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Abstract

In this paper, we present efficient VLS layouts of sev-
eral hypercubic networks. We show that an N-node hyper-
cube and an N-node cube-connected cycles (CCC) graph
can be laid out in 4N?/9 + o(N?) and 4N?/(9log3N) +
o(N?/log?N) areas, respectively, both of which are optimal
within a factor of 1.7+ o(1). We introduce the multilayer
grid model, and present efficient layouts of hypercubes that
use more than 2 layers of wires. We derive efficient layouts
for butterfly networks, generalized hypercubes, hierarchical
swapped networks, and indirect swapped networks, that are
optimal within a factor of 1+ 0(1). We also present efficient
layouts for folded hypercubes, reduced hypercubes, recur-
sive hierarchical swapped networks, and enhanced-cubes,
which are the best results reported for these networks thus
far.

1. Introduction

The derivation of efficient VLS layouts for intercon-
nection networks is important, since it improves the cost-
performance of the resulting parallel architecture, both by
reducing its cost (fewer chips, boards, and assemblies) and
by lowering various performance hindrances, such as signal
propagation delay, drive power, and fraction of data trans-
fersto off-chip destinations. Efficient layoutsfor several in-
terconnection networks can be foundin [5, 6, 8, 12].

Hypercubes, butterfly networks [13], and cube-
connected cycles (CCC) [16] are among the most important
interconnection networks. In [6], a collinear layout of an
N-node hypercube that requires N — log, N tracks was pro-
posed. In this paper, we show that the collinear layout of
a hypercube can be considerably improved to one that uses
|2N/3] tracks, which is within a factor of 1.3+ 0o(1) from
atrivial lower bound. We also show that an N-node hyper-
cube can belaid out in 4N?/94- o(N?) area, which iswithin
afactor of 1.7+ o(1) from a trivial lower bound and im-
proves the layout area given in [6] by a factor of 2.25 +
0(1). We aso show that an N-node CCC can belaid out in

4N?/(9logsN) + 0o(N?/1og?N) area, which is smaller than
the layout area given in [7] by afactor of 1.125+0(1), and
iswithinafactor of 1.7+ o(1) from alower bound. Thelay-
outs for the hypercube and CCC given in this paper are the
best results reported thus far for these networks.

We introduce the multilayer 2-D grid and multilayer 3-
D grid models for VLS| layouts of networks. The moti-
vations for using the multilayer grid model include signif-
icant reduction in layout area, volume, and maximum wire

length. In particular, we show that an N-node hypercubecan
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be laid out in 1;5TN2 +o(%) area, 1N +0(NT) volume,

and ¥ + 0 (}) maximumwire lengthwhen we useL layers
of wires, L iseven, and L = o(v/N/logN).

We derive tight bounds on the VLSI area of generalized
hypercubes, hierarchical swapped networks (HSNs) [23,
25], and indirect swapped networks (ISNs) [22], which are
optimal within a factor of 1+ o(1). Moreover, we present
efficient layouts for butterfly networks [13], folded hyper-
cubes [1], reduced hypercubes (RH) [29], recursive hierar-
chical swapped networks (RHSNs) [23, 25], and enhanced-
cubes[21], which are the best results reported for these net-
works so far in the literature. Our layout method and lower
bound techniques can also be extended to a variety of other
networks[25, 28].

The organization of the remainder of the paper isthefol-
lowing. In Section 2, we present efficient layoutsfor hyper-
cubes, folded hypercubes, CCC, and reduced hypercubes.
In Section 3, we introduce the multilayer grid model and
present multilayer layouts of hypercubes. In Section 4, we
present efficient layouts for butterfly networks, generalized
hypercubes, HSNs, RHSNs, and ISNs. In Section 5, we
show that several of the layouts given in Section 4 have ar-
easthat are optimal within afactor of 14 0o(1). In Section 6
we present our conclusions.

2.VLSI layoutsfor hypercubes, CCCs, and re-
lated networks

In this section, we present amethod for laying out hyper-
cubes, folded hypercubes, CCC, and reduced hypercubes.



We usetheextendedversion[8, 17, 25] of thegrid model,
also called Thompson's model [18], for the VLS layout of
networks whose node degrees may be larger than 4. In this
model, a network is viewed as a graph whose nodes corre-
spond to processing el ementsand edges correspond to wires.
Thegraphisthen embeddedina2-D grid, wherewires have
unit width and a node of degree d occupies a square of side
d. The wires can run either horizontally or vertically along
gridlines.

