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Abstract

We investigate a trivalent Cayley graph, which we call
the rotation-exchange (RE) network, and present commu-
nication algorithms to perform one-to-one routing, single-
node broadcasting, multinode broadcasting, and total ex-
change in it. The RE network can be viewed as a star-
graph counterpart to the hypercubic shuffle-exchange net-
work, with the important difference that the RE network is
regular and symmetric. We show that RE networks can effi-
ciently embed and emulate star graphs, meshes, hypercubes,
cube connected cycles (CCC), pancake graphs, bubble-
sort graphs, complete transposition graphs, and the shuffle-
exchange permutation graphs. We also show that the per-
formance of RE networks can be significantly improved for
a variety of applicationsif the transmission rate of on-chip
linksis considerably higher than that of off-chip links.

1. Introduction

A variety of topologieshave been proposed and analyzed
intheliterature[2, 16, 23, 25, 29, 33] for theinterconnection
of processorsin parallel computing systems, under several
assumptions on the communication model used. Among
them, the star graph [2, 3] hasreceived agreat deal of atten-
tion asan attractive alternative to the hypercubefor building
parallel computers. Star graphs belong to the class of Cay-
ley graphs[3], are symmetric and strongly hierarchical, and
have diameter, average distance, and node degree that are
superior to those of similar-sized hypercubes. Also, many
important algorithms can beefficiently performed on the star
graph[4, 6, 7, 10, 22, 24].

Even though the hypercubeand the star graph have many
desirable topological and agorithmic properties, their node
degrees increase with the size of the network. Severa
constant-degree networks, such as the cube connected cy-
cles(CCC) [23], the shuffle-exchange (SE) networks, the de
Bruijn graphs [20], the star connected cycles (SCC) [17],
the shuffle-exchange permutation (SEP) graphs [18], and

the cyclic networks[30], have been proposed as alternatives
to the hypercube and the star graph topologies. Since the
SCC graph inherits some important propertiesfrom the star
graph, and the star graph has been shown to be superior to
the hypercube in several aspects, the SCC graph has some
important advantages over the CCC network under certain
assumptions [17]. The well-known shuffle-exchange (SE)
network, whichisanother hypercubic network, hasdiameter
that is somewhat smaller than that of a similar-sized CCC,
and can emulate a hypercube of the same size with simpler
and faster algorithms than a CCC [20]. The SE network,
however, is neither symmetric nor regular.

Thetrivalent Cayley graph to be studied in this paper can
be viewed as a star-graph counterpart to the hypercubic SE
network, and will be referred to as the rotation-exchange
(RE) network. The RE network first appeared as an example
of group graphsin [1], but its topological and agorithmic
properties have not been explored in the literature before.
We show that, asisthe case with the SCC graph, the RE net-
work inherits many desirable propertiesfrom the star graph,
and is therefore in many respects superior to the CCC and
SE networks under certain assumptions. Since the relation-
ship between the RE network and the star graphissimilar to
that between the SE network and the hypercube, the RE net-
work can embed and emulate a star graph of the same size
aswell asavariety of other network topologies with faster
and considerably simpler algorithmsthan the corresponding
embeddingsand emulation for an SCC graph. In contrast to
the SE network, the RE network is both regular and vertex-
Ssymmetric.

We present efficient algorithms to perform one-to-one
routing, single-node broadcasting, multinode broadcasting,
and total exchange in RE networks. We also derive smple
and efficient embeddingsand emulation of star graphs|2, 3],
meshes, hypercubes, CCC [23], pancake graphs[3], bubble-
sort graphs [3], complete transposition graphs[19, 20], and
shuffle-exchange permutation graphs [18], under a variety
of assumptions on the communication model.

