Efficient Routing Algorithms for Folded-Cube Networks

Emmanouel (Manos) Varvarigost

University of California - Santa Barbara
Electrical and Computer Engineering Dept.
Santa Barbara, CA 93106
Email: manosdece.ucsb.edu

Abstract

We consider the partial multinode broadcast, the to-
tal exchange, and several other prototype communica-
tion tasks in a folded-cube network of processors. In the
partial multinode broadcast in a N-processor network,
each one of M arbitrary nodes (M < N) broadcasts a
packet to all the remaining N — 1 nodes. In the total
exchange task each processor sends a separate (person-
alized) packet to every other processor. We propose
algorithms for the folded-cube topology that execute
these tasks in optimal or near-optimal time. We also
present an efficient scheme for the dynamic version of
the broadcasting problem, where broadcast requests are
generated at each node of the folded-cube at random
times. The dynamic broadcasting scheme has asymp-
totically optimal stability and average delay properties.

1 Imntroduction.

There are some communication tasks that arise fre-
quently in parallel computing applications. As a result,
it is desirable to find algorithms that execute these pro-
totype tasks in the minimum number of steps. Such
algorithms can be called as communication primitives
by the programmer or the compiler of a multiprocessor
computer, in the same way that subroutines implement-
ing standard functions are called from a library of func-
tions in a conventional computer. The time required
to execute the prototype tasks is a good performance

measure in comparing topologies for multiprocessor net-
works (see [BeT89]).

Algorithms for routing messages between different
processors have been studied by several authors under
a variety of assumptions on the communication net-
work connecting the processors. In this paper we fo-
cus on routing algorithms for prototype communication
tasks in the folded-cube network topology. The sim-

t Supported by NST under Grant NSF-RTA-08930534.

0-7803-2492-7/95 $4.00 © 1995 IEEE

143

plest communication task to be considered is the single
node broadcast (SNB for brevity) where the same packet
is sent (copied) from a given node to all other nodes.
A multinode version of the single node broadcast task
is the multinode broadcast (or MNB), where each node
broadcasts a packet to all the other nodes. A task more
general than the MNB is the partial multinode broad-
cast (or PMNB) where an arbitrary subset of the nodes
want to broadcast a packet to all the nodes. The PMNB
task, along with being important on its own merit, it is
also a critical component of the dynamic broadcasting
schemes to be discussed later. A dual to the partial
multinode broadcast problem is the partial multinode
accumulation (PMNA), where every node of the net-
work sends a packet to all nodes in a given set of nodes;
here, we assume that packets with the same destina-
tion can be combined on a link, with the operator used
in combining the packets being any associative opera-
tor. The PMNA implements a concurrent write from
all nodes to each one of a given set of memory locations
(a different number is written at each location). The
PMNB and the PMNA are dual tasks to each other:
origin (destination) nodes in the PMNB correspond to
destination (origin) nodes in the PMNA, and the copy-
ing operation in the PMNB corresponds to the com-
bining operation in a PMNA. The first to consider the
PMNB and PMNA tasks were Stamoulis and Tsitsik-
lis [StT93b] for the hypercube topology, and Varvarigos
and Bertsekas [VaB94] for d-dimensional meshes.

Another prototype communication task is the sin-
gle node scatter (SNS), which involves sending a sep-
arate packet from a given node to every other node
(see [BeT89]). A multinode version of the single node
scatter is the total ezchange (TE), where each node
sends a separate (personalized) packet to every other
node. A total exchange arises, for example, during the
transposition of a N x N matrix stored by columns in

an N-processor computer. Johnsson and Ho [JoHS89],
Bertsekas et al [BOS91}, Edelman [Ede91), Fraigniaud
[Fra92], and Varvarigos and Bertsekas [VaB92] have de-
veloped minimum and nearly minimum completion time
algorithms for the total exchange task in hypercubes
and other topologies under a variety of communication
models. Several other works deal with prototype com-
munication tasks related to those of this research; for
an overview of such problems see [HHL88], [SaS89], and
[BeT89).

In this paper we present optimal and near-optimal
algorithms to execute the PMNB, the MNB, the TE,
and other communication tasks in a folded-cube net-
work of processors. The algorithms presented, appro-
priately modified, can also be used to execute the duals
of the previous tasks optimally or near-optimally, pro-
viding a rather complete set of communication primi-
tives for the folded-cube topology.