The areaof alayout is defined as the area of the smallest
rectangle that contains all the nodes and wires. When there
aretwo layers of wires, it is guaranteed that we can lay out
the network withinthearea. In Section 3, wemodify layouts
derived in this section to obtain layouts that use more than
two layers of wires and have smaller area

2.1. Efficient layouts for hypercubes and several
variants

In this subsection, we first derive a collinear layout for
the hypercube and then use it to obtain efficient 2-D layouts
for hypercubes, folded hypercubes, and their variants.

Inacollinear layout all nodesare placed onthesameline.
A collinear layout that requires N — log, N tracks was pre-
sented in [6] for an N-node hypercube. In what follows, we
improveon their result by finding acollinear layout that uses
only |2N/3] tracks.

To describe the hypercube layout we use a bottom-up
approach, starting with a 2-dimensional hypercube, and in-
ductively moving to hypercubes of higher dimensions. A
collinear layout of a 2-dimensional hypercube can be ob-
tained by placing the 4 nodes along a row, connecting node
0 with node 1, and node 1 with node 3, through wiresin the
first track, and then connecting node O with node 2, and node
2 with node 3, through wires in the second track (see Fig.
1a). Clearly, thislayout requires 2 tracks.

Assumethat we have acollinear layout for an n-cubethat
requires f(n) tracks, whereniseven. To obtain the collinear
layout of an (n+ 1)-cube, we start with the layouts of two
n-cubes. By doubling the horizontal space, we can place the
it" node of the second layout adjacent (from the right) to the
it" node of the first layout. We also double the number of
tracks(i.e., vertical space) to accommodatethe 2f (n) tracks
of the two layouts. Moreover, to connect the two n-cubes
into an (n+ 1)-cube, we need an extratrack which contains
paths connecting adjacent nodes (i.e., the i!" nodes of the
two layouts). Therefore, the number of tracks required for
the collinear layout of the (n+ 1)-dimensional hypercubeis
f(n+1) =2f(n)+ 1, assuming that nis even.

To obtain the collinear layout of an (n+ 2)-cube, we start
with the layouts of four n-cubes. By increasing the horizon-
tal space by afactor of 4, we can place the nodes with the
same ID of the four layouts adjacent to each other. We also

have to increase the number of tracks by afactor of 4 to ac-
commodate the 4f (n) tracks of the four layouts. Finally, to
connect the four n-cubesinto an (n+ 2)-cube, we need two
extratracksfor laying out the pathsthat connects each set of
4 nodes of the n-cubesthat havethe same| D asa2-cube(see
Fig. 1b). Therefore, we have f(n+2) = 4f(n) + 2whenn
iseven. Since f(2) = 2, we obtain the following theorem.

Theorem 2.1 The number of tracks required for the
collinear layout of an N-node hypercubeis L%J .

Proof: When nis even, we have
f(n)=4f(n—2)+2
and f(0) = 0, wheren = log, N. Therefore,
f(n)=22f(n—2)+ 2! =2*f(n—4)+ 234+ 2
=2"f(0)+2" 1423 4 2t

N 1 1 4 2 2N

when n = log, N is even. For the case where n is odd, we
have

f(n):2f(n—1)+1:g <§—1>+1::—§N—%: {%J .

O

To lay out an n-cube on a 2-D grid, welet n = nq + ny,
and use 2™ copies of the collinear layout of an n,-cube,
each placed along a row. We then connect the 2™ nodes
that belong to the same column (i.e., nodes that have the
same ID within each of the ny-cubes) vertically according
to the collinear layout of an n;-cube (see Fig. 1c). Note that
when n, (and/or ny) is odd, we can eliminate 2™ horizontal
tracks (and/or 2™ vertical tracks, respectively) by moving
the wires connecting neighboring nodesto horizontal tracks
(and/or vertical tracks, respectively) between nodes. When
n, (and/or ny) is even, we can aso remove 2™ horizontal
tracks (and/or 2™ vertical tracks, respectively) after some
minor modifications at the expense of longer wires. Since
inthe VLS| model anode of degreelog, N requiresasquare
of side log, N, we need an extra O(Nv/NlogN) areato ac-
commodate the nodes. By choosing n; = ©(ny), we obtain
the following theorem.