We assume that several processors of the RE network
are placed on the same module (e.g., chip, board, wafer,
or multi-chip module (MCM)) and look at the case where



the transmission rate of on-modulelinksisdifferent (larger)
than the transmission rate of off-module links. We find
the time required to perform (unicast) routing, single-node
broadcasting, and total exchangewhen on-moduletransmis-
sion rates are large enough so that the off-module band-
width isthe main communication bottleneck. We show that
when the transmission rate of on-module links is consider-
ably higher than that of off-modulelinks, the performanceof
RE networks can also be significantly improved for a vari-
ety of other applications, including the embeddingsand em-
ulation of star graphs [2, 3], meshes, hypercubes, pancake
graphs[3], and complete transposition graphs[19, 20].

The remainder of this paper is organized as follows. In
Section 2, weformally definetherotati on-exchangenetwork
and give some related notation. In Section 3, we derive a
variety of embeddingsand emulation algorithmsfor RE net-
works. In Section 4, we consider RE networksthat havefast
on-modulelinks. In Section 5, we present algorithmsto exe-
cuteseveral prototypecommunicationtasksin RE networks.
Finally, in Section 6, we conclude the paper.

2. Rotation-exchange (RE) networks

Therotation-exchange (RE) network wasfirst mentioned
in [1] as an example of a Cayley graph, but it has not been
investigated in detail. In this section, we introduce the defi-
nition of the RE network and some related notation.

A permutation of k distinct symbolsintheset {1,2,...,k}
is represented by U = upx = UpUp---Ug, wWhere uj €
{1,2,..,k} and uj #uj fori # j, 1 <i,j <k Ak
dimensional RE network isan undirected regular graph with
N = k! nodes, each corresponding to a distinct permutation
of the set {1,2,...,k}. Two nodes are directly connected if
and only if the label (permutation) of one node can be ob-
tained from the label of the other by one of the following
operations:

e Swapping the first two symbols (the leftmost symbol
isranked asfirst).

e Shiftingthelast k— 1 symbolscyclicaly totheleft (or
right) by one position.

A 4-RE network isshowninFig. 1. Thefollowingtwo types
of generators will be useful in formally describing the RE
network topology.

Definition 2.1 (Transposition Generator T;) :
Given a permutation U = uy., we define the dimension-i
transposition generator T;, i = 2,3, ...,k, asthe permutation
that interchanges symbol u; with symbol uq in ug.

In other words, fori =2,3,...,k,

Ti (U1k) = UjUg;i—1U1Uig1:k,

exchange
links

Figure 1. The structure of a 4-RE network.

where the notation u;.j,, j1 < j2, denotes the sequence
Uj,Uj,+1---uj,. For example, for the permutation | =
123456789 we have

To(1) = 213456789; Ts(1) = 523416789; Ty(1) = 823456719.

Definition 2.2 ((k— 1)-Cycle Generator C')

Given a permutation U = uy,, we define the (k — 1)-cycle
generator C' asthe permutation that cyclically shiftsthe se-
guence of symbols u, by i positionsto the left.

That is, _
C'(U1k) = UgUiy2:kU2i 11

For example, for | = 1 23456789, we have
CY(1) = 1 34567892; C?(1) = 1 45678923.

For any integer i, C' is equivalent to the generator
c mod k-1 \hich is equivalent to the sequence of genera-
tors C'C---CL, where k is the number of symbols in the
———
i mod k-1
permutation. It can be seen that the sequence of generators,
C'T,C™', which stands for the chain function

UCT,C™ =C(To(C (U))),

is equivalent to the transposition generator T, for i =
1,2,3,...,.k—2.

The k-dimensional rotation-exchange network, abbrevi-
ated k-RE, isatrivalent Cayley graphthat hask! nodes, each
represented by a permutation of the symbolsin {1,2,...,k},
and is defined as follows.

Definition 2.3 (Rotation-Exchange (RE) Networks) :
The k-dimensional rotation-exchange network (abbreviated
k-RE) isthe graph (V ,E), where

\ :{ulik|ui,uj 6{1727"',k}’ Ui #uj fori;éj: 1S|7] Sk}



isthe set of vertices, and
E = {(U,V)|U,V eV saisfyingU = T,(V) or U = CL(V)

orU =C*2(v)}
isthe set of edges.