We will first present an algorithm that executes the
PMNB task in a folded-cube in near-optimal time, in-
dependently of the position of the nodes that have a
packet to broadcast. The PMNB algorithm is on-line,
distributed, and does not require prior knowledge of the
position of the participating nodes. It is the first time
that the PMNB task is considered for the folded-cube
topology.

We also consider the TE communication task, and
present an algorithm that executes this task in optimal
time. The first to study the TE task for the folded-cube
topology was C.-T. Ho in [H090], who also gave an algo-
rithm of optimal order (but not optimal). The TE algo-
rithm given in [Ho90] assumes that the messages can be
split into small packets that are routed independently
and are recombined at the destination. In the TE al-
gorithm that we propose, the segmentation of messages
is not allowed, and messages are always transmitted as
one packet. This seems to be a more appropriate model
for multiprocessor computers, where the overhead due
to splitting and recombining of packets is usually sig-
nificant. Our algorithm has a smaller execution time
than the algorithm in [Ho90], even if the overhead asso-
ciated with the splitting and the recombining of packets
is ignored.

All the tasks described above are static in the sense
that there is some work to be performed once and for
all. The packets that each node has to send are avail-
able at time ¢ = 0, and all the nodes are synchronized to
start at the same time; the only objective is to finish the
job as fast as possible. Except for the static communi-

cation tasks, where conditions are rather favorable, one
can envision situations where communication requests
are not deterministic, but they are generated at random
time instants. We call such an environment dynamic.
The execution of asynchronous computation algorithms
is one such situation, but it is reasonable to expect that
in many systems a dynamic, largely unpredictable en-
vironment may be the rule and not the exception.

In this paper we also consider the dynamic version
of the broadcasting problem. In our model, broadcast
requests are generated at random times at each node
of a folded-cube. Based on the PMNB algorithm, we
propose a dynamic decentralized scheme to execute the
broadcasts in this stochastic environment. The dynamic
scheme is provably stable for load asymptotically equal
to the maximum possible, and its average delay is of the
order of the diameter of the folded-cube for any load in
the stability region.

The remainder of the paper is organized as follows.
In Section 2 we describe the communication model used,
and present some properties of the folded-cube topol-
ogy. In Section 3 we focus on broadcasting tasks. We
first present algorithms to execute the PMNB and the
MNB communication tasks in near-optimal time. We
then use the PMNB algorithm to get a routing scheme
for the dynamic broadcasting problem. In Section 4 we
give an optimal TE algorithm, and discuss the perfor-
mance of greedy routing schemes. Finally, in Section 5
we conclude the paper.

2 Model and Properties.

The communication model that we will use is the fol-
lowing. A message is always transmitted as a single
packet, and the splitting and recombining of packets is
not allowed. The time required to cross any link is the
same for all packets, and is taken to be one unit (or one
slot). Packets can be simultaneously transmitted along
a link in both directions, but only one packet can travel
along a link in each direction at any one time. Finally,
we assume that all incident links of a node can be used
simultaneously for packet transmission and reception.

We will say that a communication algorithm is near-
optlimalif the potential loss of optimality with respect to
completion time is of strictly smaller order of magnitude
than the optimal completion time itself. We generally
derive the optimal completion time by deriving a lower
bound to the completion time of any algorithm and by
constructing an algorithm that attains the lower bound;

144

this latter algorithm is said to be optimal. We will say
that an algorithm is of optimal order if its worst case
time complexity is asymptotically within a constant fac-
tor from the optimal value.

