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Abstract

We investigate a trivalent Cayley graph, which we call
the rotation-exchange (RE) network, and present commu-
nication algorithms to perform one-to-one routing, single-
node broadcasting, multinode broadcasting, and total ex-
change in it. The RE network can be viewed as a star-
graph counterpart to the hypercubic shuffle-exchange net-
work, with the important difference that the RE network is
regular and symmetric. We show that RE networks can effi-
ciently embed and emulate star graphs, meshes, hypercubes,
cube connected cycles (CCC), pancake graphs, bubble-
sort graphs, complete transposition graphs, and the shuffle-
exchange permutation graphs. We also show that the per-
formance of RE networks can be significantly improved for
a variety of applications if the transmission rate of on-chip
links is considerably higher than that of off-chip links.

1. Introduction

A variety of topologies have been proposed and analyzed
in the literature [2, 16, 23, 25, 29, 33] for the interconnection
of processors in parallel computing systems, under several
assumptions on the communication model used. Among
them, the star graph [2, 3] has received a great deal of atten-
tion as an attractive alternative to the hypercube for building
parallel computers. Star graphs belong to the class of Cay-
ley graphs [3], are symmetric and strongly hierarchical, and
have diameter, average distance, and node degree that are
superior to those of similar-sized hypercubes. Also, many
important algorithms can be efficiently performed on the star
graph [4, 6, 7, 10, 22, 24].

Even though the hypercube and the star graph have many
desirable topological and algorithmic properties, their node
degrees increase with the size of the network. Several
constant-degree networks, such as the cube connected cy-
cles (CCC) [23], the shuffle-exchange (SE) networks, the de
Bruijn graphs [20], the star connected cycles (SCC) [17],
the shuffle-exchange permutation (SEP) graphs [18], and

the cyclic networks [30], have been proposed as alternatives
to the hypercube and the star graph topologies. Since the
SCC graph inherits some important properties from the star
graph, and the star graph has been shown to be superior to
the hypercube in several aspects, the SCC graph has some
important advantages over the CCC network under certain
assumptions [17]. The well-known shuffle-exchange (SE)
network, which is another hypercubic network, has diameter
that is somewhat smaller than that of a similar-sized CCC,
and can emulate a hypercube of the same size with simpler
and faster algorithms than a CCC [20]. The SE network,
however, is neither symmetric nor regular.

The trivalent Cayley graph to be studied in this paper can
be viewed as a star-graph counterpart to the hypercubic SE
network, and will be referred to as the rotation-exchange
(RE) network. The RE network first appeared as an example
of group graphs in [1], but its topological and algorithmic
properties have not been explored in the literature before.
We show that, as is the case with the SCC graph, the RE net-
work inherits many desirable properties from the star graph,
and is therefore in many respects superior to the CCC and
SE networks under certain assumptions. Since the relation-
ship between the RE network and the star graph is similar to
that between the SE network and the hypercube, the RE net-
work can embed and emulate a star graph of the same size
as well as a variety of other network topologies with faster
and considerably simpler algorithms than the corresponding
embeddings and emulation for an SCC graph. In contrast to
the SE network, the RE network is both regular and vertex-
symmetric.

We present efficient algorithms to perform one-to-one
routing, single-node broadcasting, multinode broadcasting,
and total exchange in RE networks. We also derive simple
and efficient embeddings and emulation of star graphs [2, 3],
meshes, hypercubes, CCC [23], pancake graphs [3], bubble-
sort graphs [3], complete transposition graphs [19, 20], and
shuffle-exchange permutation graphs [18], under a variety
of assumptions on the communication model.

