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Abstract— We propose two almost-all optical packet
switch architectures, called the Packing Switch and the
Scheduling Switch, which when combined with appropriate
wait-for-reservation or tell-and-go connection and flow con-
trol protocols provide lossless communication for traffic that
satisfies certain smoothness properties. Both switch archi-
tectures preserve the order of packets that use a given input-
output pair, and are consistent with virtual circuit switch-
ing. We find a lower bound on the number of elementary (2-
state) switches required by any switch architecture to meet
the objectives we have set. The number of 2-state switches
used in the Scheduling Switch is of the optimal order jointly
with respect to the number of inputs and with respect to the
burstiness of the traffic streams {(as measured by an appro-
priate parameter). The Packing Switch requires very little
processing of the packet header, and uses a number of 2-state
switches that is of the optimal order in terms of the bursti-
ness parameter. We also examine the suitability of the pro-
posed switches for the design of circuit switched networks.
We find that the Scheduling Switch combines low hardware
cost with little processing requirements at the nodes, and
is an attractive architecture for both packet-switched and
circuit-switched high-speed networks.

I. OBJECTIVES OF THE DESIGN

Traffic in high-speed networks can be switched either op-
tically, or electronically. Even though optical switching has
advantages for circuit switching, it is considered difficult to
combine with packet switching. This is because efficient
packet switching requires substantial packet storage, which
is difficult to implement with current optical technology.

Networks using optical switching offer the potential of
larger transmission speeds than networks using electronic
switching by eliminating the need for optical to electronic
(O/E) and electronic to optical (E/O) conversion of the
data signal at intermediate switches, the so-called electronic
bottleneck. For packet switching, however, O/E conversion
is still required in order to process the packet header (see
[HaG91], [Haa92], [ChF93], [BFS94], [CrT96]); switches in
which the data remains in the optical domain while the
packet header is processed electronically will be referred to
as almost-all optical switches. In this paper we describe
two switch architectures, called the Packing Switch and
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the Scheduling Switch architectures, to efficiently perform
packet switching in almost-all optical networks. We also
examine the suitability of these architectures for circuit-
switched networks.

The objectives that we set for the Packing Switch and
the Scheduling Switch architectures when used as packet
switches are: 1) lossless communication, 2) efficient utiliza-
tion of the capacity, 3) suitability for (almost) all-optical im-
plementation, 4) consistency with virtual circuit switching,
5) simple or no resequencing requirements at the destination,
and 6) modularity of the design. To meet these objectives
both switch architectures have to be combined with appro-
priate connection and flow control protocols, which we also
discuss.

The Packing Switch and the Scheduling Switch can pro-
vide lossless communication for sessions that have certain
smoothness properties, or sessions that can tolerate the de-
lay induced when transforming them into smooth sessions
through the use of input flow control. When the sessions
are bursty, additional delay lines, the number of which de-
pends on the degree of burstiness, are required to provide
lossless communication. We are interested in switches whose
cost, measured by the number of elementary 2-state switches
they require, increases in an optimal way as a function of
the burstiness allowed. The Packing and the Scheduling
switch architectures are modular, so that they can be eas-
ily expanded to accommodate more burstiness in the traffic,
should this become desirable, in the same way that adding
buffer space at an electronic switch can be done relatively
easily. Both switch architectures preserve the order of pack-
ets that use a given input-output pair; this is important
for multigigabit networks, where packet resequencing at the
destination may be very difficult if order is not maintained
within the network.

The Packing Switch requires k? log T 4 k log k elementary
2-state switches to build, where k is the number of input
ports, and 7' is some parameter

that determines the burstiness allowed for the sources
and the flexibility we have in assigning rates to sessions. It
uses a simple scheme to assign output slots to the incoming
packets so as to minimize the processing requirements, while
preventing internal packet collisions within the switch. The
Scheduling Switch consists of 2k log T+ k? two-state elemen-
tary switches (or 2k log T'+ 2k log k elementary switches, if a
different version is used). We show that Q(klog(k+T)) is a
lower bound on the number of switching elements required
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by any switch architecture that meets the objectives we have
set. Therefore, the number of 2-state switches used by the
Scheduling Switch is of the optimal order, both with respect
to the number of inputs and with respect top the burstiness
of the traffic streams that are switched.