The d-dimensional folded-cube network, first de-
fined in [AdS82], has N = 24 nodes and (d + 1)24-1
links. Each node is represented by an identity num-
ber in the set {0,1,...,N —1}. A node can alterna-
tively be represented by the (column) vector that cor-
responds to its binary representation. For example, the
nodes 0,1, and 29 — 1 will also be referred to as nodes
(00---00)T, (00---01)T, and (11---11)T, respectively,
where T denotes the transpose operation. Each node
has d + 1 = logn + 1 incident links. In particular,
there are links between nodes whose representation vec-
tors differ either in precisely one entry, or in all en-
tries. We let ef, i = 0,1,...,d — 1, be the binary vec-
tor whose entries are equal to zero, except for the ith
entry, which is is equal to one. For completeness, we
also let ed the binary vector that has all entries equal
to one. The j-dimensional link, j = 0,1,...,d - 1,
of node s = (s4-1...55...50)T is the link connect-
ing that node to node s ® ¢/ = (s4-1...5;...80)7,
where T denotes the complement of z, and @ denotes
the componentwise exclusive OR operation between bi-
nary vectors. We also define the d-dimensional link of
anode s = (s4-1...55...50)T as the link connecting
node (s4-1...8;5...80)T with its componentwise com-
plement s ® ed = (54-1...5;...50)T. A d-dimensional
link will also be referred to as a complementary link.

A folded-cube can be obtained from a hypercube by
adding one complementary link per node. The following
lemma shows that if we remove all links of a particular
dimension from a d-dimensional folded-cube, we obtain
a d-dimensional hypercube.

Lemma 1: If we remove from a folded-cube F all the
links of a particular dimension j, j € {0,1,...,d}, the
resulting graph Fj is isomorphic to a d-dimensional hy-
percube.

Proof: It is clear that Fy is a hypercube (Fy con-
tains all links of F except for the complementary links).
Therefore, it is enough to show that Fj is isomorphic to
Fy, for every j.

We represent the graph Fj, j = 0,1,...,d, by the
pair (Vj, L;), where V; is the set of nodes and L; C
Vj xVj is the set of links of F;. We let E be the dx (d+1)
binary matrix whose columns are the vectors ef, i =

145

We also let C° be the (d+ 1) x d matrix whose first row
has all entries equal to zero, and whose last d rows form
an identity matrix:

0 0 -0
10 -0
co=101 0
00 ..- ... 1

We denote by Ci, j = 0,1,...,d, the matrix obtained
by cyclically shifting each column of C° by j positions
downwards. We define a function V; : V; — V; that
maps each node s of Fj to the node

Vi(s)=E-Ci-s

of Fy (all products involving binary matrices and/or
vectors correspond to modulo 2 arithmetic). Since the
matrix E -CJ has dimension d x d and linearly indepen-
dent columns, V; is a 1-1 function. We denote by + the
modulo d+ 1 addition [that is, i+j = i+ j mod (d+1)],
and by — the modulo d + 1 substraction. The neighbor
s@®e of sin Fj, i # j (recall that links of dimen-
sion j are not present in Fj), is mapped to the neighbor
Vi(s®e') = V;(s)DE-Ci-e' = Vj(s)Ded+i=i of V;(s) in
Fy [to see that V;(s)@ed+i =i is a neighbor of V;(s), note
that for i # j, we have d+j—i # d and that only links of
dimension d are missing from Fy]. Therefore, the func-
tion C; : Lj — L4 that maps link (s,s®ef) € L; to link
(Vi(s),Vi(s) @ ed+i=i) € L, is well defined. The pair
(Vj, £;) represents an isomorphism between the graphs
F; and F4. Q.E.D.

The isomorphism (V;, £;) maps the links of dimen-
sion ¢ of hypercube Fj to links of a different dimension
d+j—i of hypercube F;. Since any d of the binary vec-
tors €9 el,...ed4-1 ed form a linearly independent basis
of the space {0, 1}9, a packet can be routed (not neces-
sarily over a shortest path) from any node to any other
node by using only d of the d + 1 dimensions of the
folded-cube. We define the Hamming distance H(s,w)
between nodes s and w as the number of bits in which
their binary vectors differ. For any pair of nodes, there

is a connecting path with length equal to their Ham-
mmg distance, obtained, for example by the switching
in sequence of bits in which the bit representations of
the nodes differ (equivalently, by traversing the corre-
sponding links of the folded-cube). There is also a path
between node s and w with length d 4 1 ~ h(s,w) ob-
tained by first traversing a link of dimension d, and
then switching in sequence the bits at which s eaed and
w differ. Therefore, for any two nodes s and w there is
a connecting path of length
P(s,w) = min (h(s,w),d + 1 — h(s,w)).

It can be seen that any path between nodes s and w has

length greater than or equal to P(s,w). The diameter
D of the network is equal to

D= r?’%)xP(s, w) = [g] .

