserve a link and release it later, during the same
control frame, due to its failure to reserve the remainder of the path. We refer to
such a reservation as 2 ghost reservation, as opposed to a confirmed reservation,
where a flit is successful in reserving all the links on its path. We define p(¢,4,1)
as the probability that during control frame ¢, a reservation (ghost or confirmed) is
made for link ! for the i*" data slot following the end of frame ¢, where i = 1,2,...,d.
Assuming that the system eventually reaches steady state, the following limit exists
and is independent of the link !

p,-:tgrgop(t,z,l}, i=1,2,...,d

Thus, p; is the steady-state probability, that, in & given control frame, a link is
reserved for the i*P data slot following the end of that frame. We also denote by po
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that the entry buffer of a link is nonempty immediately prior to the beginning of a
new control frame (i.e., a new or a retrial packet is available to enter the network at
that particular link); we call pg the attempt probability. Since a flit is successful only
after having reserved all the d links on its path, the average number of successful
reservations made per link per frame is equal to ps. Therefore the steady-state
throughput per node per frame is equal to 2dp,, and the throughput R per node
per data slot is
R = 2dpd / k.

We will evaluate p; and then R by obtaining a recursive relationship on the steady-
state probabilities p;, 1 = 1,2,...,d.

Data Channel Data Slots D (t,i

t t+1 t+2

Control Channel

Control Frame

Fig. 3. The i* data slot following the end of frame t is denoted by D(t,1).
Note that with this notation, D(t,k + i) = D(t + 1,1).

We denote by D(t,4) the i*® data slot that follows the end of frame ¢ (see Fig. 3).
For a given link I, we let /; and l; be the internal and forward links, respectively,
~ that lead to I (see Fig. 4). Link ! may be reserved either by a flit f; arriving over
link [;, or by a flit f, arriving over link l,. In particular, link ! can be reserved
during frame ¢ for data slot D(t,) by a flit f arriving over I if:

e areservation has been made by f for link /; for the previous data slot D(t,i—
1); we call this event B,

e link [ lies on the path of f; (given that ; lies on its path); this happens with
probability 1/2; and

¢ no confirmed reservation has been made for link [ for data slot D(t,i) during
previous control frames, and no reservation (confirmed or unconfirmed) has
been made for D(t,%) during the current control frame ¢ by any flit arriving
over link 5.

Thus, for 1 < 7 < d, we have

2x p(t,l - l,ll)

T—2(1~ P(4/B)), ©)

p(t,4,0) =
where A is the event that a confirmed reservation has been made on link ! for data
slot D(t,1) during one of the previous frames t—j,j = 1,2,...,7—1, or a reservation
has been made for D(t,i) during the current frame ¢ by a flit arriving on link .
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2 (extemal) { internal)
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Fig. 4. Internal and forward link leading to link ¢,

The factor of 2 in Eq. (6) accounts for the fact that link  could be reserved by a
flit arriving on link {;, or by a flit arriving on link {; (the two cases are symmetric).
The factor 1/2 accounts for the probability that link [ lies on the path of f;, given
that I; lies on its path.

The probability that a flit f» requests link ! during frame ¢ for data slot D(¢,%)
and is granted the link can be approximated by

1 .
3Pt L), @)

This is because for flit f5 to reserve link ! for data slot D{¢t,1), it should have already
reserved link I, for data slot D(t,i — 1). The factor of 1/4 is the probability that
link I Lies on the path of flit f> (given that I, lies on its path), and fo wins over fiit
fi when the conflict arises.

Since there is an attempt by flit f; arriving over I; to reserve link ! for data
slot D{t,1), any confirmed reservations that have been made on link I for data slot
D(t, 1) should have been made by flits arriving over link l,. The number n of control
frames during which reservation can be made for D(t,1) is given by

_Jr=1~(i/k) fimodk#0
"= - (k) ifimod k=0

Hence, the probability that a confirmed reservation for D(t,{) was made during a
previous frame by a flit f; arriving over link I, is given by
p(t — 3 1] d)
p(t _'jxi + k}!l)’
)

1 L . N .
3 Zp(t — i+ jk—1,0) - p(flit fy reserves | given it requests it
=1

where the factor of 1 is the probability that fa chooses link I, and the ratio
__pit-gd)
p(t - .791 + kj,i)
is the probability that the reservation made by fo was finally confirmed. To evaluate
the probability that f» reserved link ! during frame ¢t — § given that it requested

it, note that f, would only lose out to a flit arriving over link I; that made a
ghost reservation during frame ¢ — j. This is because we know that a reservation is
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requested by flit f for data slot D(¢,1), and, therefore, any flit that had reserved
data slot D(t,) during frame ¢ — j coming from link !;, should have eventually been
blocked (that is, such a reservation should have been a ghost reservation). Thus,

p (flit f, reserves ! given it requests it) =

_l i . _ P(t"jyd)
1-2p(t—j,i+jk 1,11)(1 -Gtk D) 9)

where ;11- accounts for the probability that a flit arriving over link I, choses link 1
and wins over a flit arriving over I3, and the term

(1 _ p(t - .7 3 d)
p(t - ],Z + k]a l)
is the probability that such a reservation is not finally confirmed.