We also consider implementations of the Packing and the
Scheduling Switch architectures as circuit switches. When
circuit switching is employed, the frequency with which the
switch state has to be reconfigured is of the order of the
arrival rate of new connections rather than of the order of
the packet arrival rate. When used as circuit switches, both
the Packing and the Scheduling Switch are nonblocking, so
that a new circuit connection can always be routed through
the switch as long as there is adequate available capacity
on the desired incoming and outgoing links. We distinguish
between two types for the reconfigurations that have to take
place at a switch to admit a new circuit connection: recon-
figurations of the local type, where accommodating a new
connection at the switch involves changes only in the state
of that switch, and reconfigurations of the nonlocal type,
where accepting a new connection at a switch requires chang-
ing the state of other switches. We show that the admit-
tance of a new connection at a Scheduling Switch involves
in most cases only a local reconfiguration of the switch, with
nonlocal reconfiguration required rather infrequently. Also,
the Scheduling Switch requires little processing of the setup
packet, making the design particularly suitable for circuit
switching. Admitting a new connection at a Packing Switch,
however, often requires nonlocal reconfigurations, making
the Packing Switch unattractive for circuit switching.

The organization of the remainder of the paper is as fol-
lows. In Section 2 we describe our objectives for the switch
architectures and our assumptions on the traffic. The Pack-
ing and the Scheduling Switch architectures are described
in Sections 3 and 4, respectively. In Section 5 we find a
lower bound on the number of 2-state elementary switches
required by any switch architecture that meets the objectives
we have set, and compare it to the complexity of the switch
architectures that we propose. In Section 6 we comment
on the processing requirements of the switch designs when
used as packet switches. Finally, in Section 7 we consider
the suitability of the Packing and the Scheduling Switch for
building circuit-switched networks.

II. ASSUMPTIONS ON THE TRAFFIC

We assume that all packets have the same length and re-
quire one slot for transmission. Following the discussion in
[Gol91], we view the time axis on a link as being divided into
frames of duration equal to T' packet slots. A session is said
to have the (n,T")-smoothness property at a node if at most
n packets (n € {1,...,T}) of the session arrive at that node
during a frame. By using a leaky bucket scheme [ELL90]
to shape traffic at the source, and the stop-and-go queueing
discipline [Gol91] to forward traffic at intermediate nodes, a
session can be made to have the (n,T) - smoothness prop-
erty throughout the network. The idea behind stop and go
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queueing is to transmit all packets arriving over the same
incoming frame of a link and requesting the same outgo-
ing link during the same outgoing frame, preserving in this
way frame integrity and the (n,7) - smoothness property
at subsequent nodes. The parameter T can be viewed as a
measure of the burstiness we allow: the larger T is, the more
bursty the session is allowed to be. A session S having the
(ng, T)-smoothness property has average rate at most equal
to Rg = nsC/T. Since link capacity can be allocated to
a session only at discrete levels that are multiples of C/T,
where C is the link capacity, T' can also be viewed as a
measure of the flexibility we have in assigning rates to ses-
sions. We let n;; be the number of packets that arrive over
an incoming link ¢ and have to be transmitted on the same
outgoing frame of link j. Assuming unicast communication,
we always have

k
Znij <T, forallie {1,2,...,k},

Jj=1

(1)

where k is the number of incoming (or outgoing) links. We
assume that the connection and flow control protocols used
guarantee that

k
Znij <T, forallje{l,2,...,k}.

=1

(2)

In other words, we assume that the protocols ensure that
the number of packets requesting the same outgoing frame
is always less than or equal to the duration of the frame.
If Eq. (2) holds, a different outgoing slot can be assigned
to each incoming packet, so that no packets will have to be
dropped, provided that the switch is able of delaying the
packets until their assigned slots arrive (and assuming no
transmission errors). Since the total average rate of sessions
using incoming link ¢ and outgoing link j is Ri; = n;C/T,
Eq. (2) can be restated as

k
ZRU < C, forallj, (3)
1=1

which simply requires that the sum of the average rates of
the sessions using a link should be less than the link capacity
all network links. The condition of Eq. (2) [or the equivalent
condition of Eq. (3)], which ensures the lossless character
of the design, can be enforced for all network links by us-
ing either a wait-for-reservation protocol (see, e.g., [CGS93],
[VaS95]) or a tell-and-go type of protocol (such as the Virtual
Circuit Deflection protocol [Val96], where virtual circuits,
as opposed to packets, may be deflected).

