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Abstract

We analyze circuit switching in a multiprocessor network, where connection requests (or sessions)
arrive at each node of the network according to a Poisson process with rate A. Each session joins the
appropriate input-queue at its source node, and, upon advancing to the head of the queue, transmits a
set-up packet to establish a connection. If the set-up packet is successful, it reserves the links on the
path for the duration of the session, and the session is served without interruptions. Otherwise, the
connection request remains queued at the source, and subsequent attempts are made to establish the
circuit. We analyze the queue of connection requests at the input-buffer of a network link, and obtain
analytic expressions for the stability region, the average queueing delay, the average connection time, the
average waiting time, and the average total delay, which show how these parameters depend on system
variables, such as network dimension and session arrival rate. The queueing analysis focuses on the input-
queue of a particular link, and accounts for the interactions with queues of other links through the retrial
attempts and the associated probability of success. The queueing analysis 1s independent of the particular
network topology under consideration, as long as the probability that a session arriving at a random time
successfully establishes a connection can be calculated for that network, and is also independent of the
particular distribution of the session holding times. Simulations demonstrate the close agreement between

the observed network behavior and that predicted by the analysis.
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I. INTRODUCTION

Of the variety of switching and routing formats (circuit switching, packet switching,
wormhole routing, and cut-through routing) used in multi-processor systems today, circuit
switching combines many well-known advantages. After the circuit is setup, each message
interacts only with the processors at the end nodes, thus freeing the processors at the
intermediate nodes from the details of switching. Furthermore, unlike networks using
worm-hole routing, networks employing circuit switching do not require that the routing
algorithm be deadlock free. Also, once a connection has been established, circuit switching
provides the session with an agreed upon grade of service (assuming no fault occurs),
including guaranteed bandwidth and delay.

Although circuit switching (or its variations like wormhole routing) has been studied by

a number of researchers in several regular topology networks under a variety of assumptions
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(see, for example, [GeR88], [GeR89], [ALMOI1], [BrS91], [CGKI1], [CsS92], [ChS93], and
[CCR94] for the hypercube network, [Dal90], [You92], and [GaY93] for the mesh network,
[DaS87] for the torus network, and [KrS83] for banyan networks), the analysis of the
steady-state throughput and delay of circuit-switched routing schemes in such networks

has received relatively little attention in the literature.

One line of research in these works focuses on studying static circuit-switched permu-
tation routing, that is, the problem of establishing edge-disjoint paths between the nodes
of the network for any permutation mapping (see, for example, [KrS83], [ALM91], and
[ChS93]). A second line of research focuses on developing efficient routing algorithms for
circuit switching in regular networks and evaluating their performance (see, for example
[Cs592], [You92], and [CCR94]). A third line of research involves simulating several mes-
sage routing schemes in such networks and developing analytical models to explain the
network behavior. For example, Grunwald and Reed [GeR88] implemented several varia-
tions of circuit switching in a 32-node hypercube, and obtained simulation results for the
end-to-end total delay. They also provided an explanation of the observed behavior by
using a simple model for message delay. In a later work [GeR89], they obtained recursive
equations describing the total time to route a message and the expected number of re-
trials, for several adaptive routing algorithms that used circuit switching to establish the
connection, and they used numerical methods to solve them. Their analysis assumes that
the acquisition of each link on a path corresponds to an independent Bernoulli trail, and
that link utilization is independent of the arrival rate of sessions. Finally, a fourth line
of research, and the one closest to our approach, involves formulating analytical models
for the performance of dynamic circuit switching in regular networks (see, for example,
[CGKI1] and [BrS91]). Bruno and Salvatore [BrS91] analyzed circuit switching in the hy-
percube by taking into account the interactions between different sessions. Their analysis
also assumes, however, that the acquisition of each link on the path is independent of
the number of links acquired prior to it. They also performed an average case analysis,
where they considered a “typical” session with path length equal to the mean internodal

distance.
In this paper, we analyze circuit switching in d-dimensional wraparound meshes and
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in hypercubes. We focus first on the the d-dimensional wraparound mesh and analyze it
in detail, and then show how the analysis can be applied to the hypercube network. We
assume that connection requests are generated at each node of the mesh according to a
Poisson process with rate A independently of other nodes, and that session destinations
are uniformly distributed over the remaining nodes. In our routing scheme, a (d!)-sided
die is tossed in order to decide which one of the d! possible paths (some of them identical)
a new session will use, thus ensuring that link utilization is uniform across all links of the
network. Depending on the outcome of this experiment and the destination of a session,
the session joins one of the 2d link-input queues (d link input-queues in the case of the
hypercube) of the source node. Each link input-queue has infinite buffer space and uses a
FIFO queueing discipline. When all sessions ahead of it in the queue have been served, the
session advances to the head of the queue and a set-up packet is sent to establish a circuit.
If the set-up packet is successful in establishing a connection, the links required by the
circuit are reserved for the session duration, and the session is served without interruptions.
If the circuit cannot be established, the server takes a vacation (the details of which we
provide in Section 4), and tries again. This process is repeated until a connection for the

session is finally established.

We first obtain an analytic expression for the steady-state probability Ps,ccess that a
new session arriving at a random time successfully establishes a connection. We use
this expression to obtain analytical results for the average queueing delay, the average
connection delay, the average waiting time, and the average total delay required to serve
a connection request in a d-dimensional mesh. We also find the maximum throughput for
the circuit switching scheme, that is, the maximum X for which the average total delay is
finite. The queueing analysis that we develop depends on the topology under consideration
only through the steady-state probability Pyccess, and the number of link-input queues at

a node.

In our analysis we account for the dependence between link utilization and the proba-
bility of successfully establishing a circuit. In evaluating the latter probability, we account
approximately for the dependence between the acquisition of successive links on the path

followed by a session. The various queueing delay parameters are functions of the prob-
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ability of success Psyceess, and they depend on it in a simple way. Our queueing analysis
is independent of the specific distribution of the session holding times (it does not, for ex-
ample, require that the holding times be exponentially distributed), and results in closed
form expressions for all network delay parameters of interest such as the queueing delay,
the connection delay, and the total delay of a session. We also obtain asymptotic expres-
sions for the queueing parameters of interest, as the number of nodes of the mesh tends
to infinity. The close agreement between the analytically predicted values of the delay
parameters and those obtained by simulations indicates that our analysis is very close to
being accurate.

