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Abstract

We evaluate the mean internodal distance and the saturation throughput of the Manhattan
Street network in the general case, and present a simple shortest path routing algorithm for
this topology. We also propose efficient routing algorithms to execute generic communication
tasks, such as the total exchange and the multinode broadcast, in a Manhattan Street network of
processors. The proposed algorithms execute these tasks in an optimal number of steps, while
achieving full (equal to 100%) utilization of the network links. Finally, we construct edge-disjoint
Hamiltonian cycles for the Manhattan Street network. © 1998 Elsevier Science B.V. All rights
reserved.

1. Introduction

A useful performance measure for a multiprocessor network is its mean internodal
distance, which is defined as the shortest distance between two nodes, averaged over
all pairs of nodes. The mean internodal distance determines the average latency of the
network for low load, and it is closely related to its saturation throughput for uniformly
distributed destinations.

In addition to the latency and the throughput, an important measure of the per-
formance of a multiprocessor network is the time it takes to execute certain proto-
type communication tasks in that (see [1]). Saad and Shultz [13, 14] were the first
to identify a number of generic communication problems. Two communication tasks
that arise frequently in numerical and other methods and are generally regarded as
prototype tasks are the multinode broadcast (MNB) and the fotal exchange (TE)
tasks. The MNB involves broadcasting a packet (the same packet) from every node to
all the other nodes. It arises, e.g., in iterations of the form

x= f(x),
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where each processor computes an entry (or a block of entries) of vector x. At the end
of an iteration, each processor has to broadcast the updated value of the component
that it computes to all other processors in order to be used at the next iteration; this
is a MNB. In the TE task, each network node has to send a personalized (different)
packet to each one of the other nodes. The TE arises, e.g., in the transposition of
a matrix, when each processor stores, say, a column of the matrix. To transpose the
matrix, every processor i has to send the (7, k)th entry to processor £, for all £, which
is a TE.

In this paper we focus on communication problems in the Manhattan Street (abbre-
viated MS) network, which is two-connected regular mesh topology with unidirectional
communication links. We first describe a simple shortest path algorithm to route pack-
ets between any pair of nodes. We also derive a closed-form expression for the mean
internodal distance of the MS network in the general case. Previous expressions on
the mean internodal distance of the MS network were restricted to the special case of
a square MS network [9], or they were given in the form of conjectures verified by
computer simulations (see [12] for the special case where the number of nodes across
each dimension is a multiple of 4).

We also propose communication tasks to execute certain prototype communication
tasks in a square MS network of processors. In particular, we present an algorithm to
execute the TE task in a MS network in optimal time. In the proposed TE algorithm,
packets follow shortest paths to their destination, and full (equal to 100%) utilization
of the communication links is achieved. As a result, our TE algorithm is unimprovable,
in the sense that using a different switching format (such as wormhole routing) would
not decrease the completion time. We also present two MNB algorithms, each of
which uses a different set of assumptions regarding the communication model. Both
algorithms execute the MNB task in optimal time. In the course of developing the
second MNB algorithm, we also show that the MS network contains two edge-disjoint
Hamiltonian cycles. To the best of our knowledge, this is the first time that the TE
and the MNB communication tasks are considered for the MS network. Algorithms to
perform a MNB or a TE in other multiprocessor networks of interest can be found in
[1,2,5,6,8,15,16]. For work on other routing aspects in MS networks see [3,7,10,11].

In our algorithms we assume that all packets have equal lengths, and they require
one unit of time (or slot) for transmission over a link. All links of a node can be used
simultaneously, but only one packet can travel along a link in a given direction at any
one time. Thus, if more than one packets are available at a node and are scheduled to
be transmitted on the same incident link of the node, then only one of these packets
can be transmitted at the next time period, while the remaining packets must be stored
at the node while waiting in queue. An algorithm that performs a communication task
will be called optimal if its execution time is the minimum possible.

The organization of the paper is the following. In Section 2 we introduce the notation,
and we derive closed-form expressions for the shortest distance between any pair of
nodes in the MS network. In Section 3 we evaluate the mean internodal distance of
the MS network. In Section 4 we present an algorithm to execute the total exchange
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task. In Sections 5 and 6 we present two algorithms for the multinode broadcast task,
and describe a way to construct edge-disjoint Hamiltonian cycles in a MS network.
Finally, in the appendix we resolve some technical issues that arise in the remainder
of the paper.

2. Shortest paths in the Manhattan Street network

The X x Y-dimensional wraparound mesh consists of XY processors arranged along
the points of a two-dimensional space that have integer coordinates. There are X pro-
cessors along the x-dimension and Y processors along the y-dimension, where X and Y
are even numbers (note that X' and Y have to be even for the network to be symmetric).
Each processor has two outgoing links, one horizontal and one vertical. The horizontal
links are directed eastwards on even rows and westwards on odd rows, while the ver-
tical links are directed northwards on even columns and southwards on odd columns
(see Fig. 1). Each processor is represented by a pair (x,y), with 0<x<X — 1 and
0<y<Y — 1. If we define the parity function

(n) = 1 if n even,
P=Y 21 if nodd,

then each processor (x, y) is connected by unidirectional links to processors (x + p(x)
mod X, y), and (x, y + p(y)mod Y).