The mean internodal distance M ID of the folded-cube
is defined as the average shortest distance between two
nodes:

MID = —EP(s w).

We will show in Section 4 that

d+l_d+1(d)

MID = 3 [d/2)

(1)

3 Static and Dynamic Broadcasting Tasks.

A single node broadcast can be accomplished by trans-
mitting the packet along a spanning tree rooted at the
source. Since for every nodethere exists a spanning tree
rooted at that node with depth equal to the diameter,
the single node broadcast (or the single node accumu-
lation) in a folded-cube requires [d/2] time units to
execute. In this section we focus on two more com-
plicated static broadcasting tasks, the PMNB and the
MNB, and present algorithms to execute them in near-
optimal time. We also consider the dynamic broad-
casting problem, and present a dynamic scheme that
has asymptotically optimal stability and average delay
properties.

We start with the PMNB task, where M arbitrary
nodes (called active nodes) of an N-processor folded-
cube have to broadcast a packet to all the other nodes.
Let TpmnB be the optimal time required to execute

a PMNB in a folded-cube. Tppynp may actually de-
pend on the position of the nodes that have a packet to
broadcast. A lower bound, however, is always

TpMNB 2 max (Wﬂ] [d+l])

where [z] denotes the smallest integer which is greater
than or equal to z. Equation (2) can be seen by arguing
that each node has to receive M — 1 or M packets, and
has only d+1 input ports. Futhermore, since packets are
transmitted in a store-and-forward way (and splitting
and recombining of packets is not allowed), the diameter
of the network is a lower bound on the broadcast delay.

The PMNB algorithm that we propose is based on
Lemma 1 of Section 2, and uses as a component the hy-
percube PMNB algorithm proposed by Varvarigos and
Bertsekas (Algorithm Ap in [VaB95]). The idea is to si-
multaneously execute copies of algorithm A in each of
the d-dimensional hypercubes Fy, Fy, ..., F4_1, F4 that
are embedded in a folded-cube in the way described in
Section 2. The algorithm Ao consists of a parallel prefix,
a packing, and a broadcast phase. As proved in Lemma
2 of [VaB95), the algorithm A¢ executes the PMNB in
time

(3)

where M is the number of active nodes, and ¢, is the
time required for a single parallel prefix step. At each
step of a parallel prefix operation only one byte has to be
transmitted between neighbor nodes. Therefore, t, < 1,
where one unit of time is the time required to transmit
a packet over a link; in fact one expects t, << 1 since
many parallel computers have very efficient implemen-
tations of the parallel prefix operation.

As is evident from Egs. (2) and (3), algorithm Ao
is suboptimal for the folded-cube topology by a factor
of roughly d+ 1. However, algorithm Ao has the useful
property that it uses at each step only links of a par-
ticular dimension. We will use this property to design
copies of the algorithm that can execute simultaneously
on a folded-cube without interacting with each other.
We let the algorithm Ao execute in the hypercube Fy
that is embedded in the folded-cube F; since F' and
Fy have the same set of nodes, algorithm Ap executes
a PMNB in F in time less than or equal to Tp, inde-
pendently of the location of the active nodes. For any
c € {0,1,...,d — 1,d}, we define another PMNB algo-
rithm to be referred to as algorithm A.. Algorithm A,
is similar to algorithm .4g, but it executes in hypercube

(2)

To< M+ 2dt, +2d -1,

146

F.. In particular, A. is obtained from A by renam-
ing the nodes and the dimensions in the following way:
node s of F, is mapped to node V.(V; ' (s)) of Fo, where
the functions V;, j = 0,1,...,d — 1,d are defined as in
the proof of Lemma 1 (V. is a 1-1 mapping of the nodes
of F, to the nodes of Fy4, and V;! is a 1-1 mapping
of the nodes of Fyj to the nodes of Fy), and a link of
dimension i in F, (i # ¢), is mapped to a link of di-
mension i—c. Since algorithm Ao performs the PMNB
in F' independently of the location of the active nodes,
algorithm A, also executes the PMNB task in F, and
in the same amount of time. For i # j, algorithms A;
and Aj use links of different dimensions at each step,
and they can be executed independently of each other.