The remainder of the paper is organized as follows. In Section 2 we introduce some
definitions, describe the network model, and give some preliminary results. In Section 3 we
derive an approximate expression for the probability that a session arriving at a random
time successfully establishes a connection, and compare it to simulation results. The
queueing analysis of a link input-buffer is presented in Section 4, where we also compare
the analytical results with those obtained by simulations. In Section 5 we specialize our
results to the case of large mesh sizes, and obtain asymptotic expressions for various
parameters of interest. In Section 6 we extend the analysis to the hypercube network. We
compare the delays predicted analytically with those obtained by simulations. In Section
7 we conclude the paper, and in the appendices we present some auxiliary results, and we

resolve some technical issues that arise throughout the paper.

II. D-DIMENSIONAL MESH COMMUNICATION MODEL AND PRELIMINARY RESULTS

In this section we describe the d-dimensional mesh network of processors, and the com-
munication model used. We also present preliminary results that will be useful in our
analysis.

The d-dimensional wraparound mesh, denoted by M,, consists of N = p? proces-
sors arranged along the points of a d-dimensional space that have integer coordinates.
Along the :*" dimension, obtained by fixing coordinates xg,..., 41, Zi_1,..., 21, there
are p processors with identities (zq,...,2;,...,21), ; = 0,1,...,p — 1. Two processors
(xdy...yxiy... 1) and (Y4, ..., Yi,...,y1) are connected by a (bi-directional) link if and

only if for some i we have |¢; —y;| = 1 and x; = y; for all 7 # ¢. In addition to these
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links, wraparound links of the form

((:L'd, ces Tty L timay oo @), (Tay ooy Tig, Py Tt - .,:1;1))

are also present. A node with identity @ = (24, 24-1,...,21) is also represented by the
base p number of the form x = x4x4_1 ... 2. A link connecting two nodes that differ only

in the i digit is called a link of dimension i. The routing tag of a session with source node

= (x4,...,21) and destination node y = (yq,...,y1), is defined as (t4,...,11), where
. {yy‘—% if ly; — ;| < [§];
;= .
y; —wi—p-sgnly; — ), if |y — ;] > (5],

for all 7 € {1,2,...,d}, and sgn(x) is the signum function, which is equal to +1 if > 0,
and equal to —1, otherwise. The network diameter is equal to dD, where D = |p/2], and

the mean internodal distance A is calculated to be
p2 -1 dpd—l
4 pt— 1

p_2 dpd—l

4 ] pt—1

Connection requests (or sessions) are generated at each node of the mesh at rate A per

if p is odd, and

if p is even.

unit time, and have uniformly distributed destinations. A circuit between the source node
and the destination node is established by sending a set-up packet along a path determined
at the source. If a set-up packet finds all links on that path available, it reserves them for a
duration equal to the holding time X of the session, where X may be any random variable
whose mean X, and second and third moments X2 and X3 are known. We assume that the
input-buffer has infinite buffer space, so that no connection requests are lost (otherwise,
sessions with longer paths would be treated unfairly, since they would be dropped with
higher probability). Similar assumptions are common in current literature, and have been
used by researchers both for the analysis of switching schemes in multi-processor networks
(see, for example, [ReF87], [ReGG87], [AbP89], and [BYA8Y] and the references therein)
and for simulations of actual networks (see, for example, [GeR88] and [GeR89]).
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In our model, all incident links of a node can be used simultaneously for message trans-
mission and reception, and messages can be transmitted simultaneously along a link in
both directions. We only allow shortest paths where all links of a given dimension are
traversed first, followed by all links of a different dimension and so on, until all dimensions
are exhausted. In other words, during phase 7, i = 1,...,d, all links of dimension 7 (7) are
traversed, where 7 is a permutation of {1,2,...,d}. For the d-dimensional torus, there are
d! such paths (some of them possibly identical) for a given source-destination pair. Our
routing scheme is oblivious or non-adaptive, that is, the setup packet of a session chooses
an order in which the dimensions are traversed and it insists on that order as it progresses
from its source to its destination. Since in a circuit switching scheme the holding time of
a session is expected to be much larger than the connection setup time (otherwise, circuit
switching would not be very efficient), we simplify modeling by assuming that once the
source node determines that the required links are available, the session acquires them
instantaneously. In other words, the circuit is not established on a link-by-link basis but
reserves all required links simultaneously. Similarly, all links used by a session are released
simultaneously upon its completion. This allows us to concentrate on the main features
of a circuit switching scheme without having to focus on the technical details of a specific
implementation, which would complicate the analysis without providing any additional
insight. In the simulation results presented in Section 4, however, we examine the effect of
the setup time overhead, and show that the simulations and analysis agree closely when
the setup overhead is taken into account.

A network link L is at any time in one of the four states illustrated in Fig. 1. We denote

by ¢;, 1 = 0,1,2,3, the steady-state probability that link L is in state i. Clearly, we have

Go+q+q+qz=1. (1)

Consider a session that chooses one of the d! paths to establish a circuit to its destination.
We let I(ig,t4-1,...,%1) be the number of non-zero entries in (ig4,74-1,...,71). We also

define
Fl(idvid—lv"wil):[(idvid—lv"'vil)_17 (2)
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State 0 State 1 State 2 State 3
L L L L
S S S S
Lidle L used by acircuit L used by acircuit
Yo making aturn at s originating at s
a1 a2 a3
L used by acircuit
going straight at s

Fig. 1. The four possible states of a network link L are illustrated. State 0 corresponds to the case where
L isidle. State 1 corresponds to the case where L is used by a circuit that is making a turn at node s.
(Note that State 1 is made up of 2k — 2 substates, depending upon the direction from which the path
makes a turn.) State 2 corresponds to the case where L is used by a circuit that is going straight at

s. State 3 corresponds to the case where L is used by a circuit originating at node s.

and

F2 (idvid—lv"'vil)

= |ig| + ta1| + -+ 0] — L(egstam1, - - -5 21)-(3)

When a circuit for a session with routing tag (¢4,t4-1,...,%1) # (0,0,...,0) is established,
it will contain Fy(tg,t4—1,...,11) links in state 1, Fy(¢4,t4-1,...,%1) links in state 2, and
one link in state 3.