III. THE PACKING SWITCH

The frames on the incoming and the outgoing links of
a node will not, in general, be synchronized. We let k be
the number of incoming (or outgoing) links of a node, and
let §; ; be the phase difference between the beginning of the
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Fig. 1. Illustrates the Packing Switch. Only the details corresponding
to output link j are shown.

frames on links 7 and j. To preserve frame integrity, we
request that packets arriving in frame F (i) of incoming link
¢ and destined for outgoing link j, are transmitted in the
first frame F'(j) of link j that starts after the end of F(i) (or,
more generally, they are transmitted in the p-th subsequent
frame, where p is a constant); see also Fig. 4.

Figure 1 shows a block diagram of the Packing Switch
architecture. The output of the demultiplexer at which a
packet is forwarded is determined based on its virtual path
identifier (VPI) as described in Section 7. The Packer in Fig.
1 is arestricted type of time slot interchanger that rearranges
the packets requesting the same output j so that they appear
at different time slots, in a way to be described shortly. The
multiplexer can then be implemented as a passive coupler
that combines the streams of packets arriving over different
inputs, and transmits them over link j.

As mentioned in Section 2, we assume that the flow con-
trol protocol guarantees that the number n;;, i = 1,2,.. ., k,
nij € {0,1,...,T}, of packets that arrive during frame F(3)
and are transmitted during frame F(j) of link j satisfy
Eq. (2) (or, equivalently, Eq. (3)), so that there are always
enough slots in outgoing frame F(j) to serve all packets that
have to be transmitted in it. For this to happen, however,
it is necessary to delay a packet arriving in incoming frame
F (%) until the time of its transmission on outgoing frame
F(j) comes. The required delay can take any value between
1 and 2T — 1 slots, and it can be implemented using 27" — 1
optical delay lines of variable lengths between 1 and 27 — 1
slots, for a total fiber length per incoming link equivalent to
T (2T 1) slots. For a design using delay lines to be practical,
the number of delay elements has to be reduced. In what
follows, we describe a construction that uses only log7" de-
lay elements per link, with a total fiber length proportional
to T.

The delay lines that implement the buffering system for a
particular outgoing link j are depicted in Fig. 2 for the case
2T = 23. A 2'-delay block at stage ! can be in state 0 or
1. If the block is in state 0, it does not introduce any delay,
while if it is in state 1 it introduces delay equal to 2 slots. In
our protocols, a packet may have to be delayed by anywhere
between | and 2T — 1 = 2™ — 1 slots. Clearly, all delays
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Fig. 2. We illustrate the output system for a particular outgoing link
j. Each delay block can be implemented by a switch and an optical
fiber of appropriate length, as shown in Fig. 3. Depending on the
distance between the arriving and the departing slot of a packet, the
state of each delay block is set so that a packet is delayed until its
assigned outgoing slot comes. The §, ; delays are implemented using
fibers of appropriate length, and account for the misalignment between
incoming and outgoing frames.

\ 2% delay block
2
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Fig. 3. We illustrate the design of a 2'-delay block. A packet collision
may occur in the case where packet B lags packet A by 2! slots, and
packet A passes through the upper branch (state 0), while packet B
passes through the lower branch (state 1) of the 2*-delay block. We
prove in Theorem 1 that if the packing rule is used to assign packets to
outgoing slots, two packets will never appear at the output of a stage
during the same slot.