A path of length L can be represented by the pair ((x, y), #), where (x, v) is the
origin of the path, and ¥ =1//;,...,{; is an L-bit long binary number, called routing
tag, whose ith bit is zero if the path crosses an horizontal link during the ith hop, and
one if it crosses a vertical link. When no confusion can arise, we will refer to a path
by its routing tag .#, dropping the origin.

o

(0,0)

Fig. 1. An 8 x 8 Manhattan Street network.
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The relative address R, ,(u,v) of node (u,v) with respect to node (x, y) is defined as

Ry y(u,v) = ((u — x) p(x) mod X, (v — y) p(y) mod ')
(u—xmod X, v— ymod ¥), x even, y even,
(x—umod X, v— ymod ¥Y), x odd, y even,
(u—xmodX, y—vmodY), x even, y odd,
(x—umodX, y—vmodY), x odd, y odd.

We let 4" be the set of nodes of the network. The following lemma is useful in
characterizing the symmetry of the MS network.

Lemma 1. The functions

F (u,v) = Ry y(u,v)
and

G (x, ) > Ry y(u,0)
from A to AN are one-to-one.

Proof. It is easy to see that & is one-to-one. To prove that % is also one-to-one, it
is enough to prove that %((x;, 1)) = 9((x2, y2)) implies (x, y1)=(x2, y2). Assuming
G((x1, 1)) =Y((x2, y2)), we have

(u = x1) p(x1) mod X = (u — x2) p(x2) mod X.

If we show that p(x;)= p(x2) then the preceding equation will give x; =x,. The proof
that p(x;)= p(x;) will be done by contradiction. Assume, without loss of generality,
that 1= p(x;)# p(x2)=—1. We then have (2u — x; — x;) mod X =0, which implies
(since X is even) that (x; + x;) mod 2 =0, or, equivalently, p(x;)= p(x2). This con-
tradicts our hypothesis. Therefore, we have p(x;)= p(x2), from which it follows that
x; =X;. We can similarly show that y; =y,. O

The function R ,(:,-) is an automorphism that relabels the Manhattan Street network,
placing (x, y) at the origin. For any path with routing tag & starting at (x, y) and ending
at (u,v), there is a corresponding path with routing tag . starting at (0,0) and ending
at R, ,(u,v). Therefore, instead of considering paths between any pair of nodes, we
can focus on paths originating at node (0,0), and transfer the results obtained to paths
originating at any node (x, y), by using the isomorphism Ry ,(:,-).

When considering paths with origin (0,0) and destination (i,;), we will limit our
attention to four types of paths, which we call the North—East, the South—West, the
South-East, and the North-West paths. The way these paths are defined is indicated
in Fig. 2. Their lengths can be found to be as follows:
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Fig. 2. The NE, SW, SE, and NW paths with origin (0,0) and destination (i,)).

North—East (NE):

i+j+2 if i odd, j odd,
i+ otherwise.

dne(, j)= { N

South-West (SW):

i+j+4 if i even, j even,

. 2
i+j+2 otherwise. 2

dsw(i,j)= {
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South—East (SE):

i+j+2 if i even, j odd,
dsg(i,j)=¢ j+4 if i=0, j even, 3)
i+j otherwise.

North—West (NW):

i+j+2 if i odd, j even,
daw(i,j)=¢ i+ 4 if i even, j=0, “4)
i+ otherwise.

A packet with origin (0,0) and destination (x, y) can be routed over a NE path of
length dng(x, ), or a SW path of length dsw(X — x,Y — »), or a SE path of length
dsg(x,Y — y), or a NW path of length dnw(X —x, y). The shortest path distance from
node (0,0) to node (x, y) is

DO,O(x7 y) = min(dNE(x’ y)s dSW(X — X, Y - y)’ dSE(xs Y — y)a dNW(’Y — X, y)) (5)

In order to simplify Eq. (5), we distinguish four areas, depending on whether x and
y are odd or even numbers.

Case x odd, y odd: The network is partitioned into four areas (quadrants) as shown
in Fig. 3(a). In area 4, the shortest path is a NE path, in area 4, it is a SW path,
in area A; it is a SE path, and in area A4 it is a NW path. On each of these areas
the shortest distance Dy o(x, y) is given by a different expression. Using Egs. (1)—(5)
and the fact that x and y are odd numbers, we get after some algebraic manipulation
that

dng(x, ) if (x,y)€d,
dsw(X —x,Y —y) if (x,y) €4y,
Dy,o(x, y) = i
dse(x, Y — y) if (x,y)€4s,
[ dnw(X —x, ) if (x,y)€4s,
x+y+2 if (x,y)€4;,
X—x+Y—-y+2 if (x,y)€4,,
Yxtroy if (x,y) €45, ©
X —x+y if (x,y) €Ay,

Case x even, y even: The network is again partitioned into areas 4,, 4;, A3, and
Ay, as shown in Fig. 3(b). Using Eqs. (1)—(5) and the fact that x and y are even
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(a): xodd. vy odd .;,,

-

(0,0) X (x.0)
.