The steady-state probability ¢; that a link is in state 1 is given by

Q1 :[X7 Z Fl(tchtd—l?“‘?tl)? (4@)
S

where K is some constant of proportionality to be derived later.

After some calculations, shown in Appendix Al, we obtain
g = K[d(p—1)p""" —p* +1]. (1)

The probability ¢, that a link is in state 2 satisfies

g =K Z Fo(ta, taz1, ... t). (5a)
ram e 0

DRAFT November 19, 1996



SHARMA AND VARVARIGOS: CIRCUIT SWITCHING WITH INPUT QUEUEING 9

After some algebraic manipulation, shown in Appendix Al, we obtain

ded_lﬂﬂ, if p is odd; (5b)
q2 = 2
ded_l@, if p is even.
Similarly, the probability that a given link is in state 3 is given by
=K > 1=K(N-1). (6)
o0

To obtain Eqs. (4)-(6) we used the fact that the probability that a link is in state ¢ is
proportional to the total number of ways in which a link can be in state :. Since no sessions
are dropped and the session destinations are uniformly distributed over all nodes except
the source, each value of the routing tag is equally likely and contributes Fi(tq, t4—1,...,%1)
links to state 1, Fy(t4,t4-1,...,t1) links to state 2, and one link to state 3. Therefore, the
probability of a link being in state ¢ is proportional to the sum of the corresponding one
of the quantities above over all possible values of the routing tag, with the same constant
of proportionality K.

Solving Eq. (1) together with Eqs. (4)-(6) with respect to K, we obtain for p odd

- 4(1 - QO)
K= —F7—"—" dd
T -1y (P odd)
which implies
A1 — qo) d— d
q1 = m(d(p —pt = (p' = 1)), (p odd) (Ta)
1 —q)p—3
=TS o) (1)
and
AL = qo)(p* — 1)
= ) dd
43 dpd_l(p2 _ 1) (p o ) (70)
A similar calculation for p even, gives
- Al —gq
K = W, (p even)
which implies
4(1 — qo) _
0= W(d(p —)p" ™t = (p" = 1)), (peven) (8a)
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o= 1= qo;ff "D even) (sb)

and
4(1 — QO)(pd — 1)
dp+

g3 = (p even) (8¢)

Using Little’s theorem, the average number of links used is equal to the product of the

average number of active circuits in the system and the mean internodal distance, that is,

. pIAX (piT_l) iﬂd__ll, for p odd;
de(l_qo): dr (02 dpd—!
p*AX (%) p%—l , for p even,
or /\ypd—l(p2_1)
W, fOI’ P Odd,
L —qo= AT pd—1,2 (9)
e o for p even,

)
where A is the total number of connection requests generated at each node of the mesh per
unit of time, and X is the average amount of time the connection is active. Substituting

go from Eq. (9) to the expressions for ¢1, ¢2, and g5 we obtain

AX (d(p — 1)p*~t — (p* — 1))

N = 2d(p? — 1) |
Y ,d—1 _ —
. AXp 8(}55_;)(29 3)7 for p odd,
2 = X pd—1(p—_9)2
e, forpeven,
and X
AX
=S

III. PROBABILITY OF SUCCESSFULLY ESTABLISHING A CIRCUIT CONNECTION

The probability that a new session arriving at a random time successfully establishes
a circuit connection from its source node to its destination node depends on its routing
tag (tq,ta—1,...,11). We denote by Psyecess(td,ta—1,...,11) the probability that a new
session will succeed in establishing a connection in its first trial (subsequent trials are
more complicated), given that it has a routing tag (t4,%t4-1,...,%1). In this section, we
find an approximate expression for Psyecess(tda, ta—1,-..,t1), and from it an expression for
Psyceess, the unconditional probability that an arriving session successfully establishes a

circuit.
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As explained in Section 2, the path followed by a session with routing tag (¢4, tq—1,...,t1)
will make Fy(t4,t4-1,...,%1) turns along the way, and will go straight for a total of
Fy(tg,ta—1,...,t1) steps. The first link of the path is available with probability ¢o. At
each subsequent step at which the path does not make a turn, the probability that the
next link L is available given that the previous link was available is approximately equal

to

Go  def
= a. 10
- (10)

The probability that the first link L after a turn is available is approximately equal to

Pr(L available | L not in state 2) =

Pr (L available | L not in a given substate of state 1)

q def
T (2d-2)

To see that note that state 1 is composed of 2d — 2 substates depending on the direction
from which the path makes a turn at node s into link L (see Fig. 1). (Since the path is
making a turn from some other dimension we know that link L cannot be in the corre-

sponding substate of state 1.) Since each of these substates is equally likely, the probability

91
2d—-2"

of a link being in one of these substates is

The (conditional) probability of successfully establishing a connection is then given by

Pooess (td7 tact, ... 7t1) = q aF2(td7td—17~~~7751)ﬁFl(tdid—umM)

Y

where Fi(tq,tg-1,...,t1) and Fy(tg,ta-1,...,t1) are defined in Eqs. (2) and (3), respec-
tively.
The (unconditional) probability of successfully establishing a connection is given by
Pouccess = Y Pauccess(tas ta—1, ..., 1) - Pr(routing tag = (tg,ta—1,....t1)). (12)
tartdtreits
When the destinations are uniformly distributed, Eq. (12) simplifies to

1
Psuccess = pd Z Psuccess (tdv td—lv s 7t1)-

T tgitdmt,eatl

After some calculations, given in Appendix A2, the above expression yields

Prvcerns = ﬁ[@ 123 (11__0‘5))d -1 (13)
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for p odd, and

qo0
Psuccess = o7 g I~
Bpt—1)

[(1 +5 (11—_05) +5 (%))d _ 1](14)

for p even, where o and (3 are given by Eqs. (10) and (11), respectively. Observe that since

X

in our model all arriving sessions are queued, the loading of the network does not depend
on the distribution of the resources used by successful connections. As a result, while the
probability of success Pg,.cess depends on the session arrival rate A, the arrival rate itself is
independent of the probability of success, so that a closed-form solution can be obtained
for Pgyecess, without the need for a fixed-point iteration. By contrast, models in which
connections are dropped either after a time out or due to buffer overflow [CGK91], require
a fixed-point iteration to determine the network load.