Theorem 2.2 An N-node hypercube can be laid out in
3N2 + o(N?) area.

The layout area given in Theorem 2.2 for the hypercube
improves the corresponding area given in [6] by afactor of
2.25+0(1), and isthe best result reported thusfar for hyper-
cubes. Theareaiswithin afactor of 1.7+ o(1) fromatrivia
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Figure 1. collinear layouts of (a) a 2-cube and
(b) a 4-cube. (c) A 2-D layout of a 5-cube.

lower bound N2 /4 [which followsfrom thefact that the area
of agraphisat least equal to B2 [19, 25], where B = N/2is
the bisection width of a hypercube, or from Lemma 5.1 of
Section 5 since atotal exchangetask in ahypercuberequires
N/2 steps [20]. The proposed hypercube layout has max-
imum wire length N/3 + o(N), which is (dlightly) shorter
than the best previous result [10] for hypercubes of (cur-
rently) practical sizes (e.g., N < 21* = 16K), and hassmaller
area by afactor of 2.25+ 0o(1) at the same time. Note that
we can movethelonger wires (and other wires belong to the
same tracks) to the first 22~ horizontal tracks (or the first
2m-1 vertical tracks, respectively) in order to (dightly) re-
duce the maximum wire length.

An enhanced-cube is a hypercube with one additional
outgoing link per node leading to a random node [21]. A
folded hypercube[1] isahypercubewith one additional link
per node, where each node S has a link connecting it to the
nodewhose label isthe bitwise complement of S. By adding
additional linksto the hypercubelayout of Theorem 2.2, we
can lay out afolded hypercubein g‘—gNz + o(N?) area, and
an enhanced-cube in 2N? + o(N?) area. More precisely,
we first lay out an N-node hypercube in a square of side
§N+0(N). Tolay out an additional link, we need at most an
additional vertical track and an additional horizontal track,
in addition to the two ending segments connecting the link
to two nodes.

Since there are N/2 additional links in a folded hyper-
cube, we need a most N/2 extra vertical and horizontal
tracksto accommodateall the diameter links. Therefore, the

areafor the layout of afolded hypercubeis
7 7 _ 49 5
<6N+0(N)> X <6N+0(N)> = 36N +0o(N9).

Since there are N additional links in an enhanced-cube, we
need at most N vertical and horizontal tracks to accommo-
date all the additional links. Therefore, the areafor the lay-
out of an enhanced-cubeis 2N2 + o(N?). O

The preceding layouts for folded hypercubes and
enhanced-cubesimprovethe areas of the corresponding lay-
outs givenin [21] by constant factors.

2.2. Efficient layouts for CCC and reduced hyper-
cubes

An n-dimensional cube-connected cycles (CCC) graphis
obtained by replacing each nodein an n-cubewith an n-node
cycle [16]. A reduced hypercube, RH(log, n,log, n) [29],
can be obtained by replacing each n-node cycle in a CCC
with alog, n-dimensional hypercube.

Theorem 2.3 An N-node CCC or RH(log, n,log, n) can be

laid outin
4N? ( N2 )
9log§N log®N

area.

Proof: Wefirst lay out an n-cube using the 2-D layout intro-
duced in Subsection 2.1, and then lay out the n-node cycles
within each of the hypercube nodes. Since the size of an n-
dimensional CCC is N = n2" and its area is dominated by
its hypercube links, which requires 2"+2/9 4 o(2") area, an
N-node CCC can be laid out in

4N? ‘o ( N? )
9logs N log?N
area. Using the same layout method, the reduced hypercube
can belaid out in asymptotically the same area. m|

2N2 N2 4N?
In [16], layouts of area 2N +0(Iog—2N) and 302N +

0 (m’}f N) were proposed for the CCC graph. Our layout has
areasmaller than that of thelayoutsgivenin[16] by afactor
of at least 3+ 0(1), and smaller than that of the more recent
layouts givenin [7] by afactor of 1.125+ 0(1). The layout
area given in Theorem 2.3 is within a factor of 1.7+ o(1)
from the lower bound given in [7] and is the best result re-
ported thus far for the CCC network.



3. Layoutsunder the multilayer grid model

Inthissection, weintroducethe multilayer grid model for
VLSI layouts of networks. We then derive efficient multi-
layer layouts for hypercubes.