We are now in a position to describe the PMNB
algorithm for folded-cubes. Let s1,s2,...,8p, M < N,
be the active nodes. We define the rank r, of an active

node s as
rs = E Tt —1,

where z: is equal to one if processor ¢ has a packet to
broadcast, and zero otherwise. The PMNB algorithm
consists of two parts.

Class Computation Part:

The rank ,, 0 < r, <M -1, s € {s1,82,...,5m}, of
each active node is computed through a parallel pre-
fix operation on hypercube Fyq. This can be done in
2d steps by performing a parallel prefiz operation (see
[Lei92]) on a tree P, called parallel prefiz tree, embedded
in the hypercube Fy. The ith leaf of the tree from the
le™ is the i*h node of the folded-cube. The operation is
described in [Lei92], pp. 37-44. The class computation
part requires 2dt, time units, where ¢, is the time for
a single parallel prefix step. The packet of node s is
assigned a class number ¢ = r, mod (d + 1).

Main Part:

The packets of class ¢ are routed according to algorithm
A.. Tt can be seen that each class has at most [M/(d+
1)] packets. Using Eq. (3) with [M/(d + 1)] instead of
M, we conclude that the main part requires time less

than Ap +2d+2dt, - 1.

Adding the durations of the two parts, we find that
the total duration Tppynp of the algorithm satisfies

(4)

independently of the value of M and the location of the
active nodes. Comparing Eq. (4) with the lower bound

M
< = -
Tpmne £ [-d+1] + 2d + 4dty, - 1,

of Eq. (2), we see that the terms that depend on M at
the right hand sides have the same coefficient; therefore
the algorithm is near-optimal.

The PMNB algorithm presented above gives rise to
an efficient algorithm for the MNB task. Indeed, a MNB
can be treated as a PMNB with M = N. The parallel
prefix operations of the class computation part and of
the main part (recall that the algorithms A, used in
the main part also include a parallel prefix operation)
are not necessary any more, since the information ob-
tained in them can be considered as known in advance.
Therefore, the MNB can be executed in a folded-cube
in time

N
< | = -
TMNB_[d+1]+2d 1,

which is optimal within 2d — 1 time units.

In the preceding MNB algorithm, messages are al-
ways transmitted as one packet. C.-T. Ho [Ho90] has
proposed an alternative MNB algorithm for the folded
cube topology, which has optimal completion time (N —
1)/(d+1), and assumes that messages can be split into
smaller packets that can be routed independently and
can be recombined at the destination without any over-
head. The splitting of messages may be undesirable
when the messages are small (as they usually are), in

. which case the overhead introduced is significant. For

large messages, where the overhead associated with the
splitting of messages is proportionally small, Ho’s MNB
algorithm may perform better.

In the MNB task each node receives N ~ 1 differ-
ent packets, one from every other node of the network.
Therefore, a MNB algorithm can also be used to exe-
cute the single node gather task, and by reversing the
transmissions, it can also execute its dual task, the sin-
gle node scatter. It is easy to see that a lower bound
on the time required to execute a SNS or a SNG is
(N —1)/(d +1). The MNB algorithm described above,
appropriately modified, gives rise to near-optimal al-
gorithms for the SNS and the SNG tasks. Note that
MNB algorithms that require the segmentation of pack-
ets cannot be used to execute the SNG task. This is
because in the SNG, whenever two packets are com-
bined into one packet using some associative operator,
the whole information contained in each of the packets
is needed.

The PMNB algorithm presented above also gives
rise to an efficient scheme for the dynamic broadcasting
problem. In the dynamic broadcasting problem packets

147

arrive at each node of a folded-cube, according to a ran-
dom process with rate A, over an infinite time horizon,
and each of them has to be broadcast to all other nodes.
The dynamic broadcasting problem has been studied in
[StT93a] and [VaB94)], [VaB94] for hypercubes and d-
dimensional meshes, respectively. It has been proven
(see [VaB95]) that if we have an efficient algorithm to
execute a PMNB in a given network, we can also obtain
an efficient dynamic broadcasting scheme for that net-
work. In particular, the dynamic broadcasting scheme
can be taken to consist of the repeated execution of
PMNB algorithms, each starting when the previous one
has finished. The following is a corrolary to the Dy-
namic Broadcasting Theorem of [VaB95).