Figure 2 illustrates the analytical and simulation results obtained for the probability of
success as a function of the arrival rate A for various mesh sizes and dimension d = 2.
As is evident from the figure, the agreement between the simulations and the analytically

obtained expressions is very good.

IV. QUEUING ANALYSIS AT LINK INPUT-BUFFER

In this section we describe in more detail the node model, and present the analysis of

the input-buffer queue.

A. Node Model

Each node has 2d input-buffers, one for each outgoing link of the node. We denote by
B3 the input-buffer of link L of node s. Each input-buffer is used for storing new sessions
that are generated at the node and are going to start transmission over that link. Sessions
that are transiting through node s via link L do not occupy any space in B3 (in fact, since
circuit switching is assumed, there is no queueing of such sessions because resources have
been reserved in advance). We assume a FIFO queueing discipline, and infinite buffer
space for each link input-buffer. The queue of a link input-buffer of a node is interacting
with corresponding queues of other nodes and with input-buffer queues of other links of the

same node. This is because a session’s attempt to establish a connection will be influenced
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Fig. 2. Analytical and simulation results obtained for the probability of success as a function of the arrival
rate A of sessions, for d = 2. All curves correspond to exponentially distributed session holding times,
with X = 1. The analytical formula is plotted with a solid line (+) and the simulation results are
plotted with a dashed line (x). The curves correspond to different values of p, with the larger mesh
sizes corresponding to the lower probability of success curves. The curves obtained from the analytical
results are plotted for A ranging from 0.05 to 0.5, while the curves obtained from the simulation results

are plotted for the values of A actually obtained in the simulations.

by sessions originating at originating at other nodes and by sessions originating at other
links of the same node. Our analysis will take into account the activity of the other queues
in the network through the retrial attempts that a message must make before establishing

a connection.

The holding time of session ¢ is denoted by X; and can be any random variable whose
mean X, and second and third moments X2 and X3 are known. A session 7, arriving at an
outgoing link L, joins the queue in the corresponding input-buffer 5;7. The delay incurred

by the session consists of several components. Session ¢ will first have to wait in the queue
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New sessions

N

ut- queue

Nodes

Fig. 3. This figure illustrates the node model assumed. Each node has 2d link input-buffers. New sessions
generated at the node join the buffers B} of their respective outgoing links L. Transit traffic through

the node does not use the input-buffers.

for the time it takes for the the session currently at the head of the queue to finish, and
depart from the system. This time is called residual time, and is denoted by R;. If session
¢ arrives at an empty queue, R; is equal to zero. When session ¢ reaches the head of the
queue, it will have to wait for the time it takes until the connection to its destination is
established, since more than one trials may be required to establish the connection. This
time is called connection delay, and is denoted by C;. The details of the connection phase
will be described shortly. Session i will also have to wait for the time Z] _in, (X5 +C)
it takes to serve the N; sessions found in queue upon its arrival. The time between the
arrival of the session at a node and the time it reaches the head of the link input-queue is

called the queueing delay and is given by

Qi = R; + Z (X; +C)) (15)

7=1—N;

The total waiting time of session ¢ at the queue includes its own connection delay, and is
W, =0Q,;,+ (. (16)

The total delay of a session is defined as the time that elapses between the arrival of the

session and the time it is completed. Therefore, the total delay includes both waiting time
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and holding time and is given by
T, =X, + W. (17)

During the connection phase of a session currently at the head of the queue, a set-
up packet is sent to the destination to establish the circuit connection. We will use the
convention that if the new session is blocked due to other active sessions, currently using
one or more links required by the session, its failure to establish a connection is “charged”
randomly to one of these active sessions. The link queue then takes an obligatory vacation
for a duration equal to the remaining holding time of the session to which the failure was
charged. (Recall that session durations are recorded by the nodes. Thus, the node where
a setup packet is blocked knows the remaining holding time of the session that blocks
the setup packet, and sends this information back to the source via the setup packet.
The “charging” of a failure randomly to one of the sessions using links required by the
new session is then merely an analytical convenience.) Once this session is completed,
the link queue is informed and it takes an artificial vacation of duration V', where V
is an independent random variable with first and second moments equal to V and V2,
respectively. The reason for introducing the artificial vacation is the following. In general,
there can be multiple sessions whose failure to establish a connection has been charged to
a given active session. When the active session is completed, the multiple sessions blocked
by it contend for the links of the network in an attempt to establish their respective
circuits. Sending these sessions on an artificial vacation randomizes the times at which
these sessions retry, providing in this way an effective way to resolve conflicts. When
the artificial vacation is over, a set-up packet is sent again to establish a circuit. If it
is unsuccessful, the input-buffer queue repeats the cycle of taking an obligatory vacation

followed by an artificial vacation until the circuit is finally established.

B. Queuing analysis

For the purpose of the subsequent analysis, we will make the following approximating

assumption:

Approximating Assumption Al: When the input-buffer queue returns from an artifi-

cial vacation, it finds the network in steady-state.