(X,Y)

(oY)

node (0, q}n

node (_’z‘n ,0)

Fig. 3. (a) The areas 4;, i=1,...,4 for the case where x and y are odd numbers. Note that area 4, also
includes the nodes ((X/2) + 1,0) and (0,(¥/2) + 1). (b) The corresponding areas for the case where x and
¥ even are even numbers.

numbers, we get

x+y if (x,y)€ Ay,
X—-x+Y—-y+4 if (x,y)€4,,
x+Y—y if (x,y)€d;, x#£0,
Doox»)=9y_ 14 if (x,y)€4s, x=0, @
X—x+y if (x,y)€A4q, y#0,
X—x+4 if (x,y)€ds, y=0.

Case x odd, y even: The network is partitioned into four areas A;, 4>, A3, Aa, as
shown in Fig. 4(a). Using Egs. (1)—(5) and the fact that x is odd and y is even, we
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(a): x odd, y even X

Fig. 4. (a) The areas 4;, i=1,...,4 for the case where x is odd and y is even. (b) The corresponding areas
for the case where x is even and y is odd.

find that
x+y if (x,y)€4d,,
X—=x+Y—-y+2 if (x,y)€4,,
Dy,o(x, y) = . (8)
x+Y—y if (x,y)€4s,
X—x+y+2 if (x,y)€A4,y.

Case x even, y odd: The network is partitioned into areas 4,, A, A3, As, as
shown in Fig. 4(b). Using Eqgs. (1)—(5) and the fact that x is even and y is odd,
we obtain

x+y if (x,y) €4,
X—x+Y—-y+2 if (x,y)€A4,,

Dy,o(x, y)= . 9)
x+Y—-y+2 if (x, y) €43,

X—-x+vy if (x, y) €A,
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Egs. (6)—(9) give the shortest path distance from node (0,0) to node (x,y).
The shortest path distance D, (x, y) from an arbitrary node (u,v) to node (x, y) can
be found from these equations using the relation

Dy o(x, ¥) = Do,0(Ru, o(x, )

These are, to the best of our knowledge, the first closed-form expression for the short-
est distance between any pair of nodes of the MS network. Egs. (6)—(9) also give
implicitly the shortest paths: for example if x and y are odd numbers and (x, y) be-
longs to the area 4, of Fig. 3(a), then the shortest path from node (0,0) to node (x, y)
will be the SW path. The next section is concerned with the determination of the mean
internodal distance for general values of X and Y.

3. Mean internodal distance of the Manhattan Street network

The mean internodal distance D is defined as the average of the shortest distances
over all pairs of nodes. Since the MS network 1s symmetric, we have

where H is the sum of the shortest distances of all nodes from node (0,0):

X-1Y-1 X-1
H= Doo(x,y)= Y Z Doo(x, y) + Z Z Dyo(x, y)
x=0 y=0 x=0, xodd y=0, y odd x=0, x even y=0, y even
X—1 X—1
+ Y Z Doo(x, )+ > Z Do,o(x, y). (10)
x=0, x odd y=0, yeven x=0, x even y=0, y odd

To find H we have to substitute Eq. (9) into Eq. (10). To proceed with the calculations,
we distinguish four cases:
Case X =4k, Y =4m: After some calculations, described in the appendix, we get

3> Doolxy)=4akm(1 + m+ k), (11)
x odd y odd
3 > Doolx, y)=dmk(m+k + 1)~ 4, (12)
xeven yeven
37> Doolx, y) =4mk(m + k + 1), (13)
xodd yeven
and
3> Do, y) =4mk(m + k + 1), (14)

xeven yodd
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Using Egs. (10)—(14), we obtain
HzXY(i}Z+1)—4. (15)
Case X =4k + 2k, Y =4m + 2: After some calculations, described in the appendix,
we get
3 Doox, y) = 2mk(m + k +2) + 2(k + 1)(m + 1)(m + k +2)

xodd y odd
2%k —2m -2, (16)

3> Doolx.y) =k + 1)m+ 1)(m + k)

e e F 40k — 1) (m — 1)+ (k= 1)(m — 1)(m + k)
-k + 2)mlk +m+2) + (m+ 2)k(m + k +2)
$2%+2m—6, for km>1, (17)

Z Z DO,O(xs )’)

xodd yeven

=k + Dm(m+ 1)+ (m + 1)k + 12 + 2km + k(m + 1)m + mk>
+(k+ Dm(m + 1)+ m(k + 1> + k(m + 1)(m +2) + (m + DI, (18)

and

E Z Dy,o(x, ¥)

xeven yodd
=(m+ Dk(k + 1)+ (k + 1)(m 4 1)+ 2km + m(k + Dk + km?®
+(m+ Dk(k + 1)+ k(m + 1+ m(k + 1)k +2) + (k + Dm*. (19)
Using Eq. (10) and Egs. (16)—(19), we obtain
XY
H:(X+Y)T+XY—X~—Y~2 for X, Y >2. (20)

Case X =4k + 2, Y =4m: After some calculations, described in the appendix, we
get

> Doolx, y)=2mk(m + k +2) + 2(k + 1) + m(m + k + 1), (21)
xodd yodd
>3 Dootx, y)