We assume that several processors of the RE network
are placed on the same module (e.g., chip, board, wafer,
or multi-chip module (MCM)) and look at the case where



the transmission rate of on-module links is different (larger)
than the transmission rate of off-module links. We find
the time required to perform (unicast) routing, single-node
broadcasting, and total exchange when on-module transmis-
sion rates are large enough so that the off-module band-
width is the main communication bottleneck. We show that
when the transmission rate of on-module links is consider-
ably higher than that of off-module links, the performance of
RE networks can also be significantly improved for a vari-
ety of other applications, including the embeddings and em-
ulation of star graphs [2, 3], meshes, hypercubes, pancake
graphs [3], and complete transposition graphs [19, 20].

The remainder of this paper is organized as follows. In
Section 2, we formally define the rotation-exchangenetwork
and give some related notation. In Section 3, we derive a
variety of embeddings and emulation algorithms for RE net-
works. In Section 4, we consider RE networks that have fast
on-module links. In Section 5, we present algorithms to exe-
cute several prototype communication tasks in RE networks.
Finally, in Section 6, we conclude the paper.

2. Rotation-exchange (RE) networks

The rotation-exchange (RE) network was first mentioned
in [1] as an example of a Cayley graph, but it has not been
investigated in detail. In this section, we introduce the defi-
nition of the RE network and some related notation.

A permutation of k distinct symbols in the set f1;2; :::;kg
is represented by U = u1:k = u1u2 � � �uk, where ui 2
f1;2; :::;kg and ui 6= u j for i 6= j, 1 � i; j � k. A k-
dimensional RE network is an undirected regular graph with
N = k! nodes, each corresponding to a distinct permutation
of the set f1;2; :::;kg. Two nodes are directly connected if
and only if the label (permutation) of one node can be ob-
tained from the label of the other by one of the following
operations:

� Swapping the first two symbols (the leftmost symbol
is ranked as first).

� Shifting the last k�1 symbols cyclically to the left (or
right) by one position.

A 4-RE network is shown in Fig. 1. The following two types
of generators will be useful in formally describing the RE
network topology.

Definition 2.1 (Transposition Generator Ti) :
Given a permutation U = u1:k, we define the dimension-i
transposition generator Ti, i= 2;3; :::;k, as the permutation
that interchanges symbol ui with symbol u1 in u1:k.

In other words, for i = 2;3; :::;k,

Ti(u1:k) = uiu2:i�1u1ui+1:k;
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Figure 1. The structure of a 4-RE network.

where the notation u j1: j2 , j1 � j2, denotes the sequence
u j1u j1+1 � � �u j2 . For example, for the permutation I =
123456789 we have

T2(I)= 213456789; T5(I)= 523416789; T8(I)= 823456719:

Definition 2.2 ((k�1)-Cycle Generator Ci) :
Given a permutation U = u1:k, we define the (k� 1)-cycle
generator Ci as the permutation that cyclically shifts the se-
quence of symbols u2:k by i positions to the left.

That is,
Ci(u1:k) = u1ui+2:ku2:i+1:

For example, for I = 1 23456789, we have

C1(I) = 1 34567892; C2(I) = 1 45678923:

For any integer i, Ci is equivalent to the generator
Ci mod k�1, which is equivalent to the sequence of genera-
tors C1C1 � � �C1| {z }

i mod k�1

, where k is the number of symbols in the

permutation. It can be seen that the sequence of generators,
CiT2C�i; which stands for the chain function

UCiT2C�i =C�i(T2(C
i(U)));

is equivalent to the transposition generator Ti+2 for i =
1;2;3; :::;k�2.

The k-dimensional rotation-exchange network, abbrevi-
ated k-RE, is a trivalent Cayley graph that has k! nodes, each
represented by a permutation of the symbols in f1;2; :::;kg,
and is defined as follows.

Definition 2.3 (Rotation-Exchange (RE) Networks) :
The k-dimensional rotation-exchange network (abbreviated
k-RE) is the graph (V ;E), where

V = fu1:kjui;u j 2f1;2; :::;kg; ui 6= u j for i 6= j; 1� i; j� kg



is the set of vertices, and

E = f(U;V)jU;V 2 V satisfying U = T2(V) or U =C1(V)

or U =Ck�2(V)g

is the set of edges.