November 19, 1996 DRAFT



16 IEEE TRANS. ON PARALLEL AND DISTRIBUTED SYSTEMS

We let P, be the steady-state probability that a session at the head of a link input-buffer
successfully establishes a circuit. An implication of assumption Al is that the probability
of successfully establishing a circuit during any trial (following an artificial vacation) is
equal to Pj. In addition to that, assumption Al implies that the connection times C; of
the sessions found in queue by a new session 7 are identically distributed for all 7, and are
independent of the number of sessions N; found in the queue by session 1.

In what follows, we derive expressions for the probability P, connection delay, residual

time, and queueing delay at a particular link input-buffer.

B.1 Calculation of the steady-state probability P,

The session that advances to the head of the link input-queue first takes an artificial
vacation. When this session returns from the artificial vacation and makes its first attempt
to establish a connection, the first link along the session’s path is available not with
probability go as derived in Section 3 (for a random time instant), but with a somewhat
larger probability. This is because this probability is now conditional on the fact that the
first link along its path is not being used by a session starting at this node, which means
that the first link is not in state 3. Thus, the probability that the first link along its path
is available is now given by

qo

Pr(L available | L not in state 3) = . .
—

Since all other probabilities remain the same as before, the probability of success for a

session at the head of a queue becomes

PSUCCBSS
P, = , 18
" 1 —gs (18)

where Pyecess is given by Eqs. (13) and (14) for p even and p odd, respectively.

B.2 Calculation of the mean connection delay C'

We let k; be the number of unsuccessful tries made by session ¢ before successfully
establishing the circuit. The connection delay is given by
ki

Co=3 (X" + V) + 1y (19)

J=1
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where X;’r is the remaining holding time of the circuit due to which the 7" trial failed (that
is, the duration of the obligatory vacation described in Subsection 4.1), V]Z is the duration
of the j*" artificial vacation, and VJ is the duration of the zeroth artificial vacation, which
every session takes immediately after advancing to the head of the link input-queue. (We
remind the reader that when the j*" trial fails due to its being blocked by more than one
ongoing circuit, we randomly charge this failure to only one such circuit.)

Based on assumption Al, the probability that &; unsuccessful tries are made before the

circuit for session ¢ is finally established is given by
Pr(k; retries before success) = (1 — Ph)k" Py (20)

Modulo our approximating assumption Al, the number of retries is independent of X;’r,
the remaining holding time of the ongoing circuit at the j*" retry, and is also independent
of Vf, the duration of the j*" artificial vacation. Since at each trial a session trying to
establish a connection waits for the session that blocked it to finish, it impinges on a
different session at each trial, and the remaining holding times X;’r at the 50 retry are
also i.i.d. Therefore, if fx(x) be the distribution of the session holding time X, fy(y) =
zfx(z)/X is the distribution as seen by an arriving setup packet, and the distribution
of the residual time X;’r can be calculated to be (see, for instance, [Kle75] pp. 170-173)
fX;,r(R) = (1 — Fx(R))/X, where Fx(R) is the cumulative distribution function of X.

Thus, we have

ki

Blc) = By ( ”+VZ)+V5]

>
- lE S (X 4+ ) T |+ B1v)

1

= E[k]E :[ Vi BV

Taking the limit as 1+ — oo, and assuming that the system reaches steady-state, we

obtain

o Ei v

N v) v, 21
<2X + + (21)

where C' = lim_,oo E[Ci], k = lim_yoo E[k], X2/2X = limy_yoo B[X"], and V = lim;_e E[V']

are the mean connection time, number of retries, residual waiting time, and artificial va-

cation time, respectively. The mean number of retries is calculated in Appendix A3 to be
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equal to
F=lh
Py

Therefore, Eq. (21) can be rewritten as
= —"—=+—. (22)

B.3 Calculation of the mean queueing delay Q

Taking expectations in Eq. (15) we obtain
i—1
FlQI = BRI+ E| 3 (X, +C)
7=1—N;
The random variables N; and X;_y,..., X;_n, are clearly independent, since the number of

sessions IV; found in queue by session : is independent of their holding times. The random

variables C;_y, ..., C;_n, are also independent of N; because of assumption Al. Therefore,
we have
i1
FlQ] = BIRI+E| X B+ | N,
7=1—N;

B[R]+ ELX 1 CIEV.
= B[R]+ (X +0)EIN.

Taking the limit as 1 — co we get
Q=R+Ng(X+7). (23)

where @) = lim;,., E[Q;] is the mean queueing delay, Ng = lim;., E[N;] is the mean

number of sessions in queue, and R = lim,_,., E[R;] is the mean residual time.

The arrival rate of connection requests at the input-buffer queue of a link is equal to ;—d,
where A is the corresponding arrival rate per node. Using Little’s Theorem, we have
Ng =20 (24)
9T 24
Letting
A —
p:ﬁ(X—I—C), (25)
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and substituting Eqs. (24) and (25) into Eq. (23), we obtain

R
= —. 2
0= (26)
The mean residual time R is calculated in Appendix A4, and works out to
R=ATXT0) (27)
Ad '

Substituting the expression for C'2 (derived in Appendix A5) in the bracketed expression
in Eq. (27) and simplifying, we obtain

S X2 VI42XV)  (1-P)—( X2
X+0) = ( 2 v(v :)
(X +C) g (Vs
(1—Ph)2<X2)2 (1—Ph)<X3)

- —a —— - - —— . 28

) e )™

Substituting Eqs. (28) and (27) in Eq. (26), we get that the mean queueing delay is given
by

MX2+ V242XV M1 —=P) —/— X2
o - M ) 4p M1=P) 7(V+5)
4d(1 — ,O)Ph 4d(1 — ,O)Ph

ML—=P)% /X2\2 MN1-P) /X3

AR (2 B (T

4d(1 — p) PP \2X 4d(1 — p) Py
The average waiting time of a session W is given as W = ) + U, where C is given by Eq.
(22). Finally, the average total delay T'= W + X is given by

MXZ4+ V242XV Ml—=P) —/— X2
o= ( ) ( h>v(v+ )

4d(1 = p) Py 4d(1 = p) P X
ML =P /X2\2  X1-P,) /X3
I = p)ﬁ(i) LD VTTRpAY:) (3__)

+L(V+ X:Q) + (@)(30)
P, X 2X

We simulated both the analytical model and a model of the physical system in which we
accounted for the overhead incurred by the setup packets during the reservation phase. The
simulation of the analytical model (where the setup phase is instantaneous) is necessary
in order to confirm the quality of the approximating assumption Al. Figure 4 illustrates

analytical and simulation results for the probability of success P, at the head of a queue

and the delay parameters () and C', versus the arrival rate A per node, for d = 2 and
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p = 9, when the setup phase is instantaneous (simulation of the analytical model), and
the session holding times X and artificial vacation durations V' are both exponentially
distributed with parameters X = 1.0 and V = 0.5, respectively. As is evident from Fig.