=2(m + k)(mk + 1)+ 2(m + k + 1)(mk +m — 1)+ dmk — 2, (22)
> > Dootx, y)=2km(m + k +2) + 2m(k + 1)(m + k + 1), (23)

xodd yeven
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and

>3 " Doo(x, y) = 2km(m + k + 2) + 2m(k + 1)(m + k + 1). (24)

xeven yodd

Using Eq. (10) and Egs. (21)—(24), we obtain

H=XY

Y

X:: +XY—-Y -4 for X>2. (25)

Case X =4k, Y =4m + 2: This case is analogous to the preceding one, with X and
Y interchanged. Therefore,

X+Y

=X
H Y4

+XY~X—4 for Y>2. (26)

Combining Egs. (15), (20), (25), and (26), we get that the mean internodal distance
of the MS network is

. H
b=%v
L p1- 4 if X=0mod4, ¥ =0mod 4,
_ - L2 if X=2mod4, ¥ =2mod 4, X,¥>2, on
Lrp-1- 4 if X=2mod4, ¥Y=0mod4, X >2,
e L if X=0mod4, ¥=2mod4, ¥>2.

Eq. (27) answers an open question concerning the average internodal distance of the
MS network in the general case. In order to verify our calculations, we ran a short-
est path algorithm on all the MS networks with 4<X, ¥ <22. The results obtained
were in agreement with the closed-form expression of Eq. (27). The expression for the
mean internodal distance is also in agreement with a conjecture by Rose [12] (who
performed computer calculations on MS networks with up to 50 000 nodes for the case
X =0mod4,Y =0 mod 4), and with the results obtained by Khasnabish [9] for the
special case X =7,

The mean internodal distance of the MS network is related to its saturation through-
put for uniform traffic. Indeed, assume that packets arrive at each node with rate A,
and each of them has a single destination which is uniformly distributed over all nodes
(including its origin). Each packet requires on the average at least D transmissions
to arrive at its destination. Applying Little’s theorem on the system consisting of the
2XY network links (which can be viewed as servers), we obtain AXY D<2(XY), or
else A<2/D.

If the links of the MS network were bidirectional (in other words, if we had an X x ¥
wraparound mesh with X and ¥ being even numbers), the mean internodal distance
would be (X + Y)/4. This is at most one unit less than the mean internodal distance
given in Eq. (27). Since the wraparound mesh has twice the number of links that the
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MS network has, it is clear that the MS network makes more efficient use of the links
than the wraparound mesh does. Note, however, that the saturation throughput of the
wraparound mesh is approximately twice that of the MS network (because it has twice
the number of links, and about the same mean internodal distance).

4. Total exchange in a square Manhattan Street network

In this section we present an optimal algorithm to execute the total exchange task in
a square MS network with X =Y =N. We remind the reader that in the TE task, each
processor has to send a separate (personalized) message to every other processor of
the network. Before describing the algorithm, we introduce some notation and establish
two preliminary results.

For any routing tag ¥ =1,/ ---I; we denote by Z=1 1_2 .- l_L the bitwise comple-
ment of %, where /; =1 —/,. In other words, a path with routing tag % uses a vertical
(horizontal) link during a step, whenever the path with routing tag . uses a horizontal
(vertical, respectively) link during the same step. The following two lemmas, which
are easy to prove, will be useful in designing TE algorithms for the MS network.

Lemma 2. The path ((0,0), %) has as destination node (i,j) if and only if the path
((0,0), ﬁ?) has as destination node (J,i).

Lemma 3. If s and t are distinct nodes, the paths (s, %), (s,t_,g’_),(t,é{’ ), and (¢, @z )
use different links during a given step.

Let #) be the routing tag of a shortest path with origin (0,0) and destination
(i,7). Such a shortest path can be found, e.g., in the way described in Section 2.
Our TE algorithm consists of phases P, ;, with i=0,1,.... N -1, j=0,1,...,N -1,
and i<, which can be executed in any order.

Total Exchange Algorithm:

During phase B, ;, i=0,1,...,N =1, j=0,1,...,N — 1, i</, each node (x,y) of
the network sends a personalized packet to the nodes that have relative address (i,/)
and (/,7) with respect to (x, y). The packets originating at node (x, y) follow the paths
((x ), Z¢)) and ((x, y), L),

During phases P;;, i=0,1,...,N — 1, each node (x, y) sends a packet to the node
that has relative address (i,i) with respect to (x, y) in the following way. The packet
originating at node (x, y) is split into two mini packets. The first mini-packet sent by
node (x, y) follows the path ((x, ), #"), while the second mini-packet follows the
path ((x, ), £ 1),

Phase P, ;, i <j, requires Dy o(i,j) steps to complete. If the overhead associated with
the splitting of packets is small, we can assume that each mini packet involved in phase
P, ; requires % units of time for transmission over a link. Therefore, phase P, ; requires

Dy ,0(i,i)/2 steps to complete. The total duration 77z of the total exchange algorithm
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is given by
Tre= Y D(i ')+EZD(i i)wlZD(i h=H
S L, BTy 2 P D=a 2 P =S
L] 1<_] 1 L]
Using the expressions obtained in Section 3 for H for the case X =Y = N, we obtain
M E iff N =0mod 4,
Tre = (28)

My¥ _N-1 if N=2mod4, N>2.