A k-RE is a k!-node Cayley graph based on the generator
set fT2; C1; Ck�2g. The RE network is vertex-symmetric
and regular and has degree equal to 3. In this paper, the in-
teger “k” is exclusively used to represent the number of sym-
bols in the permutation representing a node. We will some-
times use T , C, and C�1 to signify T2, C1, and Ck�2, respec-
tively. The link connecting nodes U and G(U) is called the
link G of node U, where generator G 2 fT;C;C�1g. Note
that links C and links C�1 correspond to a left or a right
cyclic shift of the node label, respectively. LinksC and C�1

will be collectively referred to as the rotation links, while
link T will also be referred to as the exchange link of a node.
By removing all exchange links from a k!-node k-RE, we
obtain k � (k� 2)! disconnected (k� 1)-node rings, each of
which will be called a rotation ring.

In [18], Latifi and Srimani proposed an interesting
degree-3 Cayley graph, called the shuffle-exchange permu-
tation (SEP) graph, which has generators similar to those
of an RE network. Instead of using (k � 1)-cycle genera-
tors, the SEP graph uses k-cycle generators, which shift the
k symbols cyclically to the left or right by one position. As
we will show later, the RE network is more efficient in em-
ulating several graphs based on permutation groups. Also,
if we assume that local links (or on-module links) are faster
than remote links (or off-module links) by a factor of Θ(k),
the performance of the RE network for many problems is
better than that of the SEP graph by a factor of Θ(k).

3. Emulation and embeddings in rotation-
exchange networks

In this section, we show how to emulate algorithms de-
veloped for several Cayley graphs on an RE network and de-
rive efficient embeddings of several important topologies in
RE networks.

3.1. Emulating Cayley graphs in RE networks

In this subection, we show how to emulate algorithms
developed for star, bubble-sort, complete transposition, and
pancake graphs as well as any Cayley graph in RE networks.
In the embedding that we propose, a node in the guest Cay-
ley graph is one-to-one mapped to the node that has the same
address in the host k-RE network.

We first assume the single-dimension communication
(SDC) model [31, 32], where the nodes are allowed to use
only links of the same dimension at any given time. Many
algorithms developed for the star graph fall into this cate-
gory [22].

Theorem 3.1 Any step of an algorithm in a k-star under the
SDC model can be emulated on a k-RE in at most 2b(k �
1)=2c+1 steps under the SDC model, out of which 1 step in-
volves transmissions over exchange links and at most 2b(k�
1)=2c steps involve transmissions over rotation links.

Proof: Transmission on link Ti, i = 2;3;4; :::;k, in a k-star
is equivalent to the sequence of generators Ci�2;T;C2�i and
can be emulated by transmission on either the sequence of
links

CC � � �C| {z }
i�2

T C�1C�1 � � �C�1| {z }
i�2

or the sequence of links

C�1C�1 � � �C�1| {z }
k�i+1

T CC � � �C| {z }
k�i+1

on a k-RE. Since

min(i�2;k� i+1)� ((i�2)+(k� i+1))=2= (k�1)=2;

any step of a k-star algorithm under the SDC model can be
emulated on a k-RE using 1 step involving transmissions
over exchange links and at most 2b(k�1)=2c steps involv-
ing transmissions over rotation links. 2

By emulating routing algorithms developed for star
graphs, we can obtain routing algorithms that requires at
most b3k=2 � 3c transmissions over exchange links and
O(k2) transmissions over rotation links.

It is well known that normal hypercube algorithms can
be emulated with constant slowdown on several hypercu-
bic networks, such as the shuffle-exchange network [20] and
cube-connected cycles (CCC) [23]. We now show that nor-
mal star-graph algorithms, where the dimensions of the star-
graph links used are (cyclically) consecutive, can be emu-
lated with a slowdown factor of 2 on RE networks.