Corrolary 1: Let the arrival process of broadcast re-
quests at a node of an N-processor folded-cube be Pois-
son with rate A, and the arrival processes at different
nodes be independent. We call

_ AN
P=a+1
the utilization factor of the folded-cube. Then there
exists a dynamic broadcasting scheme (namely the one
that consists of the repeated execution of the PMNB
algorithm), that is stable for

1
p< d+41)(4dt,+2d) ° (5)
13 G030

and has average delay T that satisfies

Zor + (3 — p)(2d + 4dty) 1

T<(1+p)- . (6)
2(1_p_pd+1 §d+4dt) d+1

By considering the stability conditions for a partic-
ular node, it is easy to prove that the maximum value
of p that can be accomodated by any broadcasting
scheme in a folded-cube is equal to one. Since the right
hand side of Eq. (5) tends to one as the dimension d
tends to infinity, our dynamic scheme is stable for load
asymptotically equal to the maximum possible. Also,
for any fixed p in the stability region, we have from Eq.
(6) that T = O(d). Therefore, for any fixed load the
average delay of the broadcasting scheme is of the or-
der of the diameter of the folded-cube; this is the best
we can hope for since the diameter is a lower bound for
any broadcasting task.

148

4 Total Exchange in Folded-Cubes.

C.-T. Ho [Ho90] has given an algorithm of optimal or-
der to execute the TE task in a folded-cube network of
processors in time

dN
E < W+ (8)

The same author has also shown that the completion
time of any TE algorithm in a folded-cube network sat-

isfies 1 d
Tre2 2 =3 (rdm)‘ @)

The algorithm given in [Ho90] requires the splitting of
each packet into d + 1 parts that are routed indepen-
dently and are recombined at the destination. Although
the lower and upper bounds of Egs. (7) and (8) are of
the same order of magnitude, the gap between them is
quite significant in practice. For example, in the case
d = 16 the lower bound is 26333 time units, while the
algorithm in [Ho90] requires 30840 time units (for com-
parison, the TE task in a 16-dimensional hypercube re-
quires 32768 time units).

Tr

In this section we present an alternative algorithm
to execute the TE task in the folded-cube topology. Our
algorithm has completion time equal to the lower bound
of Eq. (7), and is therefore optimal. During the execu-
tion of the TE algorithm packets travel over shortest
paths, while at the same time 100% utilization of the
links is achieved. The algorithm does not require the
splitting and the recombining of packets, which elimi-
nates the associated overhead, and makes the algorithm
easy to implement.

We first consider the case where d is even. In the
algorithm that we propose, the packets carry with them
a d + 1-bit binary vector called routing tag. A packet
originated at node s and destined for a node ¢t at Ham-
ming distance less than or equal to d/2, will not use any
d-dimensional links, and its routing tag is defined as

(0,84-1 D ti_1,84-2 D ta-2,...,50 Do),

where @ denotes the exclusive OR operation. A packet
originated at node s and destined for a node t at Ham-
ming distance greater than or equal to d/2 + 1 will use
exactly one d-dimensional link, and its routing tag is
defined as

(lvsd-l ®td—l,8d-2 (7] td-21 ey 80 @to))

where T = 1 — z denotes the complement of r.

An important data structure that will be useful in
describing the TE algorithm is that of the task matriz.
The task matrix 7(s) of node s is a binary matrix whose
rows are the routing tags of all the packets with origin
s. The routing tags appear as rows of the task matrices
7 (s) in some arbitrarily chosen order. The task matri-
ces that correspond to the TE task are, by symmetry,
identical for all nodes s, and will be denoted by 7p.
Note that Tp has d + 1 columns (each corresponding to
a link of a node) and N — 1 rows (each corresponding
to a packet involved in the task). We define the critical
sum h of a matrix as the maximum of the column sums
and the row sums of the matrix. Then the following
lemma holds.

Lemma 2: There exists a distributed (based only on
local information) routing algorithm that executes the
TE task in time equal to the critical sum of the task
matrix.