It can be seen that during the execution of the TE algorithm all links of the network
are used 100% of the time. This combined with the fact that all packets follow shortest
paths to their destinations, proves that our algorithm executes the TE task in optimal
time. Since the algorithm achieves full utilization of the links of the network, which
are a critical resource, it cannot be improved by using a switching format different
than the store-and-forward switching assumed in this paper (e.g., by using wormhole
routing [4]).

5. Multinode broadcast in a square Manhattan Street network

In the multinode broadcast task, each processor of the N xN square MS network
broadcasts a packet to all other nodes of the network. Since each node has to receive
N? — | packets and has only two incoming links, a lower bound on the time required
to execute the multinode broadcast is
NI —17 N?

1 = (29)

Tving 2 [

where we used the fact that N is even. In what follows we present an algorithm to
execute the MNB in time equal to the lower bound of Eq. (29). We will construct
the MNB algorithm by starting with an algorithm for broadcasting from a single node
(namely, from node (0,0)), and exploiting the symmetry of the network to obtain a
MNB algorithm.

We can represent an algorithm for broadcasting a packet from node (0,0) to all other
nodes in m steps by a sequence of disjoint sets of directed links, 4;,4,,...,A,. Each
A4; is the set of links on which the packet is transmitted during the ith step. In order
for the sets 4; to correspond to a broadcast from node (0,0), they must satisfy some
consistency requirements. In particular, if S; (or E;) is the set of start nodes (or end
nodes, respectively) of 4;, we must have S;={(0,0)} and S; C {(0,0)}U(U,{:l E).
Any node of the network must belong to {(0,0)} U({J;_, £x). Finally, the set of all
nodes together with the set of links (J;", A; must form a spanning tree of the MS
network. In the algorithm that we propose each set 4; contains only two links, one
vertical and one horizontal. We will show that for sets 4; that have this property, the
algorithm for broadcasting from node (0,0) can be extended to a MNB algorithm.
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It can be seen that an algorithm for broadcasting a packet from node (x, y) is spec-
ified by the sets

Ai(x, ¥) = {(Re (1, 0), R y(z, W) | ((m,0), (z,w)) €A}, i=1,2,...,m,

where 4;(x, y) denotes the set of the links on which the packet is transmitted during
the ith step. The following lemma shows that each set 4,(x, y) contains one horizontal
and one vertical link.

Lemma 4. If ((u,v),(z,w)) is a horizontal (vertical) link then (R, ,(u,v),R, ,(z,w))
is also a horizontal (vertical, respectively) link of the MS network.

Proof. Let ((u,v),(z,w)) be a horizontal link (the case where it is a vertical link is
analogous). Then, we have z=u + p(u)mod N and w=v (we remind the reader that
p(u)=1if u is even, and p(u)=—1 if u is odd). We also have

Ry y(u,v) =((u — x) p(x) mod N, (v — y) p(y) mod N ),
and
Ry, ,(z,w) = Ry y(u + p(u)mod N,v)
= ((u — x) p(x) + p(u) p(x) mod N, (v — y) p(y) mod N)

= ((u —x)p(x)+ p((u — x) p(x))mod N, (v — y) p(y) mod N).

The preceding two equations show that (R, ,(u,v),Rx ,(z,w)) is a horizontal link. [

Let (u,v) be the starting node of the horizontal link of set 4;(0,0). Then, by con-
struction, the starting node of the horizontal link of A4;(x, y) is R, ,(u,v). Since (by
Lemma 1) the function (x, y)— R, ,(#,v) is one-to-one, the horizontal links in the
sets {4i(x,y)}o<x, y<n—1 have different starting nodes, and they are, therefore, dis-
tinct. Similarly, it can be proved that the vertical links in the sets {4;(x, ¥)}o<x, y<n—1
are also distinct. Therefore, for a given 7, the sets {4i(x,y)}o<ry<n—1 are
disjoint.

For each node (x,y), the set A4;(x,y) specifies the links on which the packet
generated at this node will be transmitted during the ith step. If at a given step i,
transmissions take place simultaneously on all links of the sets {4;(x, ¥)}o<x,y<n—1
no packet collisions arise, and the total time taken by the multinode broadcast algorithm
is equal to m.

To complete the description of the MNB algorithm, it remains to construct the sets
A;, i=1,2,...,m. The requirements for the sets A; are that they should correspond to
a single-node broadcast from node (0,0), and each of them should have one horizontal
and one vertical link. The number m of sets should be the smallest possible so that
the execution time of the multinode broadcast is minimum. Since the cardinality of
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Ui11 A; is at least N2 — 1, and each set 4; contains at most two links, m has to be at
least as large as [(N2 — 1)/2] =N?/2, where we have used the fact that N is even.
One way to construct sets 4; with the required properties for m =N2/2 is described
next.

Construction of the sets 4, i=1,2,...,m, for m=N?/2.

(a) The first N sets are defined in the following way:
4i={(1,0),(0.))}, i=12,...,N.