Lemma 3.2 An algorithm in a k-star that uses links of
(cyclically) consecutive dimensions in s consecutive steps
can be emulated on a k-RE network in at most 2s � 1 +
2b(k � 1)=2c steps, out of which s steps corresponds to
transmissions over exchange links and at most s�1+2b(k�
1)=2c correspond to transmissions over rotation links.

Proof: From the proof of Theorem 3.1, we know that the
sequence of generators TjTj+1 in a star graph is equivalent
to the sequence of generators

Cj�2;T;C2� j;Cj�1;T;C1� j

Clearly, the third and fourth generators in the last se-
quence are collectively equivalent to a single generator
C(2� j)+( j�1) = C1. As a result, transmissions over dimen-
sions d1;d2;d3; :::;ds in a star graph can be emulated by the
action of generators

Cd1�2;T;Ci2 ;T;Ci3 ; � � � ;T;Cis�1 ;| {z }
s�1

T;C2�ds ;



where

i j =

�
1; if d j = d j�1+1 or (d j�1 = k and d j = 2);
�1; otherwise.

Since either Cd1�2 or C2�ds require at most b(k � 1)=2c
rotation-link transmissions, the upper bound follows. 2

Theorem 3.3 Any normal k-star algorithm can be emulated
on a k-RE with a slowdown factor of 2, assuming that the
final locations of the outputs are not specified.

Proof: When the locations of final destinations are not
specified, the last b(k�1)=2c transmissions of Lemma 3.2,
which take place over rotation links are not required. If the
first step in the emulated normal star-graph algorithm re-
quires transmissions over dimension j, we can rename the
nodes of the k-RE by mapping node X to node Cj�2(X) so
that the first b(k� 1)=2c rotation-link transmissions are no
longer required. The total number of steps required for em-
ulating s steps in a normal k-star algorithm is then equal to
2s�1. 2

Similar to Theorem 3.3, we can show that any normal
k-star algorithm can be emulated on a k-dimensional SEP
graph with a slowdown factor of 3, assuming that the final
locations of the outputs are not specified.

To emulate star graph algorithms with all-port communi-
cation, we simply perform single-dimension emulation for
all dimensions Ti(X), i = 2;3; :::;k� 1, either one after the
other or simultaneously with appropriate scheduling, lead-
ing to the following theorem.

Theorem 3.4 Any step of an algorithm in a k-star under the
all-port communication model can be emulated on a k-RE
in at most b(k�1)2=2c+k�1 steps under the SDC model,
out of which k�1 steps involve transmissions over exchange
links and b(k�1)2=2c steps involve transmissions over ro-
tation links.

Theorem 3.5 Any step of an algorithm in a k-dimensional
bubble-sort graph under the SDC model can be emulated on
a k-RE in at most 2bk=2c+ 3 steps under the SDC model,
out of which at most 3 steps involve transmissions over ex-
change links and at most 2bk=2c steps involve transmissions
over rotation links.

Proof: A k-dimensional bubble-sort graph has k�1 gener-
ators (i; i+ 1), i = 1;2;3; : : : ;k� 1, which exchange the ith

and (i+1)th symbols. Generator (i; i+1), i= 2;3;4; :::;k,
is equivalent to the sequences of generators Ci�2;T;C;T ,
C�1;T;C2�i or Ci�1;T;C�1;T;C;T;C1�i. There exists at
least a sequence of generators consisting of at most 3 ex-
change generators T and at most 2bk=2c (k�1)-cycle gen-
erators C or C�1 that is equivalent to the preceding sequence
of generators by translating Cj into C or C�1. 2

A k-dimensional complete transposition graph k-CT [19,
20] is a Cayley graph defined with a generator set consist-
ing of all the generators that interchange any two of the k
symbols in the label of a node. A k-CT graph has k! nodes,
degree k(k� 1)=2, and diameter k� 1. It contains a k-star
or a k-dimensional bubble-sort graph [3] as a subgraph and
has been shown to be a rich topology that can efficiently em-
bed many other popular topologies, including hypercubes,
meshes, and trees. The following theorem provides effi-
cient embedding of complete transposition graphs in RE net-
works.