Taking the limit ¢ — oo and using the symmetry with respect to the links (all
steady-state probabilities are independent of the links), Eqs. (6)-(9) give

pic1 1 [ ( Pitjk—1 ( Pd ))}
=i — - § : 1— 1-
Pi = pi-1 1 2 < Pitjk-1 Pirks 4 Ditge

for:=2,3,...,d. (10)

By solving Eq. (10) with respect to p;—1, and keeping only the solution that corre-
sponds to p;—; < 1, we obtain

pi-1=si—y/s?—4p; fori=2,3,...,d, (11)
Pitjk-1 Di+jk—1 Pd
() o

=1 Ditkj Di+jk

where

In order to relate p; with pg, we observe that a link ! may be reserved for the
first data slot of a given frame during one of the 7 —1 frames that precede it. During
each of these frames, a confirmed reservation on ! for that data slot is made with
probability py. Since confirmed reservations made for the same link and data slots
are disjoint events, the probability that the link is unreserved is 1 — (r — 1)pg4, and
we have

1 =po(1 = (r — 1)pa). (13)

Note that Eq. (11) gives p;—1 in terms of p; and s; (which itself depends only
on p;’s with j > 7). Therefore, using Eqs. (11)-(13) it is possible to compute
the throughput for the DSC(k) protocol by running a backward recursion. This
can be done by choosing a particular value of ps and then successively obtaining
Pd—1,Pd—2, - - - , Do, Using the above equations. A curve can then be plotted for the
average throughput R = 2dp,/k per node per data slot as a function of the attempt
rate po.
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3.2. Analytical and Simulation Results

In this section we present the analytical results obtained for the throughput
of the DSC protocol using the analysis of Section 3.2, and compare these results
with corresponding simulation results. We also evaluate graphically the fraction of
the capacity that should be dedicated to the transmission of control information
in order to maximize throughput. Simulations results are given only for hypercube
dimensions d < &, since simulations for d > 8 are too intensive computationally.
We do, however, present results for dimensions d > 8 using the analytical method.

Fig. 5 compares the analytical and simulation results obtained for the average
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Fig. 5. (a) Analytical and simulation results for the average throughput 2dp, /&
per node per data slot of the hypercube implementation of the DSC(1), DSC{2)
and DSC(4) protocols for dimension d = 8. (b} Analytical and simulation
results for the average throughput of the hypercube implementation of the
DSC(1), DSC(2) and DSC(3) protocols for dimension d = 6. Note that the
duration of a data slot is not the same for the different versions of the DSC(k)
protocol, since it depends on the value of & (see also Fig. 6).

throughput per node and data slot of the DSC(k) protocol on hypercubes of dimen-
sion 6 and 8 for several values of k, assuming that there is no buffer space at the
nodes, except for the packets currently under transmission. The agreement between
analytical and simulation results is excellent; the difference is consistently smaller
than 2%. Note that the maximum throughput that can be achieved in a hypercube
for uniform distribution of the destinations assuming infinite buffer space per node
is at most equal to 2 packets per node and data slot.

Since (by Egs. (1) and (2)) the duration of a data slot is different for different
values of k, the results given in Fig. 5 are not directly comparable. This is because
they do not take into account the control overhead, which is larger for small values
of k. To compare the performance of the DSC(k) protocol for different values of
k, we define the normalized throughput as the percentage of the total capacity that
is efficiently used {capacity is not used efficiently if it is used to transmit control
bits, or if it stays idle). In Fig. 6(a) we plot the normalized throughput of the DSC
protocol for a hypercube of dimension 8 and several values of k, as a function of
the ratio % of the length F of a flit over the length L of a data packet. In Fig. 6(b)
we also plot the fraction 7y of the capacity allocated to the transmission of control
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Fig. 6. (a) The normalized throughput as a function of -f—:— for a 8~dimensional
hypercube and several values of k (or equivalently 7). (b) We also illustrate
the variation of the fraction -y of the capacity dedicated to the control channel,
obtained by Eq. (2) as a function of {— and k.

information, given by Eq. (3), as a function of % for several values of k.