in this range can be implemented by appropriately choosing
the states of the delay blocks. Since different packets have
to be delayed by different amounts, the state of a block will
in general change at the end of a slot. However, as long as
the arrival pattern on the incoming links remains the same
(for example, if the packets of each session arrive periodi-
cally in the incoming frames and as long as no new sessions
are added), the sequence of states used will be the same for
successive frames. For the design given in Fig. 2 to work, it
is necessary that two different packets never appear during
the same slot at the output of a stage. To prevent collisions
(see Fig. 3 for an example of such a collision), the assignment
of incoming slots (packets) to outgoing slots cannot be ar-
bitrary. In what follows, we present an assignment method,
called the packing rule, which guarantees that no collisions
arise in the system of Fig. 2. We focus on a particular frame
F(j) of an outgoing link j. Consider a packet A that arrives
inslot z4 € {0,1,...,7—1} of frame F(¢), and assume that
it is the r2! packet destined for outgoing link j to arrive in
F(i) (the integer r4, 74 € {1,...,n;}, will be referred to
as the rank of packet A). Then, according to the packing
rule, packet A is assigned to slot y4 = Z;;xl n+ra-—1,
ya € {0,1,...,T — 1}, of the outgoing frame F(j) (see Fig.
4). As stated in the following theorem, when packets are
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Fig. 4. We illustrate the incoming and outgoing frames at a node.
Packets not intended for outgoing link j are not shown. Packets in-
tended for link j are assigned to outgoing slots according to the packing
rule described in the text.

time

assigned to outgoing slots according to the packing rule, no
collisions occur at the outputs of the delay blocks. We omit
the proof.

Theorem 1: When the packing rule is followed, two packets
will never appear at the output of a stage during the same
slot.

The loss introduced by the passive coupler at the right
end of a delay block in Fig. 3 can be avoided by replacing the
passive coupler by a 2-state switch. In this case, the states
of the switches at the left and the right side of a delay block
will have to be jointly set.

An important advantage of the packing rule is that it
requires very little processing at the switch. Indeed, com-
puting the rank of a packet is very simple and can be done in
hardware. The packing rule ensures lossless communication
when the condition of Eq. (2) [or the equivalent condition of
Eq. (3)] is satisfied.

IV. THE SCHEDULING SWITCH

In this section we describe the Scheduling Switch archi-
tecture, a block diagram of which is shown in Fig. 5. The
purpose of the Scheduler is to rearrange the incoming pack-
ets so that packets appearing during the same slot at the out-
puts of the Scheduler require different outgoing links of the
crossbar switch. If this property is satisfied by the Scheduler,
then the crossbar switch will be able to route each packet
to its desired outgoing link without any collisions. An im-
portant data structure that will be useful in describing the
operation of the Scheduler is that of the frame matriz, de-
fined as the k x k matrix N = {n;;} whose (i, )" is equal
to the number n;;, ¢ =1,2,.... %k, j =1,2,... k, of packets
that arrive during a given frame F (i) of incoming link 7 and
require the same frame F(j) of outgoing link j.

Definition 1: The critical sum h of a matrix is equal to
max; ;(7;, ¢;), where r; is the sum of the entries of row 1, ¢;
is the sum of the entries of column j, and the maximization
is performed over all rows ¢ and columns j. A row or column
with sum of entries equal to h is called a critical line.
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Fig. 5. (a) The Scheduling Switch architecture. {b) The Scheduler
is implemented by k parallel branches, one for each input. A branch
in turn consists of 2logT — 1 delay blocks, for a total of 2klogT — k
2-state switches and couplers.

From Egs. (2)-(3) we have

h<T (4)
for the critical sum £ of a frame matrix. This is because the
number of packets r; arriving over link ¢ during a frame is
always less than or equal to T', and the number of packets
¢; that request a given frame of output link j is guaranteed
by the connection and flow control protocol to be at most
equal to T'.

For any matrix, we use the term line to refer to a row or
column of the matrix.

Definition 8: A perfect matrix is a square matrix with
nonnegative integer entries and with the property that the
sum of the entries of each line is the same for all lines.

Definition 9: A permutation mairiz is any matrix with
entries equal to 0 or 1 with the property that each line of
the matrix has at most one nonzero entry.

We now give a well known result which is due to Hall (see
[Rys65], p. 57).