Theorem 3.6 Any step of an algorithm in a k-dimensional
complete transposition graph under the SDC model can be
emulated on a k-RE in at most

2

�
k�b(k�1)=2c

2

�
+2

�
k�1

2

�
+3 � 1:5k+3

steps under the SDC model, out of which 3 steps involve
transmissions over exchange links and at most

2

�
k�b(k�1)=2c

2

�
+2

�
k�1

2

�
� 1:5k

steps involve transmissions over rotation links.

Proof: Generator (i; j), which swaps the ith and the jth sym-
bols, 1� i; j � k, is equivalent to the sequence of generators

Ci�2;T;Cj�i;T;Ci� j;T;C2�i

or
Cj�2;T;Ci� j;T;Cj�i;T;C2� j;

so the result follows. 2

Theorem 3.7 Any step of an algorithm in a k-dimensional
pancake graph under the SDC model can be emulated on a
k-RE in at most n2=4+O(n) steps under the SDC model,
out of which at most 3bk=2c�2 steps involves transmissions
over exchange links.

We can generalize these emulation results to any Cayley
graph defined with at most k symbols with slowdown fac-
tor upper bounded by the corresponding routing distance in
an RE network (between two neighboring nodes in the guest
Cayley graph).

3.2. Embeddings of trees, meshes, hyprcubes, and
CCC

In this subsection, we present efficient embeddings and
packings of trees, meshes, hypercubes, and cube connected
cycles (CCC) [23] in RE networks.

A variety of embedding results are available for star
graphs, bubble-sort graphs, and complete transposition
graphs [9, 19, 21, 14]. These results, when combined with
Theorems 3.1, 3.5, and 3.6 give rise to a variety of efficient
embeddings for RE networks.



Theorem 3.8 There exists a dilation-(2b(k � 1)=2c + 1)
embedding of the complete binary tree of height 2k�5 into
a k-RE network for k = 5 or 6, or height at least equal to
(1=2+ o(1))k log2 k into a k-RE network for k � 7, where
an embedded edge consists of one exchange link and at most
2b(k�1)=2c rotation links.

Proof: In [9], it has been shown that for k = 5 or 6 there
exists a dilation-1 embedding of the complete binary tree
of height 2k � 5 into the k-star. For k � 7, there exists a
dilation-1 embedding of the complete binary tree of height
at least equal to (1=2+o(1))k log2 k into the k-star. The rest
of the proof follows from Theorem 3.1. 2

Theorem 3.9 There exists a dilation-O(k) embedding of the
d-dimensional hypercube into a k-RE network, assuming
d � k log2 k� 3k

2 + o(k), where an embedded edge consists
of O(1) exchange links and O(k) rotation links.

Proof: In [21], it has been shown that there exists a dilation-
O(1) embedding of the d-dimensional hypercube into a k-
star, provided that d � k log2 k� (3=2+o(1))k. This, com-
bined with Theorem 3.1, completes the proof. 2

Theorem 3.10 There exists an embedding of load 1, expan-
sion 1, and dilation

2

�
k�b(k�1)=2c

2

�
+2

�
k�1

2

�
+3 � 1:5k+3

of the M1 �M2 mesh onto a k-RE network, where an em-
bedded edge consists of at most 3 exchange link and at most
2d k�b(k�1)=2c

2 e + 2b k�1
2 c � 1:5k rotation links and M1 �

M2 = k!.

Proof: It follows from Theorem 3.6 and the fact that there
exists a dilation-1 expansion-1 embedding of M1�M2 mesh
into a k-CT graph, where M1 �M2 = k! [19]. 2

Theorem 3.11 There exists a load-1, expansion-1, and
dilation-(6b(k� 1)=2c+ 3) embedding of the 2� 3� 4�
�� � � (k� 1)� k mesh into a k-RE network, where an em-
bedded edge consists of at most 3 exchange link and at most
6b(k�1)=2c rotation links.