A k-RE isak!-node Cayley graph based on the generator
set {T,, C!, C¥2}. The RE network is vertex-symmetric
and regular and has degree equal to 3. In this paper, the in-
teger “K” isexclusively used to represent the number of sym-
bols in the permutation representing a node. We will some-
timesuse T, C, and C~1 to signify T,, C, and C*~2, respec-
tively. Thelink connecting nodesU and G(U) is called the
link G of node U, where generator G € {T,C,C"'}. Note
that links C and links C~1 correspond to a left or a right
cyclic shift of the nodelabel, respectively. LinksC andC 1
will be collectively referred to as the rotation links, while
link T will also bereferred to asthe exchangelink of anode.
By removing all exchange links from a k!-node k-RE, we
obtain k- (k— 2)! disconnected (k — 1)-node rings, each of
which will be called arotationring.

In [18], Latifi and Srimani proposed an interesting
degree-3 Cayley graph, called the shuffle-exchange permu-
tation (SEP) graph, which has generators similar to those
of an RE network. Instead of using (k — 1)-cycle genera-
tors, the SEP graph uses k-cycle generators, which shift the
k symbols cyclically to the left or right by one position. As
we will show later, the RE network is more efficient in em-
ulating several graphs based on permutation groups. Also,
if we assumethat local links (or on-module links) are faster
than remote links (or off-modulelinks) by afactor of ©(k),
the performance of the RE network for many problemsis
better than that of the SEP graph by afactor of ©(k).

3. Emulation and embeddings in rotation-
exchange networks

In this section, we show how to emulate algorithms de-
velopedfor several Cayley graphson an RE network and de-
rive efficient embeddings of several important topologiesin
RE networks.

3.1. Emulating Cayley graphsin RE networks

In this subection, we show how to emulate algorithms
developed for star, bubble-sort, complete transposition, and
pancakegraphsaswell asany Cayley graphin RE networks.
In the embedding that we propose, anode in the guest Cay-
ley graphisone-to-onemapped to the nodethat hasthe same
addressin the host k-RE network.

We first assume the single-dimension communication
(SDC) model [31, 32], where the nodes are allowed to use
only links of the same dimension at any given time. Many
algorithms developed for the star graph fall into this cate-

gory [22].

Theorem 3.1 Any step of analgorithmin ak-star under the
SDC model can be emulated on a k-RE in at most 2| (k —
1)/2]| + 1 stepsunder the SDC model, out of which 1 stepin-
volvestransmissionsover exchangelinksand at most 2| (k—
1)/2] stepsinvolve transmissions over rotation links.

Proof: Transmissiononlink Tj, i = 2,3,4,...,k, in ak-star
is equivalent to the sequence of generatorsC'~2, T,C?>' and
can be emulated by transmission on either the sequence of
links

cc---ctcict...ct

N N ———

i-2 i-2

or the sequence of links

clct..clrtce--C

| N —

k—i+1 k—i+1

on ak-RE. Since
min(i—2,k—i+1) < ((i—-2)+(k—i+1))/2=(k—1)/2,

any step of ak-star algorithm under the SDC model can be
emulated on a k-RE using 1 step involving transmissions
over exchangelinks and at most 2| (k— 1) /2| stepsinvolv-
ing transmissions over rotation links. |

By emulating routing algorithms developed for star
graphs, we can obtain routing algorithms that requires at
most |3k/2 — 3] transmissions over exchange links and
O(k?) transmissions over rotation links.

It is well known that normal hypercube algorithms can
be emulated with constant slowdown on several hypercu-
bic networks, such asthe shuffle-exchangenetwork [20] and
cube-connected cycles (CCC) [23]. We now show that nor-
mal star-graph algorithms, where the dimensionsof the star-
graph links used are (cyclically) consecutive, can be emu-
lated with a slowdown factor of 2 on RE networks.