(b) We denote by Ey the ending nodes of the links of the set A;. Suppose that we
have constructed the sets 4, 4,,...,4_,, for some & with N + 1 <k <N?2. The set
Ay is then chosen to consist of two links, one horizontal and one vertical, whose
starting nodes are in the set |- £/, and whose ending nodes are distinct and do
not belong to the set U,l:ll E; of the already covered nodes. It can be seen that
such links can always be found, except for the last step. In the last step only one
node remains uncovered, and therefore both the horizontal and the vertical link are
chosen to lead to the same node (alternatively, the last set 4,, could be chosen to
consist of only one link).
Using the sets 4; constructed as described previously, we can execute the multinode
broadcast in time
N2
Tvng = >
Comparing this equation with the lower bound of Eq. (29), we conclude that the MNB
algorithm has optimal execution time. It can also be seen that all links of the network
are fully utilized during the execution of the MNB algorithm, except for the last step
during which only half of the links are used.

6. Hamiltonian cycles, and MNB with packet segmentation

In the MNB algorithm described in Section 5, messages were not split, and they
were always transmitted as a single packet. In this section we will present a particularly
simple MNB algorithm, which, however, assumes that packets can be split into two
smaller packets that are routed independently and are recombined at the destination.
We assume that the overhead introduced by the splitting and the recombining of packets
is negligible (alternatively, we can assume that each node has to broadcast two packets
to all the other nodes, so that the task we have to perform effectively corresponds to
two multinode broadcasts).

A Hamiltonian cycle is a cycle that visits each node of the network exactly once.
Since the MS network has 2N? links, it cannot contain more than two edge-disjoint
Hamiltonian cycles. Fig. 5 illustrates a way to construct two edge-disjoint Hamiltonian
cycles in the MS network.
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Fig. 5. The MS network contains two edge-disjoint Hamiltonian cycles. The first Hamiltonian cycle
(Fig. 5(c)) is obtained by combining two tours: the one of these tours (Fig. 5(a)) uses only even rows
and columns, while the other uses only odd rows and columns (Fig. 5(b)). The second Hamiltonian cycle
(Fig. 5(d)) is the reflection of the first one with respect to the diagonal.

The MNB algorithm that we propose uses edge-disjoint Hamiltonian cycles. Each
packet is split at the origin into two mini packets, each of which is broadcast on a
different Hamiltonian cycle. The two mini packets are recombined when they reach their
destination. In this way, we essentially perform two independent multinode broadcasts
on two edge-disjoint unidirectional rings. The MNB is a unidirectional ring can be
executed in N2—1 steps (during a step each node on the ring simply passes to the
right the packet that it received from the left during the previous step). Ignoring the
overhead due to the splitting of packets, each mini packet requires 0.5 units of time
to be transmitted over a link. Therefore, the time complexity of the resulting MNB
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algorithm for the MS network is

N?-1 . .
Tvng = 7 (when the splitting of packets is allowed).

Eq. (30) does not contradict the lower bound of Eq. (29), because the latter is
not valid when the segmentation of packets is allowed (in that case the ceilings in
Eq. (29) must be removed).

It is easy for each node to record which is its next node on a Hamiltonian cycle.
As a result, the MNB algorithm of this section is considerably simpler to implement
than the MNB algorithm of Section 5, and it may be the best choice when the overhead
due to the segmentation of packets is small.

7. Conclusions

We presented simple shortest path routing algorithms for the Manhattan Street net-
work of processors, and we derived a closed-form expression that gives the mean
internodal distance of this topology in the general case. We also presented the first
optimal completion time algorithms to execute the total exchange and the multinode
broadcast communication tasks in the Manhattan Street network. The proposed algo-
rithms achieve almost full utilization of the communication links, while being at the
same time easy to implement.

Appendix

In this appendix we describe in detail the calculations involved in obtaining some
of the equations used in Section 2.

Proof of Eq. (A.1).

Z Z D(),()(X, y)

x odd y odd
= > [x+y+2]+ > [X—x+Y—y+2]
x odd, y odd, (x, )EA, x odd, y odd, (x, y)E4;
+ > [x+Y — y]+ > X—x+y)
xodd, y odd, (x, y)EA; x odd, y odd, (x, y)EA4
m 2k 2m
=D Y M@=+~ D20+ > Y [Bk—Qi-1)+4m—(2j~1)+2]
i=1 j=1 i=k + 1 j=m 41
k 2m 2k m

FO ) [Qi=Ham = (2 = DI+ Y Y 4k = (2 = D42 - 1)]

i=1 j=m+] i=k+1 j=1
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m

=43 N 144> D [ - D)+2) — D] = dkm(1 +m+k). (A1)

i=1 j=I i=1 j=1

Proof of Eq. (A.2).