Theorem 3 (Hall’s Theorem): A perfect matrix can be
written as a sum of h permutation matrices, where h is the
sum of the entries of its lines.

The following lemma gives the complexity for decompos-
ing a perfect matrix into a sum of permutation matrices; it
can be proved by viewing the decomposition problem as a
sequence of bipartite matching problems.

Lemma 1: The decomposition of a perfect matrix M that

has critical sum h as the sum of h permutation matrices can
be found in O(k%/2h) time.



The following theorem is found in [BCW81].

Theorem 4: Given any nonnegative integer square matrix
N with critical sum h, there exists a nonnegative integer
matrix F such that N + F is a perfect matrix with critical
sum h.

Theorems 3 and 4 combined with Eq. (4) yield the fol-
lowing lemma.

Lemma 2: A frame matrix N can be written as the sum
T
N = Z P,
s=1

of at most T' permutation matrices.

Figure 4 shows an example of the decomposition of the
frame matrix N as a sum of permutation matrices.

Matrix P; is used to determine the packet (if any) that
will appear during slot s at each of the outputs of the Sched-
uler. In particular, if the (7, j)-th entry of matrix P; is equal
to one, then a packet arriving over link ¢ and departing over
link j is assigned to the s'" outgoing slot of the Scheduler.
Since P, is a permutation matrix, this assignment guaran-
tees that no packets arriving over the same incoming link or
requesting over the same outgoing link of the switch appear
during the same outgoing slot s of the scheduler. The first
property ensures that there will be no collisions at the out-
put of the Scheduler when the Scheduler is implemented as
a set of parallel delay lines, as indicated in Fig. 5b, while the
second property ensures that there will be no collisions at the
outputs of the crossbar switch. Since there are n;; packets
arriving over link ¢ and requesting link j, we have freedom
in choosing the order in which these packets will be assigned
to the outgoing slots of the Scheduler. The assignment can
therefore be chosen so as to preserve the order of packets ar-
riving over the same input and requesting the same output,
meeting in this way one of the main requirements of virtual
circuit switching.

The Scheduler consists of k parallel branches, each of
which has the purpose of delaying the packets arriving over
a particular incoming link until their assigned outgoing slot
arrives. Since different packets arriving over a link are as-
signed to different outgoing slots of the Scheduler, the func-
tionality of each branch is identical to that of a Time Slot
Interchanger. Therefore, each branch can be implemented
by 2log T — 1 elementary switches, as shown in Fig. 5b and
described in detail in [LiG93].

V. CAN WE DO BETTER?

The Packing and the Scheduling Switch architectures
provide lossless communication for (n,T)-smooth traffic,
while preserving the order of packets that arrive over the
same input and request the same output of the switch. The
total number of 2-state switching elements required by the
Packing Switch and the Scheduling Switch to meet these
objectives is equal to k? log T + k log k and 2k log T' + k2, re-
spectively, where & is the number of inputs or outputs. The
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Fig. 6. A decomposition of a frame matrix as a sum of permutation
matrices, and the corresponding assignment of packets to outgoing slots
of the Scheduler.

klogk and k2 terms in the previous expressions correspond
to the number of 2-state switches required to build the &
multiplexers (each implemented as a tree) in the Packing
Switch (Fig. 1), or the & x k crossbar switch that follows the
Scheduler in the Scheduling Switch (Fig. 5a), respectively. In
what follows we find lower bounds on the minimum number
of 2-state switching elements required by any switch archi-
tecture that meets our objectives, and compare 1t with the
number of elementary switches required by our designs.