Proof: In [14] it has been shown that there exists a dilation-
3 expansion-1 embedding of the 2�3�4��� ��(k�1)�k
mesh into a k-star. This, combined with Theorem 3.1, com-
pletes the proof. 2

The minimum possible dilation for a constant-degree

network to embed a network of degree Ω
�

logN
log logN

�

is Ω(loglogN). It is interesting to note that by imple-
menting the rotation links with faster local links (see Sec-
tion 4), the delay for emulating an edge of several degree-

Ω
�

logN
log logN

�
guest graphs, such as the hypercube, k-D mesh,

star graph, and complete transposition graph, in an RE net-
work is only a small constant (which has similar effect as
having a constant-dilation embedding).

Theorem 3.12 A k-RE network can pack (k�1)!
2k=2�1 k-dimen-

sional CCC with load 1, expansion 1, dilation 4, and con-
gestion 5 when k is even, or k(k�2)!

2k=2�1:5 k-dimensional CCC with
load 1, expansion 1, dilation 5, and congestion 3 when k is
odd.

Proof: When k is even, a k
2 -dimensional CCC can be de-

fined as a Cayley graph that has generators T;S2; and S�2,
where S2 = SS and S�2 = S�1S�1. Since S2 = TCTC and
S�2 = C�1TC�1T , the packings of (k�1)!

2k=2�1
k
2 -dimensional

CCC with even k follows.
When k is odd, a k�1

2 -dimensional CCC can be defined as
a Cayley graph that has generators (2;3);C2, and C�2 where
(2;3) swaps the 2nd and 3rd symbols of a node label and
(2;3) = TCTC�1T . Therefore, the packings with odd k fol-
lows. 2

Theorem 3.13 Any algorithm in a k-dimensional SEP
graph (or RE network) under the SDC model can be emu-
lated on a k-dimensional RE network (or SEP graph, respec-
tively) under the SDC model with a slowdown factor of 2.

Proof: This can be shown by noting that the generator S (or
S�1) of the SEP graph is equivalent to the sequence of gen-
erators TC (or TC�1, respectively) of the RE network, and
the generator C (or C�1) of the RE network is equivalent to
the sequence of generators TS (or S�1T , respectively) of the
SEP graph. 2

We can also show that the computation powers of the SEP
graph and RE network are equivalent within a small constant
under a variety of communication models. More details will
be reported in the near future.

4. RE networks using links of different trans-
mission rate

With the rapid advances in VLSI technology, the num-
ber of transistors per chip and the number of processors that
can be put onto a chip are expected to grow significantly.
Since the processor-memory bandwidth is one of the major
bottlenecks on the performance of current and future paral-
lel systems, implementing processors in memory (PIM) or



computational RAM [34] is believed to be a promising ap-
proach for the construction of future massively parallel com-
puters. EXECUBE [15], hypernets [12], recursively con-
nected complete (RCC) networks [11], and macro-star net-
works [28, 32], are some of the well-known parallel archi-
tectures and networks that use such structures or similar as-
sumptions. In what follows, we consider the case where sev-
eral nodes (including processors, routers, and their memory
banks) of the RE network are implemented on a single chip
(or a board, a multi-chip or multi-board module).

To find a good strategy for partitioning the nodes of an
RE network into chips (or, in general, modules), note that
the number of transmissions over exchange links is consid-
erably smaller than the number of transmissions over rota-
tion links for most of the important algorithms described in
Section 3 (and also for the algorithms that will be describe
in Section 5). Therefore, if we place nodes belonging to the
same rotation ring (and their rotation links) onto the same
chip, the traffic will be largely confined within chips when
executing these algorithms, and the off-chip traffic will be
small. Also, since each node on an RE network has one ex-
change link and two 2 rotation links, by putting all nodes of
a rotation ring onto the same chip, only one off-chip link will
be required per node.