Z Z Dq.o(x,y)

xeven yeven

- 3 [+ y]+ > [X—x+Y—y+4]

X even, y even, (x, ¥)EA, x even, y even, (x, y)EA;

+4Zl+421

x even, (x,0)€44 veven, (0,y)E4;

+ > [x+Y—y]+ > [X—x+y]
x even, y even, (x, y)EA: x even, y even, (x, ¥)EA,

m 2k—1 2m—1

k
=33 Ri421+ Y D [4k—2i+4m—2j+4]

i=0 j=0 i=k+1 j=m+1
£ 2m—1 2%—~1 m

30N RiAm-214 YD [4k-2i-2j1+4(k—1) + 4(m—1)

i=0 j=m+ 1 i=k+1 j=0
= d(m—1)(k—1)+(k+ Dym(m+ 1)+ (m+ Dk(k+1)+(k—1)m(m—1)
+ (m=Dk(k—1)+ (k+ Dym(m—1)+ (m—Dk(k+ 1)+ (m+ Dk(k—1)
+ (k—Dm(m+1)+4{k—1)+4(m—1)
= 4km® +4k*m +4(m—1)(k—1)+4(k—1)+4(m—1) = dmk(m+k + 1 )—4.
(A2)

Proof of Eq. (A.3).

> Doolx,y)

xodd yeven
- > [x + y] + > [X~x+Y—y+2]
xodd, y even, (x,y)EA, x odd, y even, (x,y)EA4>
- > [x+ Y~ y]+ > [X —x+y+2]
xodd, yeven, (x.y)E4; x odd, y even, (x,y)E A4
k+1 m 2k 2m—1
=Y N (2= D421+ > > [k — (20— 1) +4m~2j +2]
i=1 j=0 i=k+2 j=m+1
k+1 2m—1 2k m
+ D MQi= D) +dm =21+ > D [k~ Q2i— 1)+ 2/ +2]

=1 j=m+1 i=k+2 j=0
=—(k+1)m+1) = (k+ 1)(m—1)+30m— 1)k — 1)+ 3(m+ 1)k — 1)
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+k+Dmim+ 1)+ (m+ 1)k+1)k+2)
+(k— Dm(m— 1)+ (m— )k — 1)k —2)
+¢k+Dmm—1)+(m—1)k+1)k+2)
+k—Dmm~+ 1)+ (m+ 1)k = 1)k —-2)
=dmk(m+k +1). (A3)

Proof of Eq. (A.4).

Z Z DO,O(-xa J’)

xeven y odd
= > [x+ v]+ > X —x4+Y —y+2]
xeven, yodd, (x,y)€4, x even, y odd, (x,y)EA>
+ Z x+Y—-—y+2]+ Z X —x+ y]
x even, v odd, (x,y)E A3 x even, y odd. (x,y)EAs
k m+1 2k—1  2m
=SSR @Dl YD [k —2i+4m—(2j - 1) +2]
i=0 j=I f=k+41 j=m+2
k 2k—1 m+1
+y Z [2i+4m— 2/ = D+2]1+ > >[4k —2i+(2j - 1)]
i=0 j=m+2 i=k+1 j=1
= dmk(m +k +1). (A4)

Proof of Eq. (A.5).

Z Z DO,O(x! y)

xodd yodd

= ST 4y+2+ Y K—xtY-y+2
xodd, y odd, (x,y)E 4, x odd, y odd, (x,y)€ 4,
SED DN G
x odd, y odd, (x,y)€ A3
+ > (X —x+ y]—DQ2k+1,2m+ 1)
x odd, v odd, (x,y)€ A4
k m 2k+1 2m+1
=3 N 2i+20+ Y ) Bk+2-Qi— D+dm+2-(2j - 1)+2)
i=1 j=1 i=k+2 j=m+2
k+1 2m+!
+3°0 ) Rit+4m+2-2))
i=1 j=m+l
2k+1 m+1
+ 30 [4k - 2i+2j+ 4]~ D2k +1,2m + 1)

i=k+1 j=1
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= km(m + 1) + mk(k + 1)+ mk* + km* + 2km + (k + 1)(m + 1)?
+mADhkH1YP +m+D)k+ 1P +k+D)(m+ 12 -2k ~2m —2
=2mk(m+k +2)+2(k + 1)m+ 1)m+k +2) — 2k — 2m — 2. (A.5)

Proof of Eq. (A.6).

Z Z Do,o(x, y)

xeven yveven

= Z fx+y]+ Z [X—x+Y—-y+4]

xeven, yeven, (x,y)E4, xeven, yeven, (x,y)EA4,
—D(2k+22m+2)+4 > T+4 > 1-4
xeven, (x,0)€ 4, yeven, (0,y)EA4;
+ > x+Y—y]+ > [X —x+ p]
xeven, yeven, (x,y)& Ay xeven, yeven, (x,y)EAy
kK m
=3 > [2i+2/]+4k +4m
i=0 j=0
2k 2m
43" )" [4k — 2i +4m — 2/ + 8] + 4k + 4m — 4
i=k+2 j=m+2

k+1  2m
“2%k—2m =24 )" [2i+4m+2-2j]

=0 je=mes]

2k m+1

+ D [k +2-2i+2)]

i=k+1 j=0
=+ 1D(m+ 1) m+k)+4k —D)(m— 1)+ k — 1)(m— 1)m -+ k)
+k+2mlk+m+2)+(m+2)k(m+k+2)+2k+2m—6, fork, m>1.
(A.6)

Proof of Eq. (A.7).