Lemma 3.2 An algorithm in a k-star that uses links of
(cyclically) consecutive dimensions in s consecutive steps
can be emulated on a k-RE network in at most 2s— 1 +
2|(k — 1)/2] steps, out of which s steps corresponds to
transmissionsover exchangelinksandat most s— 1+ 2| (k—
1)/2| correspond to transmissions over rotation links.

Proof: From the proof of Theorem 3.1, we know that the
sequence of generators T;Tj,1 in astar graph is equivalent
to the sequence of generators

ci-21,c*ici-1T1,ctl

Clearly, the third and fourth generators in the last se-
guence are collectively equivalent to a single generator
C2-D+(i-1) = CL. Asaresult, transmissions over dimen-
sionsds,d,,ds, ...,ds in astar graph can be emulated by the
action of generators

Cdl_27T7 Ci27T7 Ci37 e 7T7Ci8717T7C2_d57
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where

. 1,
IJ' = _1’

Since either C%1—2 or C?~% require at most |(k — 1)/2]
rotation-link transmissions, the upper bound follows. O

if dj = dj_1+1or (dj_l =k and dj = 2),
otherwise.

Theorem 3.3 Anynormal k-star algorithmcan beemulated
on a k-RE with a dowdown factor of 2, assuming that the
final locations of the outputs are not specified.

Proof: When the locations of final destinations are not
specified, thelast | (k— 1)/2] transmissions of Lemma 3.2,
which take place over rotation links are not required. If the
first step in the emulated normal star-graph algorithm re-
quires transmissions over dimension j, we can rename the
nodes of the k-RE by mapping node X to node CI=2(X) so
that the first | (k — 1)/2] rotation-link transmissions are no
longer required. The total number of steps required for em-
ulating s stepsin anormal k-star algorithm is then equal to
2s—1. |

Similar to Theorem 3.3, we can show that any normal
k-star algorithm can be emulated on a k-dimensional SEP
graph with a slowdown factor of 3, assuming that the final
locations of the outputs are not specified.

To emulate star graph algorithmswith all-port communi-
cation, we simply perform single-dimension emulation for
al dimensions T;(X), i = 2,3,...,k— 1, either one after the
other or simultaneously with appropriate scheduling, lead-
ing to the following theorem.

Theorem 3.4 Any step of an algorithmin ak-star under the
all-port communication model can be emulated on a k-RE
inat most | (k—1)2/2] +k — 1 steps under the SDC model,
out of which k— 1 stepsinvolvetransmissions over exchange
linksand | (k— 1)?/2| stepsinvolve transmissions over ro-
tation links.

Theorem 3.5 Any step of an algorithmin a k-dimensional
bubble-sort graph under the SDC model can be emulated on
a k-RE in at most 2|k/2| + 3 steps under the SDC model,
out of which at most 3 steps involve transmissions over ex-
changelinksand at most 2| k/2| stepsinvolvetransmissions
over rotation links.

Proof: A k-dimensional bubble-sort graph has k — 1 gener-
ators (i,i+1),i = 1,2,3,...,k— 1, which exchange the it"
and (i + 1) symbols. Generator (i,i+1), i =2,3,4,...,k
is equivalent to the sequences of generators C—2,T,C, T,
Cc1T,C% " or C-1T,CLT,C,T,CH'. There exists at
least a sequence of generators consisting of at most 3 ex-
change generators T and at most 2| k/2| (k— 1)-cycle gen-
eratorsC or C~1 that isequivalent to the preceding sequence
of generators by trandating C! into C or C1. m|

A k-dimensional completetransposition graph k-CT [19,
20] is a Cayley graph defined with a generator set consist-
ing of all the generators that interchange any two of the k
symbolsin the label of anode. A k-CT graph has k! nodes,
degree k(k — 1)/2, and diameter k — 1. It contains a k-star
or ak-dimensional bubble-sort graph [3] as a subgraph and
has been shown to be arich topology that can efficiently em-
bed many other popular topologies, including hypercubes,
meshes, and trees. The following theorem provides effi-
cient embedding of completetransposition graphsin RE net-
works.