We let S be the number of 2-state switching elements in
a switch. Clearly, different instances of the frame matrix N
require different configurations of the S switching elements
during a frame, if N is a perfect matrix and has critical
sum equal to 7. The number of different such frame ma-
trices is equal to (k’;T)k, as can be found by noting that
the row sum r; = T of row i, 7« = 1,2,...,k, can be split
into numbers n;1, 19, ..., N 1N (k';;T) distinct ways, and
there is a total of k rows in the frame matrix. Furthermore,
each of the T! permutations of the T packets arriving dur-
ing a frame of input ¢ (equivalently, each permutation of the
T elements of row i) has to be switched using a different
switch configuration. This is because different permutations
of the packets arriving over the same input and request-
ing different outputs require different switch configurations
(otherwise packets would end up at the wrong output), and
different permutations of the packets arriving over the same
input and requesting the same output also require different
switch configurations (because the switch has to preserve
the order of such packets). Therefore, we have (T!)* differ-
ent switch configurations corresponding to a given perfect
("

matrix, and different choices for a perfect matrix of

critical sum T, for a total of (k',:T)k(T!)k different switch
configurations during a frame. Since the number of differ-
ent states in which § 2-state switching elements can be set
during T slots is 257 we have

257 > (K']:T)k(:r!)k = ((i*—];,l)—')k



or, equivalently,
k (k +T)!

Using Stirling’s approximation (see [Gal68], p. 530) we get
the following lower bound

kz 2
52 o log(k +T) - %_ log(k) + klog(k + T) > klog(k + T)

on the number of elementary (2-state) switches required by
a k x k node to provide lossless communication for (n,T)-
smooth traffic, while preserving the order of packets that use
a given input-output pair. Comparing the lower bound with
the number of 2-state switching elements required by the
Scheduling Switch we see that they are of the same order of
magnitude with respect to the parameter 7" that determines
the burstiness of the sessions (or the flexibility of assign-
ing rates to sessions). Note that the crossbar switch of cost
k? that follows the Scheduler could be replaced by a rear-
rangeably nonblocking multistage switch of cost O(klogk)
elementary switches. In that case, the dependence of the
number of elementary switches on the number of inputs &k of
the Scheduling Switch would also be of the optimal order;
the additional complexity, however, required for the control
of the switch will probably more than offset the decrease in
hardware complexity, when k is small.

VI. READING THE PACKET HEADER

For packet switching, the virtual path identifier (VPI) of
a packet is required to determine the desired outgoing link of
the packet. The VPI can be obtained by using a splitter at
each input of the switch to direct a small fraction of the re-
ceived energy to a photodetector. The splitting ratio should
be chosen so that the energy that arrives at the photodetec-
tor is sufficient to decode the header. This scheme can also
be combined with the field coding technique [HaG91], where
a smaller rate is used to transmit the packet header, allowing
the electronic part of the switch to operate at a smaller rate
than the data transmission rate. The VPI’s of the packets
arriving during a frame are processed as described in Sec-
tions 3 and 4 by the control unit of the switch to determine
the state at which each of the 2-state switching elements is
set during a slot. The splitters have to be followed by delay
lines of sufficient length to allow for the latency incurred by
the electronic processing of the VPI of a packet (Figure 4).

In order to avoid the need for modifying the header of a
packet at each node (which would require an E/O conversion
for the header in addition to the O/E conversion mentioned
above, considerably complicating the switch design), we re-
quest that a session uses the same VPI for its entire path.
This is easy to do if we assign to each source a set of VPI’s
for its exclusive use. The owner of an unused VPI can lend
it to another node, and may request it back when it wants
to use it. Other ways of distributing the available VPI’s
are also possible, and the only requirement is that a VPI
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should not be used by more than one sessions at any given
time (for example, we could assign a distinct set of VPI's
to each destination; this solution, however, looks inferior to
the previous one, because it considerably complicates the
redistribution of unused VPI’s).

VII. UsiNnG THE PACKING AND THE SCHEDULING
SwitcH AS CIRCUIT SWITCHES

In the previous sections we have introduced the Pack-
ing and the Scheduling Switch as almost-all optical switch
architectures for building packet-switched multigigabit-per-
second networks. Packet switching has a number of well-
known advantages, but it imposes severe processing require-
ments at the nodes. In our designs, for example, the se-
quence of states at which the elementary switches are set
during each slot of a frame has to be calculated for each
frame. For the Packing Switch this involves computing the
rank of the incoming packets (which requires 1 or 2 addi-
tions per packet, and can be performed using counters), and
then finding the binary representation of the delay between
the incoming and the assigned outgoing slot of a packet. For
the Scheduling Switch, O(k%/2T') operations are required to
decompose the frame matrix as a sum of permutation matri-
ces, and an additional O(kT log T') operations are needed for
setting the switches (the latter is equivalent to only O(1) op-
erations per switching element, and can be done in parallel
for each of the & inputs). Even though the above processing
requirements are close to the minimum possible for packet
switching (because at least (1) operations are needed to set
a switching element during a slot, and there are O(klogT)
of them), they may still become a bottleneck of the design
if the switch processor(s) is not fast enough.