In most papers on routing in interconnection networks,
it is assumed that the transmission and propagation delay
is the same (equal to 1 unit of time) for all network links.
Since, however, on-chip links are significantly shorter than
off-chip links and do not need extra delay to drive off-chip
pins, they can be implemented using a considerably higher
clock rate. Moreover, since the cost for an on-chip connec-
tion is much smaller than that of an off-chip connection, the
channel width of an on-chip link can be increased, if re-
quired, without significantly increasing the hardware cost.
Thus, a realistic model for message-passing parallel archi-
tectures is to assume that on-chip connections have (consid-
erably) larger transmission rate than off-chip connections. A
similar model that uses unequal transmission rates for on-
chip and off-chip links was assumed in [5, 6, 17] for SCC
graphs. This model is also implied in several other papers
concerning interconnection networks [11, 12, 32].

By increasing the transmission rate of on-module links,
the delay required for node-to-node communication can be
significantly reduced.

Theorem 4.1 Packet routing can be performed in an N-
node RE network in O(logN= loglogN) time if the trans-
mission rate of on-module links is Ω(logN= loglogN), the
transmission rate of off-module links is Ω(1), and nodes be-
longing to the same rotation ring are placed on the same
module.

It is also easy to show the following emulation results.

Corollary 4.2 A k-star, k-dimensional bubble-sort, or com-
plete transposition graph can be emulated in a k-RE network

under the SDC model with O(1) slowdown if the transmis-
sion rate of on-module links is Ω(k), the transmission rate
of off-module links is Ω(1), and nodes belonging to the same
rotation ring are placed on the same module.

Corollary 4.3 Transmission over an embedded edge of

� (a) a complete binary tree of height 2k� 5 for k = 5
or 6,

� (b) a complete binary tree of height at least equal to
(1=2+o(1))k log2 k for k � 7,

� (c) a hypercube of dimension d � k log2 k� 3k
2 +o(k),

� (d) an M1�M2 mesh with M1 �M2 = k!, or

� (e) a 2�3�4��� �� (k�1)� k mesh

in a k-RE network can be performed in O(1) time if the
transmission rate of on-module links is Ω(k), the transmis-
sion rate of off-module links is Ω(1), and nodes belonging
to the same rotation ring are placed on the same module.

These results show that many important topologies can
be emulated by an RE network with constant slowdown un-
der a communication model that takes into account the large
difference between the speed of on-module and off-module
links.

5. Communication algorithms for RE networks

In this section, we present algorithms to execute certain
communication tasks in RE networks.

Two prototype communication tasks that arise often in
applications are the multinode broadcast (MNB) and the to-
tal exchange (TE) [8, 13, 26, 27]. In the MNB each node has
to broadcast a packet to all the other nodes of the network,
while in the TE each node has to send a different (personal-
ized) packet to every other node of the network. Mišić and
Jovanović [22] have proposed strictly optimal algorithms to
execute both tasks in time k!�1 and (k+1)!+o((k+1)!)‡,
respectively, in a k-star with single-dimension communica-
tion. Using Theorem 3.1, the algorithms in [22] give rise to
corresponding algorithms for the k-RE network.

Corollary 5.1 The total exchange task can be optimally ex-
ecuted in a k-RE network under the SDC model in O((k+

2)!) = O
�

N log2 N
(loglogN)2

�
steps, where (k+1)!+o((k+1)!) =

N log2 N
log2 log2 N +o

�
N logN

log logN

�
steps involve transmissions over ex-

change links and O
�

N log2 N
(loglogN)2

�
steps involve transmissions

over rotation links, by emulating any optimal TE algorithm
developed for the star graph under the SDC or the all-port
communication model, where N = k! is the size of the k-RE
network.