Given the values of the parameter % and the hypercube dimension d, it is
possible to find the value of k¥ (or equivalently, the fraction « of capacity to be
allocated to the control channel) that maximizes the normalized throughput. For
example, for hypercube dimension d = 8, flit size F' = 64, and packet size L = 2048
(in bits), Fig. 6(a) shows that the normalized throughput is maximized when k = 2
(for these values of F and L, we have —}L-': = 0.03125). From Fig. 6(b) we see that this
corresponds to v = 0.2, which implies that in the VLSI design we should allocate
1 in every 5 wires of a link to the transmission of control information. In general,
for different values of the parameters F, L and d, a different version of the DSC(k)
protocol maximizes the normalized throughput. For example, if L = 2048 and
d = 8, the DSC(2) protocol is optimal for F > 57 bits, while the DSC(1) protocol
is optimal for F' < 57 bits. The larger the length F of the flits is (or the smaller the
length L of the packets), the more advantageous it becomes to use larger values of
k.

In Fig. 7, we illustrate the normalized throughput of the DSC(k) protocol for
different values of k as a function of the dimension d of the hypercube. Note that
for a fixed k, the normalized throughput per node decreases when the dimension d
increases. This is mainly due to the descending-dimension switches used, and has
also been observed in other works.?1? Note that for hypercubes of larger dimensions,
larger values of & are preferable. For example, when F' = 64 and L = 1600, protocol
DSC(1) is better for d = 4, DSC(2) is better for d = 8 and 12, and DSC(4) is
better for d > 16. In general we expect that the larger the diameter of a network
is, the larger the parameter k should be in order to obtain the optimal balance
between the capacity allocated to the control channel and the capacity available for
the transmission of data.
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Fig. 7. Ilustrates the normalized throughput of the DSC(k} protocol for

different values of the parameter k as a function of the dimension d of the
hypercube, for F' = 64 and L = 1600.

3.4. Comperison with Packet Switching and the CSR Protocol

Since the CSR protocol!? can be viewed as the time division multiplexed version
of DSC(1), its performance is inferior to that of the (optimized) DSC protocol,
when the diameter of the network is large, or when the ratio F/L is large. In
Fig. 8 we also compare the throughput of the DSC(k) protocols with that of a
simple packet switching scheme, analyzed in Ref. [10]. In the packet switching
scheme, packets are transmitted without making any reservations, and they may be
dropped at intermediate nodes due to buffer overflow. As illustrated in Fig. 8, the
DSC(k) protocols outperforms the simple packet switching scheme for hypercube
dimensions d > 6 (the figure has been drawn assuming F/L = 0.04). Note that
the results presented in Fig. 8 for the DSC and the packet switching scheme are
directly comparable, since they both use the same switch architecture and routing
algorithm, and they assume the same buffer space per node. We believe that these
results are indicative of the performance improvement that can be obtained by
superimposing the DSC protocol on other routing algorithms, and under different
assumptions on the topology and switch architecture.

4. Conclusions

We have developed a new dynamic scheduling communication protocol that is
easily amenable to a VLSI implementation for any multiprocessor network. The
DSC protocol and the data structures required to implement it were initially pre-
sented in their generality, without assuming a particular network topology, routing
algorithm, or buffer size. We then specialized the DSC protocol to the case of a
hypercube multicomputer, and computed its throughput using analysis and simu-
lation. The analytical results closely match the simulation results obtained. For



A Dynamic Scheduling Communication Protocol ... 55

LDSC() NS e e, RN J

Normalized Throughput

Simple Pac}(et Switdnfng Schemfe

4 5 6 7 8 9 0 " 12
Diameter

Fig. 8. Illustrates (a) the normalized throughput of the DSC(k) protocol for
different values of the parameter k as a function of the dimension d of the
hypercube, for F = 64 and L = 1600, (b) the throughput obtained by the

simple packet switching scheme .

the hypercube topology, our results indicate that the DSC protocol outperforms the
corresponding packet switching scheme (for the same node architecture and routing
algorithm) when the size of the network is sufficiently large. We also provided a
graphical method for obtaining the fraction of the capacity that should be dedicated
to the control channel to maximize the throughput.

The DSC protocol is actually a family of protocols parameterized by an inte-
ger k, the optimal choice of which depends on the flit lengths, the packet lengths,
and the diameter of the network. For the hypercube implementation of the DSC
protocol, we used the analytical results on the throughput to evaluate the opti-
mal choice of k, for different values of the above quantities. The DSC protocol
compares favorably to other communication schemes (including packet switching,
circuit switching, wormhole routing, and the CSR protocol), and we believe that it
is a promising communication protocol for multiprocessor computers.
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