3.1. The multilayer grid model

In the multilayer grid model, a network is viewed as a
graph whose nodes correspond to processing elements and
edgescorrespondto wires. Thenodesand edgesof thegraph
are then embedded in a 3-D grid, where edges have unit
width, can run along grid lines, but cannot cross each other
(i.e., the pathsfor embedding these edges must be edge- and
node-digoint). The area A of alayout is defined as the area
of the smallest rectangle along the x-y directions that con-
tainsall thenodesand wires. Thevolumeof alayout isequal
to the number L of layerstimesits area A.

In the multilayer 2-D grid model, the nodes of the graph
are embedded in the 2-D grid of thefirst layer (i.e., z= 1),
where a node of degree d occupies a square of side d. Note
that a network with area A under the extended grid model
can be laid out with area no larger than A under the multi-
layer 2-D grid model with L = 2 layers. In the multilayer
3-D grid model, the nodes of the graph are embedded in L
layers of the 3-D grid, where a node of degree d occupies
ad/hxd/hxhcuboidand 1 < h<La <L. TheseLa
layers are called “active layers.” The multilayer 2-D grid
model is a special case of the multilayer 3-D grid model
with Lp = 1 active layer. Note that ad/h x d/h x h cuboid
noderequiresh active layersfor itsimplementation, whilea
d x d x 1 cuboid noderequiresonly 1 active layer. Layouts
designed for these models can be easily modified to obtain
layoutswith different assumptions on the size of nodes. The
cost of alayout under the multilayer grid model isafunction
of A,L, and La.

The motivations for using the multilayer grid model are
three folds: (1) some technologies can lay out wires using
more than 2 layers, leading to significant reduction in lay-
out area; (2) the volume of the layouts of many networks
may be reduced by afactor of approximately L/2 compared
to their layouts under the grid model; and (3) the maximum
length of wires in many networks may be reduced by afac-
tor of approximately L/2. When we use L layers, the num-
ber of tracksin x and y directions may both be reduced by a
factor of about L/2 in many networks, for a factor of L2/4
reduction in its area compared to the layout under the grid
model, whilethe number of layersisonly increased by afac-
tor of L/2. Thisleadsto items (1) and (2) and, therefore, the
cost of theresultant layout can be significantly reduced. Asa
comparison, if wefold alayout derived for the grid model in
order to use all the available layers, the area can be reduced
by afactor of only L/2 and the volume cannot be reduced;

if we extended the collinear layout model to its multilayer
version, the volume cannot be reduced either since the area
can only be reduced by afactor of at most L/2 when L lay-
ersare used. The maximum wire lengths in many networks
are approximately proportional to the number of tracksin x
or y direction (or their sum). Therefore, if the numbers of
tracks in x and y directions are both reduced by a factor of
about L/2, the maximum wire length can also be reduced
by afactor of approximately L/2, leading to significant im-
provement in performance [item (3)]. Asacomparison, the
maximum wire length in acollinear layout using L layersor
in alayout obtained by folding the layout derived using the
grid model remains similar in most cases. These arguments
will become clear by looking at the multilayer layouts de-
rived in the following subsections.

We can extend the multilayer grid model to the multilayer
layout model by allowing nodes and edges to run in other
specified directions. Layouts under this model may have
smaller area and volume compared with layouts under its
multilayer grid model counterpart. Moreover, wiresin this
model may have different width and cross area, depending
on the technology used. For example, wires along the z di-
rection may have larger crossareain PCB. In what follows,
we focus on the multilayer 2-D grid model. Layouts under
other modelswill be reported in the near future.

3.2. Thelayout area and volume of hypercubesun-
der the multilayer grid model

In this subsection we present efficient multilayer layouts
for hypercubes.

We first derive hypercube layouts with an even number
L of layers. The multilayer 2-D grid layout of a hypercube
can be obtained from its 2-D grid layout by partitioning all
the horizontal (resp., vertical) tracks above each row (resp.,
to the right of each column) of nodesinto L/2 groups, each
of which has at most k; = [2L2n2|_+ l SJ] (or [ZLZHZT/ 3J_l]
2L2“1L*1/3J]

if ny is odd) horizontal tracks [resp., ko = [
|—2[2n1+1/3j—1-|
- T

(or

if ny isodd) vertical tracks] and is wired us-
ing two layers. More precisely, the vertical segments con-
necting the horizontal tracks of groupsi (above each row)
and the vertical tracks of groupsi (to the right of each col-
umn) arewired using layer 2i — 1, and the horizontal tracks
of groupsi and the horizontal segments connecting the ver-
tical tracks of groupsi are wired using layer 2i, for i =
1,2,...,L/2. When alink makesaturnin the 2-D grid lay-
out, its vertical and horizontal segments, wired in neighbor-
ing layersi — 1 andi inthe multilayer layout, should be con-
nected by awire (or via) along the z direction.