Theorem 3.6 Any step of an algorithmin a k-dimensional
complete transposition graph under the SDC model can be
emulated on a k-RE in at most

Z{Lz—l)/ﬂ-‘ +2{%1J +3~15k+3

steps under the SDC model, out of which 3 steps involve
transmissions over exchange links and at most

Z[k—uk—b/ﬂw+2{k_lJm15k

2 2
steps involve transmissions over rotation links.

Proof: Generator (i, j), which swapstheit" and the ™" sym-
bols, 1 < i, j <k, iseguivaent to the sequence of generators

c2T1c T T

or
c2T.clTcT,Ccr,
<0 the result follows. O

Theorem 3.7 Any step of an algorithmin a k-dimensional
pancake graph under the SDC model can be emulated on a
k-RE in at most n?/4 + O(n) steps under the SDC model,
out of which at most 3| k/2| — 2 stepsinvolvestransmissions
over exchangelinks.

We can generalize these emulation results to any Cayley
graph defined with at most k symbols with slowdown fac-
tor upper bounded by the corresponding routing distance in
an RE network (between two neighboring nodesin the guest

Cayley graph).

3.2. Embeddings of trees, meshes, hyprcubes, and
CCC

In this subsection, we present efficient embeddings and
packings of trees, meshes, hypercubes, and cube connected
cycles (CCC) [23] in RE networks.

A variety of embedding results are available for star
graphs, bubble-sort graphs, and complete transposition
graphs|[9, 19, 21, 14]. These results, when combined with
Theorems 3.1, 3.5, and 3.6 giverise to avariety of efficient
embeddingsfor RE networks.



Theorem 3.8 There exists a dilation-(2|(k — 1)/2| + 1)
embedding of the complete binary tree of height 2k — 5 into
a k-RE network for k = 5 or 6, or height at least equal to
(1/2+ o(1))klogy k into a k-RE network for k > 7, where
an embedded edge consists of one exchangelink and at most
2| (k—1)/2] rotation links.

Proof: In[9], it has been shown that for k = 5 or 6 there
exists a dilation-1 embedding of the complete binary tree
of height 2k — 5 into the k-star. For k > 7, there exists a
dilation-1 embedding of the complete binary tree of height
at least equal to (1/2+0(1))klog, k into the k-star. Therest
of the proof follows from Theorem 3.1. a

Theorem 3.9 Thereexistsadilation-O(k) embedding of the
d-dimensional hypercube into a k-RE network, assuming
d < klog, k — 37‘( + o(k), where an embedded edge consists
of O(1) exchangelinksand O(k) rotation links.

Proof: In[21], it has been shown that there existsadilation-
O(1) embedding of the d-dimensional hypercube into a k-
star, provided that d < klog, k— (3/2+ 0(1))k. This, com-
bined with Theorem 3.1, compl etes the proof. m|

Theorem 3.10 There exists an embedding of load 1, expan-
sion 1, and dilation

2{%} +2{k21J +3~ 15k+3

of the M1 x M, mesh onto a k-RE network, where an em-
bedded edge consists of at most 3 exchangelink and at most
ori=lle /2l 4 ooty & 1.5k rotation links and My x
M, =Kk,

Proof: It follows from Theorem 3.6 and the fact that there
existsadilation-1 expansion-1 embedding of M1 x M, mesh
into ak-CT graph, where M; x M, = k! [19]. ad

Theorem 3.11 There exists a load-1, expansion-1, and
dilation-(6] (k— 1)/2] + 3) embedding of the 2 x 3 x 4 x

x (k— 1) x k mesh into a k-RE network, where an em-
bedded edge consists of at most 3 exchangelink and at most
6] (k—1)/2] rotation links.