In this section we examine the suitability of the Packing
and the Scheduling Switch for building high-speed networks
that use circuit switching. We assume again that the time
axis is divided into frames of T slots each, but now a ses-
sion (circuit) of rate nC/T is allocated n particular slots in
each frame for its exclusive use throughout the duration of
the session. With circuit switching reading the packet head-
ers at a switch is no longer necessary, since packet arrivals
are periodic, with packets of a given session always arriving
over the same incoming slot(s) and leaving over the same
outgoing slot(s) of a frame. As a result, the state of the
switch has to be reconfigured only when the setup packet of
a new session arrives, and the time scale at which compu-
tations have to be performed is of the order of the session
holding times, rather than of the order of the packet trans-
mission times. Circuit switching, however, does not handle
bursty traffic efficiently, and it requires additional overhead
for tearing down a circuit when completed. Also, a separate
control channel is required to setup connections.

An important issue in evaluating the suitability of a
switch architecture for circuit switching is related to whether
or not the acceptance of a new circuit connection at a
switch requires the reconfiguration of the state of that switch
only, or it requires the reconfiguration of the state of other



switches as well. Clearly, the Packing Switch architecture
is not well suited for circuit-switched networks, because it
requires the frequent reconfiguration of other nodes in order
to admit new connections at a node. To see that, consider
the case where a new setup packet arrives at a node request-
ing an outgoing link that has adequate available capacity.
In order to serve the new connection, it may be necessary to
change the outgoing slots used by the existing connections
(because the rank of the existing connections, defined in Sec-
tion 3, may change). This in turn requires reconfiguring the
state of the downstream switches used by these connections,
resulting in a possibly large number of changes that have
to be performed to accept the new connection at a partic-
ular switch (not to mention serving the new connection at
subsequent switches).

In what follows we show that accepting new connections
at a Scheduling Switch requires in most cases only local
changes in the state of the switch. To see that, let N be
the frame matrix prior to the arrival of a new connection
(or prior to the departure of an existing one), and let h
(h < T) be its critical sum. As shown in Theorem 4, we can
find a (nonnegative) matrix E, to be referred as the slack
matriz, such that N + F is equal to a perfect matrix M of
critical sum 7. Furthermore, M can be written as a sum of
T permutation matrices, yielding

T
M=N+E=)_P, (5)
s=1
The permutation matrices P,, s = 1,2,...,7T, can be used

(in the way described in Section 4) to set the state of the
elementary 2-state switches so as to serve all the connec-
tions recorded in frame matrix N. Therefore, matrix M,
which will be referred to as the target perfect matriz, deter-
mines through its decomposition into permutation matrices
the current state of the switch. Note also that in addition
to the existing connections in N, more connections (those
corresponding to the slack matrix E) could also be served
without requiring any reconfiguration of the switch.

When an ongoing connection S using input 7 and output
Jj is terminated, no reconfiguration of the switch is required,
and the only computation that has to take place is to update
the (7, j)-th entries of matrices N and F according to n;; :=
n;; — 1 and e;; := e;; — 1, respectively.