When L = o(v/N/logN), theareaof the resultant L-layer
layout can be reduced from 4N?/9 + o(N?) under the grid



model to

16N? ‘o N2

oL2 L2)’
the maximum wire length of the L-layer layout can be re-
duced from N/3+ o(N) to

2N (N
3L L)’

the total wire length of a routing path is 1.3N/L + o(N/L);
and the volume of the L-layer layout can be reduced from
8N?/9 -+ 0o(N?) (assuming wires cannot cross each other) to

16N? ‘o N_2
oL L/’

When L is odd, we simply partition horizontal tracks
into (L + 1)/2 groups, wired on layers 1,3,...,L, and par-
tition vertical tracksinto (L — 1) /2 groups, wired on layers
2,4,...,L—1. Wecan aso partition and wire them the other
way around. The area of the resultant layout is

16N? N2
9Z—1) +O<L2>
when L isodd and L = o(v/N/logN).

These multilayer hypercube layouts are the best re-
sults reported in the literature thus far for L = 2,3,...,
o(v/N/logN) in terms of area and volume. Since we have
obtained area-efficient L-layer layouts for hypercubes, L =
2,3,...,0(v/N/logN), we can optimize the cost for imple-
mentation by minimizing the cost function f(A,L,La = 1).

If alarge number L = Q(+v/N/logN) of layers are avail-
able and more than one active layer is avail able, we can de-
sign hypercubelayouts under the multilayer 3-D grid model
to further reducethe layout area, maximum wire length, and
volume. To obtain multilayer 3-D layoutsfor an (n; +ny +
ngz)-cube, wesimply use 2" copiesof amultilayer 2-D (n; +
ny)-cube layout, and connect nodes belonging to the same
grid point in a way similar to a collinear layout of an ns-
cube. More detailswill be reported in the near future.

4. VLS layoutsfor several networks

In thissection, we present efficient layoutsfor several in-
terconnection networks under the grid model.

4.1. Efficient layouts for generalized hypercubes,
HSNsand RHSNs

An |-level hierarchical swapped network, denoted by
HSN(I,G) [23, 25], is an I-level network consisting of M
level-| clusters, each of whichisan HSN(l — 1, G) network,

where M is the number of nodesin the nucleus G. Each of
the M'~2 nuclei of alevel-l cluster has alink connecting it
to each of the other M — 1 level-l clusters. If we view a
level-I cluster asasupernode, the HSN(I, G) becomesan M-
supernode complete graph with N/M? edges between each
pair of supernodes.

Theorem 4.1 An N-node HSN(I,G) can be laid out using
N?/16+ o(N?) area if

(a) | =2andthenucleusG canbelaidoutinasquare
ofsideo(M%),or

(b) | =3andthenucleusG can belaid out in a square
of side o(M?), or

(€ 1>4

assuming that M, the size of the nucleus G, is not a constant.

Proof: Theinter-cluster linksbetweentop-level clusterscan
belaid out in N?/16 + o(N?) areausing the layout of an M-
node complete graph [25, 27] with multiple edges. When
one of the conditions holds, the areafor al nuclei does not
affect theleading constant of thelayout areaand therequired
areais dominated by the top-level inter-cluster links. O

An r-deep recursive hierarchical swapped network (ab-
breviated RHSN) [23, 25] is obtained by recursively replac-
ingthenucleusof an HSN withan (r — 1)-deep RHSN. More
precisely, RHSN(l,l;_1,...,11,G) = HSN(l;, RHSN(l,_4,
lr_2,...,11,G)). Therefore, RHSN can belaid out by recur-
sively laying out HSNs.

Theorem 4.2 An N-node RHSN(l,,l;_4,...,11,G) can be
laid out using N?/16 + o(N?) area, assuming that the
depth r is at least 2 and the number of nodes in an
RHSN(l;_q,lr_2,..,11,G) isnot a constant. (In other words,
at least one of the parametersr,M, and |; for anyi <r—1
is not constant, where M is the size of the nucleus G.)