Proof: (outline) A permutation matrix is a matrix
with entries equal to 0 or 1 with the property that each
row or column of the matrix has at most one nonzero
entry. Using Hall’s Theorem (see [Rys65]) we can write
a task matrix 7o as the sum Z:=1 Sk of permutation
matrices S1,S52,...,S,. If T is the task matrix before
the kth slot, and Si < 7, is a permutation matrix,
then Si can be viewed as specifying the packet (if any)
that will be transmitted on each link at the time slot
beginning at time k. In particular, a unit at entry (i, §)
of Sy corresponds to the packet with routing tag equal
to the #th row of T; being transmitted on the link of
dimension j during time slot k. If during any time slot
t all the nodes use the same permutation matrix S for
their switching assignments, then the switching scheme
is called symmetric. The key fact is that if at some time
t, the task matrices 7;(s) are the same for all nodes s,
and a symmetric switching scheme is used, then the next
task matrices Ty41(s) will be the same for all nodes. In
particular, the task matrix at times ¢ with 1 < t <
h will be equal to Ty = To — 3 5, Sk. At time t =
h the task matrix will have all entries equal to zero;
this corresponds to the TE task having been completed.
Hence the TE communication task can be completed
after h steps. Q.E.D.

The critical sum of the task matrix is equal to

max(7e, Te),

149

where

3. 0=5-3()

is the column sum that corresponds to dimension d, and

d/2 L 427
1 d
=i ()i x

$=0

/2

"E(,_l)

EE-E R
= T+- (d‘/12_—11) =213 (rd(;ﬂ)’

is the column sum that corresponds to each of the di-
mensions 0,1,...,d — 1. Using Lemma 2 we conclude
that for d even the TE task can be executed in time

% (fd‘;ﬂ) ’

We next consider the case where d is odd. A packet
with origin node s and destination node ¢ at Hamming
distance less than or equal to [d/2] —1 will not use any
d-dimensional links, and its routing tag is

TrE=Te =T, = 24-1 ~

which equals the lower bound.

(0,54-1 ®tya_1,54-2 D ta-2,...,50 Dlo).

A packet with origin node s and destination node ¢ at
Hamming distance greater than or equal to [d/2] + 1
will use a d-dimensional link and has routing tag equal
to

(1,54-1 ®Ta—1,5a-2 D la—2,...,50 B lo) -

The packets of s whose destinations are at Hamming
distance [d/2] from s are partitioned into two disjoint
sets of equal cardinality, in the same way for all origins
s; packets in the one set will use d-dimensional links and
packets in the other set will not. The task matrices will
be the same for all nodes and have critical sum equal
to
max(7e, Te),

i (d) ; (rd721) B % B %(rd721)

i=[d/2]+1

where

Te =

is the column sum corresponding to d-dimensional links,

and

=3 3 (sl =2

=0

wf:l d—1
Zs \i-1

+21d(|'d/2'|) 2_21(j) 2d(fd‘/l21)

I=
=3~ (rd/21 - 1) * 2d(rd/21)

=2~ 3 (147

is the column sum that corresponds to each of the other
dimensions. Thus, for d odd, the TE task can be exe-

cuted in time
l d
2\[d/2])’

which again equals the lower bound.

Note that in the algorithm we propose all packets
follow shortest paths to their destination and 100% uti-
lization of the links is achieved. Let M ID be the mean
internodal distance of the folded-cube. Since there are
N (d+1) unidirectional links, and N2 source-destination
pairs (we permit packets whose source is the same with
their destination), we have N(d + 1)Trg = N2(MID);
this proves Eq. (1) of Section 2.

We define a “greedy routing scheme” as a scheme
where all nodes take symmetric routing decisions, and
no link is left idle at any step if there is a packet that
is not transmitted at that step and wants to use it. It
can be shown that any greedy scheme executes the TE
in a folded-cube in time less than or equal to

Tre=t1c=1 =241~

21~ 3 (fafm) 41

This is only d—1 steps (at most) more than the optimal
execution time.

Basic Communication Tasks for Folded-Cubes
Iasks Completion times Lawer beunds
SNB/SNA k/2 jer
SNS/SNS [Wrtas 13]o24-1 fou-127¢8013]
s Peraereze-1 kn-176a+13]
PHNB/PHNA Fucae nhaaeaat -1 max(for- 1076 13]s f0/3)
T 24 (E‘Iﬂ) P ([:,ﬂ)

Figure 1: The table summarizes the basic static com-
munication tasks in a folded-cube, the corresponding
completion times of the algorithms that we propose.
We remind the reader that the communication model
used does not allow the splitting and the recombining
of packets.