We now consider the case where a new connection S from
input ¢ to output j is requested, and there is enough available
capacity on outgoing link j to accommodate it. For the
switch to be nonblocking, such a request should be served.
Since there exist a slot on input ¢ and a slot on output j
that were not previously occupied by a connection, the new
frame matrix

NPew — N + 1”
will also have critical sum less than or equal to T, where 1;;
denotes the k x k matrix that has all entries equal to zero,
except for thenew(i, j)-th entry, which is equal to one. If

eij > 0, it is clear that the new connection can be served
without reconfiguring the switch. This is because we will
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then have N"W 4 E"W = M, where E™V := F — 1;; > 0,
and the same target perfect matrix M and decomposition
M = Zstl P; can be used to determine the outgoing slot at
which the new connection is assigned. In other words, if the
entries of the slack matrix E are viewed as corresponding
to dummy connections, the new connection can just replace
one of the dummy connections, without changing the switch
configuration. If e;; = 0, however, establishing a new con-
nection from input ¢ to output j requires changing the state
of the switch (equivalently, changing the target matrix M
and its decomposition into permutation matrices). Since a
new connection is requested from input i to output j, the
i-throw sum and the j-th column sum of N are both strictly
less than T', and there exist p,q € {1,2,...,k}, such that
ep; > 0 and e;q > 0. By defining the new target matrix

Mnew:M-i-l,:j-—L'q—lpj—{-lpq, (6)
and the new slack matrix
EreY = F — 1,'q - lpj -+ 1pq,

we have
Mnew — Enew + Nnew’

with E"% > 0. The number of operations required to up-
date M™% and E™"Y when a new connection is accepted is
O(k).

We next show how to decompose M into permutation
matrices efficiently, while minimizing the number of existing
connections that have to be reassigned to different outgoing
slots. Since, e;q4 > 0 and e,; > 0, there exist permutation
matrices P, and P, (not necessarily different) in the de-
composition N = 23T=1 P, whose (i, ¢) and (p, j) entries are
nonzero and correspond to dummy connections. If such en-
tries can be found on the same matrix P,,, then replacing
matrix P, with matrix

Pop = Py + 1 — Lig — 155 + 1

yields a decomposition of M™¥ into the sum of 7" permu-
tation matrices, which define the new switch configuration.
Note that in this case, existing connections are assigned to
the same outgoing slot they were using before, so that only
a local reconfiguration is required at the switch. If such a
matrix cannot be found, then there exist permutation ma-
trices P, and P,, such that the (7, ¢)-th entry of P, and the
(p, j)-th entry of P, are nonzero and correspond to dummy
connections. Since the matrix Py + Pp 4155 — lig—1pj +1pq
has critical sum equal to 2, it can be decomposed in time
O(k%/?) as the sum of two permutation matrices, so that

P+ P+ Lij = Lig = 1pj + 1pg = P + Pa. (7

Equations (6)-(8) then give

This decomposition provides an assignment of connections
to output slots that serves both the new and the existing



connections. Note that the only existing connections that
may have to be reassigned to new outgoing slots are those
previously assigned to outgoing slots m and n. It can be
seen that at most & — 1 (out of a total of up to k7T") of the
existing connections may have to be reassigned to a new slot,
in the worst case. The number of arithmetic operations re-
quired for computing the new assignments is O(k%/2) in the
worst case, and these computations have to be performed
only when a new setup packet is accepted. When the sum
of the number of slots used on incoming link ¢ and on out-
going link j is less than 7', it can be shown that no existing
connections will have to be reassigned. Finally, one can also
opt to reject a new connection when its service would re-
quire the reassignment of existing connections to different
outgoing slot {of course, in that case the functionality of the
switch will not correspond to that of a nonblocking switch).

VIII. CoONCLUSIONS

We have proposed two almost-all optical packet switch
architectures, which when combined with appropriate flow
and connection control protocols provide lossless communi-
cation and packet arrival in the correct order. We compared
the cost of the switches (as measured by the number of el-
ementary 2-state switches for a given number of inputs and
a given burstiness of the traffic) to a lower bound on the
cost required by any switch architecture that meets our ob-
Jectives. The cost of the Scheduling Switch is of the opti-
mal order both with respect to the number of inputs and
with respect to the burstiness of the traffic streams, while
the cost of the Packing Switch is of the optimal order with
respect to the burstiness parameter but not with respect
to the number of inputs. The Packing Switch architecture
uses a very simple rule to assign incoming packets to outgo-
ing slots, and is appropriate for building almost-all optical
packet switches. The Scheduling Switch combines hardware
simplicity with small processing requirement, and appears
to be an attractive alternative for building both packet-
switched and circuit-switched almost-all optical high-speed
networks.
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