4, the agreement between the analysis and simulation results is very good.

In the simulations of the physical system model, we also take into account the effect of
the overhead due to reservations, which has been assumed to be negligible in our analysis
(where the setup phase was assumed to be instantaneous). In the physical system, each
time that a session attempts to make a reservation, a setup packet travels through the
network, one hop at a time, to reserve the links on the session’s path, thus interfering
with other set-up packets and with previously established circuits. If the setup packet
is blocked enroute, it retraces its path tearing down a partially established circuit (also
in steps), freeing the reserved links, and bringing back with it information on when the
session should try next. If the setup packet makes it successfully to the destination, it
returns to the source with a confirmed reservation of the session’s path, at which time the
session begins transmission. Therefore, if A be the number of hops on a session’s path and
A the time taken by the setup packet to advance one hop (as a fraction of the average
session holding time X), the average setup overhead for a successful connection is equal

to 2Ah, where h is the mean internodal distance, as specified in Section 2.

Figure 5 shows the simulation results for the queueing delay () and the connection delay
C,for d =2 and p =9, when the setup overhead is equal to zero (presented as a reference),
and for average setup overhead equal to 1% and 2% of the average session holding time.
We note that a setup overhead of 2% represents a relatively high overhead in a circuit
switching context. As is evident from the simulations, the values of the delay parameters
obtained via simulations are close to the values for 0% overhead when the setup delay is a
small percentage, 2% or less, of the session holding time (as would be the case for a circuit

switched network).
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Fig. 4. The probability of success Pj at the head of the queue and the various delay parameters ver-
sus the arrival rate per node A, for d = 2 and p = 9. The plots show the analytically predicted
values of the queueing delay @), the residual service time R, and the connection delay C', and the
corresponding values obtained through simulations when the setup overhead is equal to zero. All cal-
culations and simulations have been done assuming that session holding times and artificial vacations

are exponentially distributed with means X = 1 and V' = 0.5, respectively.
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Fig. 5. Simulation results for the queueing delay ) and the connection delay C' for d = 2 and p = 9,
when the setup overhead is accounted for and is equal to 0%, 1% and 2% of the mean session holding
time. All simulations have been done assuming that session holding times and artificial vacations are

exponentially distributed with means X = 1 and V = 0.5, respectively.
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B.4 Region of stability of the link input-queue

A necessary (but not sufficient) condition for stability is obtained by noting that 1 —¢o <
1, which gives

8§ (-1
)\ < 7m7 fOI’ P Odd7 (31@)
and
8 (p? —1
A< 7%, for p even. (31b)

This condition is necessary for the stability for any circuit switched scheme, independently
of the routing scheme and the other details of its implementation. For our link input-buffer

queueing system to be stable, the following stronger condition has to hold:
_ A (X+0)<1
p - 2d 9

or

2d

A< ——.
X+C

(32)

Equation (32) imposes a stronger condition on A and provides a condition that is both
necessary and sufficient for our scheme to be stable. Substituting for C' from Eq. (22)
(with X7 replaced by X), we get after some algebraic manipulation that

2al§h:_)\,v)()7 (33)
where the dependence of P, on A and X has been made explicit.
Although, Eq. (33) cannot be solved explicitly for A, the stability region is easily obtained
graphically, by plotting P(\, X) and QA_d(Y + V) on the same graph and identifying the
region where Eq. (33) holds. The calculation of the stability region is illustrated in Fig.
6. We note that although the retrials made by a session to establish a connection are

reminiscent of retrails in an ALOHA system, bistability problems do not arise in our

analysis, because there is no penalty for trying when the setup phase is instantaneous.

V. ASYMPTOTIC RESULTS FOR LARGE MESHES

In this section we obtain asymptotic expressions for the probability of success Psyccess

and the various queueing delay parameters of interest, when the size of the mesh tends
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Fig. 6. Illustrates the graphical calculation of the stability region of a link input-queue. The curve for
Pyyccess(A, X) and the straight line ;‘—d(Y—i—V) are both plotted on the same graph. The stability
region is obtained by simply identifying the region where Eq. (33) holds. In the above figure, the
marked region (the range of A values from 0 upto the point of intersection of the two curves) represents
the region of stability, that is, those values of A where the link queue 1s stable. In the above example,

p =15 with X = 1.0 and V = 0.5, respectively.

to infinity. In particular, if we keep the probability ¢o that a link is idle constant, while
allowing the mesh size p to tend to infinity, we find (see Appendix A6) that

_2(1_‘10) d

(1—e "
24(1 — go)"

Psuccess(oo) = qu (34)

Note that Psyecess(00) decreases exponentially with the mesh dimension d. The asymptotic
values of all queueing delay parameters can now be obtained simply by replacing P, with
Pryecess(00) in the all expressions derived in Section 4, since P, = PSI%‘;SS, and g3 = 0
as p — oco0. For a given value of ¢y the corresponding value of A is obtained from the

expression for ¢y derived in Section 2 (Eq. (9)). Figure 8 shows the plot of Psyecess(00)

versus the link utilization 1 — ¢g, for various dimensions d ranging from 2 to 6.
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Fig. 7. Tllustrates how the asymptotic probability of success Psyccess(00) varies with link utilization 1—go,
for various dimensions d. The plots are obtained for d varying from 2 to 6, as shown above. Note that
the same link utilization does not correspond to the same traffic arrival rate A here. In fact, for the

same value of the utilization 1 — ¢g, the arrival rate A will be smaller for a mesh of higher dimension

d.