Proof: In[14] it has been shown that there exists a dilation-
3expansion-1embedding of the2x 3x 4 x --- x (k—1) xk
mesh into ak-star. This, combined with Theorem 3.1, com-
pletes the proof. a

The minimum possible dilation for a constant-degree

network to embed a network of degree Q(m'goﬁ)'g,\,)

is Q(loglogN). It is interesting to note that by imple-
menting the rotation links with faster local links (see Sec-
tion 4), the delay for emulating an edge of several degree-

Q (lo';%';N) guest graphs, such asthe hypercube, k-D mesh,
star graph, and complete transposition graph, in an RE net-
work is only a small constant (which has similar effect as

having a constant-dilation embedding).

Theorem 3.12 Ak-RE network can pack (2"‘(/21)1 k-dimen-
sional CCC with load 1, expansion 1, dilation 4, and con-
gestion 5whenkiseven, or ;S/(z 21)5 k-dimensional CCC with

load 1, expansion 1, dilation 5, and congestion 3 when k is
odd.

Proof: When k is even, a lg—dimensional CCC can be de-

fined as a Cayley graph that has generators T,S?, and S 2,
where € — SSand S2 = S-S, Since & = TCTC and
S2 = C~TC1T, the packings of Zk/zl)ll X-dimensional
CCC with even k follows.

Whenkisodd, a %—di mensional CCC can bedefined as
aCayley graph that has generators (2, 3),C?, and C~? where
(2,3) swaps the 2nd and 3rd symbols of a node label and
(2,3) = TCTCIT. Therefore, the packingswith odd k fol-
lows. |

Theorem 3.13 Any algorithm in a k-dimensional SEP
graph (or RE network) under the SDC model can be emu-
lated on ak-dimensional RE network (or SEP graph, respec-
tively) under the SDC model with a dlowdown factor of 2.

Proof: Thiscan be shown by noting that the generator S (or
S™1) of the SEP graph is equivalent to the sequence of gen-
erators TC (or TC 1, respectively) of the RE network, and
the generator C (or C™1) of the RE network is equivalent to
the sequence of generators TS(or S™1T, respectively) of the
SEP graph.

We can al so show that the computation powersof the SEP
graph and RE network are equivalent withinasmall constant
under avariety of communication models. Moredetailswill
be reported in the near future.

4. RE networks using links of different trans-
mission rate

With the rapid advances in VLSI technology, the num-
ber of transistors per chip and the number of processorsthat
can be put onto a chip are expected to grow significantly.
Since the processor-memory bandwidth is one of the major
bottlenecks on the performance of current and future paral-
lel systems, implementing processors in memory (PIM) or



computational RAM [34] is believed to be a promising ap-
proach for the construction of futuremassively parallel com-
puters. EXECUBE [15], hypernets [12], recursively con-
nected complete (RCC) networks [11], and macro-star net-
works[28, 32], are some of the well-known parallel archi-
tectures and networks that use such structures or similar as-
sumptions. Inwhat follows, we consider the case where sev-
eral nodes (including processors, routers, and their memory
banks) of the RE network are implemented on asingle chip
(or aboard, amulti-chip or multi-board module).

To find a good strategy for partitioning the nodes of an
RE network into chips (or, in general, modules), note that
the number of transmissions over exchangelinksis consid-
erably smaller than the number of transmissions over rota-
tion links for most of the important algorithms described in
Section 3 (and also for the algorithms that will be describe
in Section 5). Therefore, if we place nodes belonging to the
same rotation ring (and their rotation links) onto the same
chip, the traffic will be largely confined within chips when
executing these algorithms, and the off-chip traffic will be
small. Also, since each node on an RE network has one ex-
changelink and two 2 rotation links, by putting all nodes of
arotationring onto the same chip, only oneoff-chiplink will
be required per node.