By shrinking all the nuclei of an HSN into a node, we
obtain aradix-M generalized hypercube[4, 11]. This com-
bined with Theorem 4.1 leads to the following theorem for
the layout of high-radix hypercubes.

Theorem 4.3 Aradix-M generalized hypercubecanbelaid
out using M?N?/16+0(M?N?) area, assuming that M isnot
a constant.

The above layout can be easily extended to general
mixed-radix generalized hypercubes[4]. Aswill be shown
in Section 5, the proposed layouts for generalized hyper-
cubes and HSNs are optimal within afactor of 1+ o(1).



4.2. Optimal layoutsfor butterfly networksand in-
direct swapped networks (I SNs)

In this subsection we present efficient layouts for butter-
fly networks and indirect swapped networks (ISNs) [22]).
A butterfly network [13] is obtained by unfolding the struc-
ture of a hypercube along routing paths, while an indirect
swapped network (ISN) (also caled an unfolded swapped
network (USN) [22]) is a multistage network obtained by
unfolding the structure of a swapped network [23, 25]. We
first present optimal layouts for |SNs and then use them to
derive optimal layouts for butterfly networks.

Theorem 4.4 An N-node ISN can belaid out in

N2 N2
+0
4logzN <I092N>

area, assuming that the number M, of top-level clustersin
the corresponding swapped network (which is unfolded to
generate the ISN) is not a constant.

Proof: If we place every M, rows of the ISN into the same
top-level block [25, 28], then each pair of the blocks are
connected by 2 links. Therefore, we can lay out the inter-
cluster links using the layout of an (g IygzN +0(7 {ggN))-
node compl ete graph with multiple edges, which requires

N2 N?
+0
4logzN <I092N>

area[25, 27]. |

The layout areafor the ISN improves the corresponding
result given in [22] by afactor of 4+ 0(1).

The following theorem gives a layout for the butterfly
network that is optimal within afactor of 1+ o(1) from the
lower bound givenin [2].

Theorem 4.5 An N-node butterfly network can be laid out
in
N2 N2
+0
logzN (Iog2 N >

Proof: If we unfold an HSN(2, %N cube), we obtain a

(logy N + 2)-stage ISN that uses IogTzN-di mensional butter-
fly networksas the basic modules. If we double up the links
connecting the middle two stages of the ISN, remove nodes

inthe ('OQTZN + 2)-th stage, and reconnect each of the repli-
cated linksto one of thetwo linksbetween the ( 'OQTZN +2)-th

andthe( '0922 N+ 3)-th stage through aremoved node, we can
obtain an automorphism of a (log, N)-dimensional butterfly

area.

ISN Butterfly
0 0
‘ 1 2
2 1
3 3

Figure 2. Deriving butterfly networks from in-
direct swapped networks. (a) Transforming a
4x 4 ISN into a 4 x 4 butterfly network. (b) A
resultant 16 x 16 butterfly network.

(see Fig. 2). Therefore, the area of the butterfly is approxi-
mately 4 timesthat of an ISN; that is

N2 N2
—— 40— .
loggN <I092N>

In[2] the same upper bound for thearea of abutterfly net-
work hasbeen presented. The proof givenin[2] is, however,
considerably more complicated than our construction. Itis
also interesting that butterfly networks can belaid out based
on the layout of a complete graph.

Generalized hypercubes, HSN(I, Q) with | > 2, and
I SN's unfolded from such HSNs can be laid out based on the
collinear layouts of complete graphsrather than the 2-D lay-
outsof completegraphs. Similar to the multilayer layouts of
hypercubes, the resultant layouts for these networks can be
easily partitioned and wired using L > 2 layers. The resul-
tant maximum wire lengths in these layouts can be reduced

O



by afactor of approximately 2 compared to the layouts pre-
sented in this paper and the areas are also dightly reduced.
Similar to Theorem 4.5 (see Fig. 2), multilayer layouts for
butterfly networks can be obtained by modifying the multi-
layer layouts for ISNs. More details will be reported in the
near future.

5. Tight bounds on the VLS| areas of several
networks

Inthissection, we derivetight boundson the areasof sev-
eral networks under the grid model.

Thetotal exchange (TE) task [3, 9] (also called all-to-all
personalized communication) isabasic communi cation task
that arises oftenin applications, where each nodehasto send
adifferent (personalized) packet to every other node of the
network. In[25], we have shown the following lemma con-
cerning the relationship between the VL S| area of anetwork
and the throughput for performing TE tasksin it.