VI. CIRCUIT SWITCHING IN THE HYPERCUBE

Beginning with this section, we turn our attention to circuit switching in the hypercube
network. Chlamtac, Ganz, and Kienzle [CGK91], have analyzed circuit switching in a
hypercube network of processors with the assumptions that each node has only a single
transmission buffer and that arrivals of new sessions only occur when the input buffer
is empty. New sessions are discarded if there is already a session waiting to be served.
The analysis in [CGK91] does not yield closed form expressions for the delay parameters,
and requires a fixed point iteration to obtain the steady-state probabilities of the Markov
model used.

In our model, each hypercube node is a cross-bar switch and has d link entry-buffers,

one for each outgoing link. The routing tag of a session is a d-bit string, which is equal to
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Fig. 8. The three possible states of a network link L in a hypercube with cross-bar switches are illustrated.
State 0 corresponds to the case where L is idle. State 1 corresponds to the case where L is used by
a continuing circuit at node s. Note that State 1 is composed of d — 1 substates, depending on the
dimension of the link through which the circuit makes a turn into node s. State 2 corresponds to the

case where L is used by a circuit originating at node s.

s b t, where s is the source node, t is the destination node, and @ is the bitwise exclusive
OR operation. We assume that the setup packet of a session chooses a random order
in which the bits of its routing tag are corrected and that it insists on that order as it
progresses from its source to its destination (therefore, the routing scheme is non-adaptive
or oblivious). The link input-buffer at which an arriving session is placed depends on the

order in which the bits of its routing tag will be corrected.

Any network link L can be at any time in one of three states illustrated in Fig. 9. As
before, we denote by ¢;, 1 = 0,1,2, the steady-state probability that link L is in state 1.

Clearly, we have

Go+q+qg=1 (35)

When an outgoing link at a node s is used by a continuing circuit, there are d — 1 other
input links from which the circuit may have come (see Fig. 8). As a result State 2 is
composed of d — 1 substates, depending on the dimension of the incoming link from which

the circuit turns into link L.

When a circuit with routing tag (t4—1t4—2...%0) # (00...0) that has k ones and d — k

zeros 1s established, it will contain one link in state 2 and £ — 1 links in state 1. The
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steady-state probability ¢; that a link is in state 1 is given by

d d
Q= K[Z(k —1) (k)] = K[(d —2)2" + 1], (36)
k=1
where K 1s some constant of proportionality to be derived shortly.

Similarly, the probability ¢, that a given link is in state 2 is given by
@ =K2"—1)=K(N -1). (37)

Solving Eqs. (35)—(37) with respect to K, we obtain

Using Little’s theorem, we get, after some algebraic manipulation, that

241X

ol (39)

1—(]0:

where )\ is the session arrival-rate per node, and X is the mean session holding time.
Substituting Eqgs. (38) and (39) in the expression for ¢; and ¢ we get
A X
=———[(d-2)2"" +1 40

and o
B AX
=

To calculate the probability of success, we proceed as in Section 3. The first link of the

(41)

path is available with probability ¢o. At each subsequent step the probability that the
i+ 1" link, L, on the path is available given that the :' link (: > 0), L — 1, was available

is equal to
Pr (L available | L not in a given substate of state 1)
o def
= " a.(42)
d—T

To see this, note that state 1 is composed of d — 1 substates depending on the direction
from which the path makes a turn at node s into link L (see Fig. 8). Since each of the
substates is equally likely, the probability of the link being in a given substate is equal to

q/(d—1).
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The (conditional) probability of successfully establishing a connection is therefore given
by

Psuccess (td—ltd—Q v tO) = 4o ak—17

and the probability of successfully establishing a connection averaged over all routing tags

(equivalently, over all source-destination pairs) is given by

1
Psuccess = 2d _ Z Psuccess (td—ltd—Q cee tO)

ta—1td—n.--to

_ ﬁ[u +a) — 1],(43)

where « is given by Eq. (42). Figure 9 illustrates the analytical and simulation results ob-
tained for the probability of success as a function of the arrival rate A for several hypercube
networks, with dimensions ranging from d = 3 to d = 9.

As in Subsection 4.2.1, the steady-state probability P, that a session at the head of a

link input-buffer successfully establishes a connection is now given by

o
1 —q

Consequently, the connection delay (', the queueing delay (), and the total delay 71', can
now be obtained directly from Eqs. (22), (29), and (30), simply by using the appropriate
value of P, as calculated above, and by noting that the arrival rate of connection requests
at the input-buffer queue of a hypercube link is equal to 3. Figure 10 illustrates the
probability of success at the head of the queue P, and the various delay parameters for
a hypercube of dimension d = 8, when the setup phase is instantaneous. As explained in
Section 4, for the hypercube network also we performed simulations both for the analytical
model and for a model of a physical system, where the reservation overhead incurred due
to the setup packets is explicitly accounted for. Figure 11 illustrates the simulation results

obtained for the queueing delay () and the connection delay C for d = 8, when the average

setup overhead is equal to 0%, 1% and 2% of the average session holding time.