In most papers on routing in interconnection networks,
it is assumed that the transmission and propagation delay
is the same (equal to 1 unit of time) for all network links.
Since, however, on-chip links are significantly shorter than
off-chip links and do not need extra delay to drive off-chip
pins, they can be implemented using a considerably higher
clock rate. Moreover, since the cost for an on-chip connec-
tion is much smaller than that of an off-chip connection, the
channel width of an on-chip link can be increased, if re-
quired, without significantly increasing the hardware cost.
Thus, arealistic model for message-passing parallel archi-
tecturesisto assume that on-chip connections have (consid-
erably) larger transmission rate than of f-chip connections. A
similar model that uses unequal transmission rates for on-
chip and off-chip links was assumed in [5, 6, 17] for SCC
graphs. This model is aso implied in severa other papers
concerning interconnection networks[11, 12, 32].

By increasing the transmission rate of on-module links,
the delay required for node-to-node communication can be
significantly reduced.

Theorem 4.1 Packet routing can be performed in an N-
node RE network in O(logN/loglogN) time if the trans-
mission rate of on-module links is Q(logN/loglogN), the
transmission rate of off-modulelinksis Q(1), and nodes be-
longing to the same rotation ring are placed on the same
module.

It is also easy to show the following emulation results.

Corollary 4.2 Ak-star, k-dimensional bubble-sort, or com-
pletetransposition graph can be emulated in a k-RE network

under the SDC model with O(1) slowdown if the transmis-
sion rate of on-module links is Q(k), the transmission rate
of off-modulelinksis Q(1), and nodesbel onging to the same
rotation ring are placed on the same module.

Corollary 4.3 Transmission over an embedded edge of

¢ (a) a complete binary tree of height 2k — 5 for k = 5
or 6,

¢ (b) a complete binary tree of height at least equal to
(1/2+0o(1))klog, k for k > 7,

¢ (c) ahypercubeof dimensiond < klog,k— 3+ o(k),
° (d)anM1XM2WE§1MthM1XM2:k!,Or
e (a2x3x4x---x(k—1)xkmesh

in a k-RE network can be performed in O(1) time if the
transmission rate of on-module linksis Q(k), the transmis-
sion rate of off-module links is Q(1), and nodes belonging
to the same rotation ring are placed on the same module.

These results show that many important topologies can
be emulated by an RE network with constant slowdown un-
der acommunication model that takesinto account thelarge
difference between the speed of on-module and off-module
links.

5. Communication algorithmsfor RE networks

In this section, we present algorithms to execute certain
communication tasks in RE networks.

Two prototype communication tasks that arise often in
applications are the multinode broadcast (MNB) and the to-
tal exchange(TE) [8, 13, 26, 27]. Inthe MNB each node has
to broadcast a packet to al the other nodes of the network,
whilein the TE each node has to send a different (personal -
ized) packet to every other node of the network. Mi&i¢ and
Jovanovit [22] have proposed strictly optimal algorithmsto
execute both tasksintimek! — 1 and (k+1)! +o((k+1)!)¥,
respectively, in ak-star with single-dimension communica-
tion. Using Theorem 3.1, the algorithmsin [22] giveriseto
corresponding algorithmsfor the k-RE network.

Corollary 5.1 Thetotal exchangetask can be optimally ex-

ecuted in a k-RE network under the SDC model in O((k +
2

2)1) = o((lyg'fgg,;“)z) steps, where (k+ 1)! +o((k+ 1)!) =

Nlog, N NlogN ; F _
Tog, Tog, N +0 (IoglogN steps involve transmissions over ex
Nlog?ZN

changelinksand O ( ToglogN)2 ) stepsinvolve transmissions
over rotation links, by emulating any optimal TE algorithm
developed for the star graph under the SDC or the all-port

communication model, where N = k! is the size of the k-RE
network.

*The notation f(N) = o(g(N)) means that limy_se f(N)/g(N) = 0.



Proof: The proof follows from Theorems 3.1 and 3.4. and
the emulation of any optimal TE algorithm developed for
star graphsunder the SDC (e.g., thealgorithm givenin [22])
or the all-port communication model (e.g., the algorithm
given in [10]). Since the diameter of a k-RE network is
O(k?), itisstraightforward to show that the required number
of steps O((k+2)!) =0 ( (Igg'?g;\'}‘)z ) isof the optimal order
of magnitude.