5 Conclusions.

We have proposed optimal and near-optimal algorithms
to execute several basic communication tasks in folded-
cube networks. The tasks considered are the single node
broadcast, the single node accumulation, the partial
multinode broadcast, the partial multinode accumula-
tion, the single node scatter, the single node gather,
and the total exchange. We also considered the dy-
namic broadcasting problem in folded-cubes networks,
and proposed a dynamic scheme that has stability and
average delay properties that are asymptotically opti-
mal.

6 References.

[AdS82] Adams, G. B., and Siegel, H. G., “The Extra
Stage Cube: a Fault-Tolerant Interconnection Network

for Supersystems,” IEEE Trans. Computers, 31(5), pp.
443-454, May 1982.

[BeT89] Bertsekas, D. P., and Tsitsiklis, J. N., Paral-
lel and Distributed Computatzon Numerical Methods
Prentice-Hall, Englewood Cliffs, N.J., 1989.

[BOS91] Bertsekas, D. P., Ozveren, C., Stamoulis, G.
D., Tseng, P., and Tsitsiklis, J. N., “Optimal Communi-
cation Algorithms for Hypercubes,” J. Parallel Distrib.
Comput., Vol. 11, pp. 263-275, 1991.

[Ede91] Edelman, A., “Optimal Matrix Transposition
and Bit Reversal on Hypercubes: All-to-All Person-
aliced Communication,” J. Parallel Distrib. Comput.,
Vol. 11, pp. 328-331, 1991.

150

[Fra92] Fraigniaud, P., “Complexity Analysis of Broad-
casting in Hypercubes with restricted Communication
Capabilities”, J. Parallel Distrib. Comput., Vol. 16, pp.
15-26, 1992.

[HHL88] Hedetniemi, S. M., Hedetniemi, S. T., and Li-
estman, A. L., “A Survey of Gossiping and Broadcast-

ing in Communication Networks”, Networks, Vol. 18,
pp. 319-349, 1988.

[Ho90] Ho, C. T., “Full Bandwidth Communications on
Folded Hypercubes,” Research Report RJ 7434 (69605),
IBM Almaden Research Center, April 1990.

[JoH89] Johnsson, S. L., and Ho, C. T., “Optimum
Broadcasting and Personalized Communication in Hy-
percubes,” IEEE Trans. Computers, Vol. C-38, pp. 1249-
1268, 1989.

[Lei92] Leighton, F. T., Introduction to Parallel Algo-
rithms and Architectures: Arrays - Trees - Hypercubes,
Morgan Kaufmann, San Mateo, CA, 1992.

[Rys65] Ryser, H. J., “Combinatorial Mathematics”,

The Mathematical Association of America, Rahway, N.J.

1965.
[SaS89] Saad Y., and Schultz, M. H., “Data Communi-

151

cation in Parallel Architectures,” Parallel Computing,
Vol. 11, pp. 131-150, 1989.

[StT93a} Stamoulis, G. D., and Tsitsiklis, J. N., “Effi-
cient Routing Schemes for Multiple Broadcasts in Hy-
percubes,” IEEE Trans. on Parallel and Distributed
Systems, Vol. 4, 1993, pp. 725-739.

[StT93b] Stamoulis, G. D., and Tsitsiklis, J. N., “An
Efficient Algorithm for Multiple Simultaneous Broad-
casts in the Hypercube,” Information Processing Let-
ters, July 1993, pp. 219-224.

[VaB92] Varvarigos, E. A., and Bertsekas, D. P., “Com-
munication Algorithms for Isotropic Tasks in Hyper-
cubes and Wraparound Meshes,” Parallel Computing,
Vol. 18, pp. 1233-1257, 1992.

[VaB94] Varvarigos, E. A., and Bertsekas, D. P., “Par-
tial Multinode Broadcast and Partial Exchange in D-
Dimensional Meshes,” J. of Parallel and Distributed
Computing, Vol. 23, pp. 177-189, 1994.

[VaB95] Varvarigos, E. A., and Bertsekas, D. P., “Dy-
namic Broadcasting in Parallel Computing,” to appear
IEEE Trans. on Parallel and Distributed Systems, Feb.
1995.