> Doolx.y)

xodd yeven

- > [x + y] + > X —x+7Y—y+2]

x odd, yeven, (x,y)}E A, x odd, y even, (x,y)E A4,
—\
+ > x4+ Y - y]+ > [X —x+y+2)
xodd, y even, (x,y)E 43 xodd, yeven, (x,y)€ 4,4
k+1 m

=Y N 12— 1)+2)]

i=1 j=0
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2k+1 2m
+ Y k42— 1) +4Am+2-2j+2]
i=k+2 j=m+1

k+1 2m

303 [@2i- 1)+ 4m +2 - 2]

=1 j=m+]
2k+1 m

+ 3 k42— Q2i— 1) +2j+2]

i=k+2 j=0
=(k+ Dm(m + 1)+ (m + 1)k + 1) + 2km + k(m + 1)m + mk>
+(k + Dym(m + 1)+ m(k + 1 + k(m + DY(m~+2) + (m + DK

Proof of Eq. (A.8).

3> Doolx.y)

xeven y odd
= > [x+ y] + > X —x+Y —y+2]
xeven, yodd, (x,y)€4, xeven, yodd, (x,y)€ A
+ > [x+Y—y+2]+ > X —x + y]
xeven, yodd, (x,y)E 4, xeven, yodd, (x,y)€ Ay
m+1l k
=3 (@i 1)+2i]
J=11i=0
2m+1 2k
+ DD [EmA2— (2~ 1)+ 4k +2-2i+2]
J=m+2i=k+1
m+1 2k
+ 30D (@2~ D)+ 4k +2-2i]
J=1 i=k+1
2m+1 &
+ Y [Bm+2-(2j - 1) +2i+2]
J=m+2 i=0

=(m+ Dk(k + 1)+ (k + D)(m + 1)? + 2km + m(k + Dk + km?
+(m+ Dk(k + 1)+ k(m + 17 + m(k + 1)(k +2) + (k + Dm?.

Proof of Eq. (A.9).

> Z Do,o(x, y)

xodd y odd

= > x+y+2]+ > X —x+Y—y+2]
xodd, y odd, (x,y)€4, xodd, y odd, (x,y)E 4,

323

(A7)

(AB)
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+ > k+Y -yl + > (X —x+y]

x odd, y odd, (x,y)€ 43 xodd, yodd, (x,y)E€44

=) N [Q2i- D)+ (2 - 1)+2]

i=1 j=I
2k+1 2m

+ 30N k+2-@i-D+4m—Q2j—-1)+2]
i=k+2 j=m+1

k+1  2m

+3 > Qi +4m—(2j - 1)

=1 j=m+l
2k+1 om

+ Z Z[4k+2—(2i~l)+(2j—1)]

i=k+1 j=1
= 2mk(m + k +2) + 2(k + Dym(m + k + 1). (A9)

Proof of Eq. (A.10).

> > Dy

xeven yeven

- 3 [x+ y] + 3y X —x+Y — y+4]

xeven, ycven, (x,y)E4, xeven, y even, {x,y)c A4z
- > [x+Y -yl + > X —x+y]
x even, yeven, (X,y)EA; xeven, yeven, (X,y)E A4
+4 > 1+4 > 1-2
xeven,{x,0)€ A4 yeven,(0,y)E 4
k m 2k 2m—1
=Y N 2i+20+ Y D [k +2-2i+4m -2/ +4]
=0 j=0 i=k+2 j=m-+1
k+1 2m—1
+ 30 [2i+4m—2j]
i=0 j=m+1
2k m
+ 3D Ak +2—-2i+ 2]+ 4k +4m—1) -2
i=k+1 j=0
= 2(m + k)(mk + 1)+ 2(m + k + 1)(mk +m — 1) + 4mk — 2. (A.10)

Proof of Eq. (A.11).

Z Z Dy,o(x, y)

xodd yeven

= S [x+ y]+ > X —x+Y—y+2]

xodd, yeven, (x,y)EA4, xodd, yeven, (x,y)Y€A4>
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+ > x+Y—y]+ > (X —x+ y+2]
xodd, y even, (x,y)€ A3 xodd, y even, (x,y)€ 44
k+1 m
=33 [@i-1)+2)]
i=1 j=0
2k+1 2m—1
+ 3> Bk 42— 20— 1)+ 4m—2j +2]
i=k+2 j=m+1
k+1 2m—1
+3 03 120 = 1) +4m - 2/]
i=1 j=m+l
2k+1 m
+ 3D [k+2-Q2i-1)+2j+2]
i=k+2 j=0
= 2km(m + k +2) + 2m(k + 1 )(m +k + 1). (A.11)

Proof of Eq. (A.12).

Z Z Do o(x, y)

xeven yodd
= > [x+ y]+ > [X —x+7Y —y+2]
xeven, yodd, (x,y)E4, xeven, yodd, (x.y)EA,
+ > [x+Y—y+2]+ > [X —x+ ]
xeven, yodd, (x,y)€4; xeven, yodd, (x,y)E Ay
k m+1
=3 Y i+@i-n)
i=0 j=I
2k 2m
30N Mk +2-2i+4m— (2 - 1) +2]
i=k+1 j=m+2
Kk 2m 2% m+l
+Y D RitAm— - D420+ Y Y [k +2-2i+(2j - 1))
i=0 j=m+2 i=k+1 j=1
=2km(m+k+2)+2mk + )(m+k+1). (A.12)
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