Note that since each node of an RE network has degree
equal to 3, theall-port communicationmodel (whereall inci-
dent links can be used for packet transmission and reception
at the same time) and the single-dimension communication
model are equally powerful within a constant of 3.

Thedowdownfor emulating MNB algorithmsdevel oped
for star graphs under the all-port communication model is
considerably smaller than the upper bound given in Theo-
rem 3.4.

Corollary 5.2 The multinode broadcast task can be exe-
cutedin ak-RE network under the SDC model or the all-port
communication model with k! + o(k!) = N+ o(N) steps for
transmission over exchange links and O(k!) = O(N) steps
for transmission over rotation links, by emulating any op-
timal MNB algorithms devel oped for star graphs under the
all-port communication model.

Proof: We emulate optimal MNB a gorithms devel oped for
star graphs (e.g., the algorithms given in [22]), and use the
technique described in the proof of Theorem 3.4. The TE al-
gorithmsfor (k— 1)-noderingsused in the proof of Theorem
3.4 arereplaced herewith MNB algorithmsfor (k— 1)-node
rings. |

Using similar emulation techniques, we can obtain an ef-
ficient algorithm to perform single-node broadcasting a go-
rithmin RE networks.

Corollary 5.3 The single-node broadcasting task can

be executed in a k-RE network under the SDC model

or the all-port communication model in at most O(k?)
2 .

=0 ((lo';%g';'\l)z) steps, out of which [3(k— 1) /2] stepscor-

respond to transmissions over exchange links and

2 ..
o) ( (|o|g(1)|%g';lu)2 ) steps correspond to transmissions over rota-

tion links.

Proof: We simply emulate any optimal single-node broad-
cast algorithm developed for k-stars (which requiresk — 1
steps) under the all-port communication model. The proof
issimilar to thosefor Theorem 3.4 and Corollary 5.2, butin-
stead of executing TE or MNB tasks in (k — 1)-node rings,
we now execute single-node broadcasts in (k — 1)-node
rings. m|

When on-module links have larger transmission rates
than off-module links, the execution times of some of the
previoustasks can be considerably reduced as the following
corollariesindicate.

Corollary 5.4 Sngle-node broadcasting can be performed

in a k-RE network in O(k) = O (m'gf’lLo’;,\l) time if the trans-

mission rate of on-module linksis Q(k) = Q (|o|go|+';N)v the

transmission rate of off-modulelinksis Q(1), and nodes be-
longing to the same rotation ring are placed on the same
module.

Proof: The proof follows from Theorem 4.1 and Corollary
5.3. O

Corollary 5.5 Thetotal exchangetask can be executedina

k-RE networkin O((k+1)!) =0 (l'g'g'%f\,‘\l) timeifthetrans-

mission rate of on-module linksis Q(k) = Q (|o|go|+';N)v the

transmission rate of off-modulelinksis Q(1), and nodes be-
longing to the same rotation ring are placed on the same
module.

Proof: The proof follows from Corollary 5.1. |

From Corollary 5.2, it isevident that higher transmission
rates for on-module links do not help reduce the execution
time of the multinode broadcast task. This is because for
this task on-module links and off-module links are utilized
to similar extent, and they both form a bottleneck for com-
munication.

6. Conclusion

We have derived efficient embeddings and emulation of
star graphs, meshes, hypercubes, CCC, pancake graphs,
bubble-sort graphs, complete transposition graphs, and the
shuffle-exchange permutation graphs, under a variety of as-
sumptionson the communication model. We presented effi-
cient algorithmsto perform routing, single-node broadcast-
ing, multinode broadcasting, and total exchange, on RE net-
works. We also showed that the performance of RE net-
works can be significantly if on-module transmissions are
considerably faster than off-moduletransmissions.
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