‡The notation f (N) = o(g(N)) means that limN!∞ f (N)=g(N) = 0:



Proof: The proof follows from Theorems 3.1 and 3.4. and
the emulation of any optimal TE algorithm developed for
star graphs under the SDC (e.g., the algorithm given in [22])
or the all-port communication model (e.g., the algorithm
given in [10]). Since the diameter of a k-RE network is
Θ(k2), it is straightforward to show that the required number

of steps O((k+2)!) =O
�

N log2 N
(log logN)2

�
is of the optimal order

of magnitude. 2

Note that since each node of an RE network has degree
equal to 3, the all-port communicationmodel (where all inci-
dent links can be used for packet transmission and reception
at the same time) and the single-dimension communication
model are equally powerful within a constant of 3.

The slowdown for emulating MNB algorithms developed
for star graphs under the all-port communication model is
considerably smaller than the upper bound given in Theo-
rem 3.4.

Corollary 5.2 The multinode broadcast task can be exe-
cuted in a k-RE network under the SDC model or the all-port
communication model with k!+o(k!) = N+o(N) steps for
transmission over exchange links and O(k!) = O(N) steps
for transmission over rotation links, by emulating any op-
timal MNB algorithms developed for star graphs under the
all-port communication model.

Proof: We emulate optimal MNB algorithms developed for
star graphs (e.g., the algorithms given in [22]), and use the
technique described in the proof of Theorem 3.4. The TE al-
gorithms for (k�1)-node rings used in the proof of Theorem
3.4 are replaced here with MNB algorithms for (k�1)-node
rings. 2

Using similar emulation techniques, we can obtain an ef-
ficient algorithm to perform single-node broadcasting algo-
rithm in RE networks.

Corollary 5.3 The single-node broadcasting task can
be executed in a k-RE network under the SDC model
or the all-port communication model in at most O(k2)

=O
�

log2 N
(loglogN)2

�
steps, out of which d3(k�1)=2e steps cor-

respond to transmissions over exchange links and

O
�

log2 N
(loglogN)2

�
steps correspond to transmissions over rota-

tion links.

Proof: We simply emulate any optimal single-node broad-
cast algorithm developed for k-stars (which requires k � 1
steps) under the all-port communication model. The proof
is similar to those for Theorem 3.4 and Corollary 5.2, but in-
stead of executing TE or MNB tasks in (k� 1)-node rings,
we now execute single-node broadcasts in (k � 1)-node
rings. 2

When on-module links have larger transmission rates
than off-module links, the execution times of some of the
previous tasks can be considerably reduced as the following
corollaries indicate.

Corollary 5.4 Single-node broadcasting can be performed

in a k-RE network in O(k) = O
�

logN
loglogN

�
time if the trans-

mission rate of on-module links is Ω(k) = Ω
�

logN
log logN

�
, the

transmission rate of off-module links is Ω(1), and nodes be-
longing to the same rotation ring are placed on the same
module.

Proof: The proof follows from Theorem 4.1 and Corollary
5.3. 2

Corollary 5.5 The total exchange task can be executed in a

k-RE network in O((k+1)!) =O
�

N logN
loglogN

�
time if the trans-

mission rate of on-module links is Ω(k) = Ω
�

logN
log logN

�
, the

transmission rate of off-module links is Ω(1), and nodes be-
longing to the same rotation ring are placed on the same
module.

Proof: The proof follows from Corollary 5.1. 2

From Corollary 5.2, it is evident that higher transmission
rates for on-module links do not help reduce the execution
time of the multinode broadcast task. This is because for
this task on-module links and off-module links are utilized
to similar extent, and they both form a bottleneck for com-
munication.

6. Conclusion

We have derived efficient embeddings and emulation of
star graphs, meshes, hypercubes, CCC, pancake graphs,
bubble-sort graphs, complete transposition graphs, and the
shuffle-exchange permutation graphs, under a variety of as-
sumptions on the communication model. We presented effi-
cient algorithms to perform routing, single-node broadcast-
ing, multinode broadcasting, and total exchange, on RE net-
works. We also showed that the performance of RE net-
works can be significantly if on-module transmissions are
considerably faster than off-module transmissions.
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