Lemmab5.1 Assume that f(N) total exchange (TE) tasks
can be executed in f(N)Trg communication steps in an
N-node interconnection network for some integer function
f(N), under the all-port communication model. Then the
layout area of the network is at |east equal to

[IN/2]2x [N/2]? ~ N*
T2 16TZ

When performing the TE tasks we assumethat linksare bidi-
rectional and nodes can have infinitely large routing tables
and buffer space and perform infinitely many computation
stepsif required. (Linksare still assumed to have unit width
in the layout.)

In what follows we show that several of the layouts pre-
sented in Section 4 have areasthat are optimal within afac-
tor of 1+ o(1).

Theorem 5.2 The area of the minimal layout of a radix-M
generalized hypercubeis equal to M?N?/16+0(M?N?), as-
suming that M is not a constant, where N is the number of
nodesin the network.

Proof: The upper bound is given in Theorem 4.3. A lower
bound on its VLSI areais given by

(M—1)2n2N?  M2N2
16n2 16
from Lemma 5.1 and the fact that n TE tasks can be per-

formed in nN/M steps in an n-dimensional radix-M hyper-
cube. |

— o(M2N?)

Thethroughput for performing TE tasksin HSNsisgiven
in the following lemma[25].

Lemma 5.3 Thethroughput for executing TE tasksin an N-
node HSN(I,G) can be arbitrarily close to 1/N, provided
that the nucleus G can executel TE tasksin M time stepsun-
der the all-port communication model, where M isthe num-
ber of nodesin G.

By combining Lemma 5.3 with Theorems 4.1 and 5.1,
we can prove that the layout for HSNs is also close to be-
ing strictly optimal.

Theorem 5.4 The area of the minimal layout of an N-node
HSN\(I,G) is equal to N?/16+ o(N?) if the nucleus G can
execute | TE tasksin M time steps under the all-port com-
munication model and

(a) | =2andthenucleusG canbelaidoutinasquare
ofsideo(Mg),or

(b) | =3andthenucleusG canbelaid out in a square
of side o(M?), or

() 1>4,

assuming that M, the size of a nucleus G, is not a constant.

In Section 4 we derived optimal layoutsfor butterfly net-
works based on the layouts of ISNs. In what follows, we
show that the lower bound on the VLSI area of a butterfly
network givenin [2] can be used to derive alower bound on
theareaof an ISN.

Theorem 5.5 The area of the minimal layout of an N-node
ISN is equal to 4log N io(Iog N) assuming the nucleus of
thelSNisa butterfly network.

Proof: From Theorem 4.5, wecan seethat if it werepossible

2
tolayoutanISNin (:I_Z%':l area, thenit would also bepossi-

bleto lay out a butterfly network in (| Z)N +o(I ) area,
95 og’N

where € is a positive constant. This contradicts the lower

bound given in [2]. Therefore, the areaof an ISN is at |east
N2

Fo@N (IogzN) The upper bound is given in Theorem

4.4, O

Theorem 5.5 can be generalized to | SNsthat are based on
other nuclei that contain abutterfly network of the sasme size
as a subgraph.

By using the techniques introduced, we can also obtain
tight bounds on the bisection widths of the networksinves-
tigated in this paper and efficient layoutsfor many other net-
works, such as macro-star networks [26] periodically regu-
lar chordal rings [14, 15], and cyclic networks [24]. Some
examples can befound in [25, 28].



6. Conclusion

We derived layouts for butterfly networks, generalized
hypercubes, HSNs, and | SNsthat are optimal within afactor
of 14+ 0(1) under thegrid model. We presented efficient lay-
outsfor hypercubes, CCCs, folded hypercubes, reduced hy-
percubes, RHSNs, and enhanced-cubes, which are the best
results reported thus far under the grid model. In particular,
the number of tracks of the collinear layout of hypercubes
is optimal within a factor of 1.3, and the areas of proposed
2-D layouts for hypercubes and CCC are optimal within a
factor of 1.7 under the grid model. We aso derived effi-
cient multilayer layouts for hypercubes, which are the best
resultsreported thusfar for the given numbersof layers. The
techniques used in this paper can be used to obtain efficient
layoutsfor awide variety of other interconnection networks
[25, 28].
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