VII. CONCLUSIONS

We have analyzed circuit-switching in a d-dimensional wraparound mesh, which is an

important interconnection topology for multiprocessor computers. Our analysis uses few
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Fig. 9. Analytical and simulation results obtained for the probability of success as a function of the arrival
rate A of sessions, for hypercubes of dimensions ranging from d = 3 to d = 9. All curves correspond to
exponentially distributed session holding times, with X = 1. The analytical formula is plotted with
a solid line (4) and the simulation results are plotted with a dashed line (x). The curves obtained
from the analytical results are plotted for A ranging from 0.1 to 0.7, while the curves obtained from

the simulation results are plotted for the values of A actually obtained in the simulations.

approximating assumptions, and resulted in closed form expressions for most queueing
parameters of interest. Since the queueing analysis depends on the network topology
only through the probability of success Psyccess, we showed how it can be extended to
other regular topologies such as the 2%-node hypercube. Although analytic models cannot
always reflect all the details of a real system, they provide an important framework for
predicting network performance. A possible extension of this work would be to examine
the case when each network link has capacity k and can carry multiple (up to k) circuits.
In that case we expect the throughput to improve by more than a factor of k. A further
direction of research would be to consider multiple virtual channels per link, where the

effective bandwidth of the session, rather than the session rate, could be the parameter
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Fig. 10. The probability of success P at the head of the queue and the various delay parameters versus

the arrival rate per node A, for a hypercube of dimension d = 8. The plots show the analytically

predicted values of the three components of session delay: the queueing delay @, the connection delay

C, and the residual service time R, and the corresponding values obtained through simulations when

the setup overhead 1s equal to zero. All calculations and simulations have been done assuming that

session holding times and artificial vacations are exponentially distributed with means X = 1 and

V = 0.5, respectively.
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Fig. 11. Simulation results for the queueing delay @ and the connection delay C' for a hypercube of
dimension d = 8, when the setup overhead is accounted for and is equal to 0%, 1% and 2% of the
mean session holding time. All simulations have been done assuming that session holding times and

artificial vacations are exponentially distributed with means X = 1 and V = 0.5, respectively.
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used. Finally, our analysis was done for oblivious routing, an analysis of adaptive routing

methods would be a potentially interesting area for research.

VIII. APPENDIX

This section contains derivations of some results that were only stated in the main body

of the paper.

A. Derivation of the probabilities g;,1 =1,2,3

In this appendix we evaluate the probabilities ¢;,2 = 1,2,3. We treat separately the
cases p odd and p even.
(a) Case p odd :

Expanding the summations in Eq. (4a) over the t;’s we get

D D

Y S R I

tq=—D t1=—D tq=—D to=—D
td;éO 7,‘1750 td;ﬁo tg;ﬁo

d D D
e (0 2 ]
—2 tq=—D tgq_1=—D
ta#0  tq_1#0

s (L

a=1 t1=1 tg=1 to=1

D
- K [Qd
t

D

d D
R PR ED b SR
—2 tg=1t =1
d d—1

= K[(d—1)2D)* + (f) 2D) '+ + (d f 2) (2D)?]

= K[d(2D)(2D 4+ 1)*™' — (2D + 1) + 1]
= Kld(p—1p"™" = (p)" +1], (A1)

where we used the fact the D = L%J

Writing the summation in Eq. (5a) explicitly we obtain

D D
@ o= K[ X 3 (tal aal 4 0] - d)

tq=—D tHh=-D
ta70 t1£0

+(‘f) S 3 (Ml ftacal o ] = (A= 1))

tq=—D to=—D
ta70 t2#0
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+---+(dil) S (td—l)]

tq=—D
tq#0

D
v Y (tgttgr o —d)

tg=1 t1=1

D
- K [Qd

+ d)Qd_l ZD:---ZD:(td+td_1—|-""|‘t2_(d_1))

1 tg=1 to=1

T (dfl)Qéq.(Az)

After some algebra, Eq. (A.2) reduces to

S/ D—1
2 = A( 2 )

y [d(ZD)d +(d— 1)@ 2D) oy (df 1) (zp)]
= KdD(D —1)(2D 4 1)*!

= gy DY)

(b) Case p even :

Expanding the summation in Eq. (4a) over the t;’s, we get

D D
wo= K| X Y -
tg=—(D-1) t1=—(D-1)
tq#0 t1£0
d D D
() > % wey
tg=—(D-1) to=—(D-1)
ta70 ta70

+...+(d52) f: f: 1].(/1.4)

ta=—(D—1) ta_1=—(D—1)

tq70 tg—170
Noting that
D
Y 1=2D-1=p-—1,
ty=—(D-1)
£, #£0

we can simplify Eq. (A.4) as

— K[(d —1)(2D — 1)d + Cll (d —2)(2D — 1)d—1

+---+(d52)(2D—1)Z]
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= K[d(2D — 1)(2D)*' — (2D)* +1]
= K[d(p —1)p"" = p* +1],(A.5)

where we used the fact that D = L%J

Writing the summation in Eq. (5a) explicitly we obtain

D D
@ o= K| X o X (] - d)
tg=—(D-1) t1=—(D-1)
td;éO tl;’éo

+(f) Yoo Y (A faal - F e = (d = 1)

tg=—(D-1) to=—(D-1)

ta70 t2#0
d D
+---+(d 1) > (|td|—1)].
N tg=—(D-1)
40
Since
D
> (=1 =(D~-1)
tx=—(D-1)
570

the expression for ¢ can be simplified to

¢ = K[d(QD—l)(D—l)Q
d

+ (1) (d—1)(2D — 1)73(D —1)?

+---+(df1)(0—1)2]

—2)?
= K(D—1)’[d(2D) ] = ded—l%.(/x.(s)
B. Derivation of Psyceess

To derive the probability of success for p odd, we begin by writing Eq. (12) in the

following expanded form

qo0
Psuccess —
(p"—1)

D D
X Z Z ﬁd—1a|td|+|td—1|+"'+|t1|—d

tq=—D t=—D

ta70 t1£0

d D D
_|_(1) Z Z B2 gltal a2 =(d-1)
tq=—D

to=—D
tq#0 t2#0
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which simplifies to

PS’U,CCBSS

[ngd—l i .

ta=1

D

3 a|td|—1]7

tq=—D
tq#0

D
Z alatta—1t++th —d
t1 1

( )Zd lﬁd 2 Z Zatd-l—td 14-Fta— (d 1)

d

Noting that

after some simplification, Eq. (B.1) gives

qo l
(pt—=1)p

Psuccess —

Ao

d

) (=

which using the binomial expansion formula, can be rewritten to yield Eq. (13).

ta=1 th=1

)22 ta 1] (B.1)

ta=1

_1—aD
l—a’

)0 (=)
)l

35

For the case p even, we again start with Eq. (12) and rewrite it in its expanded form to

get

PS’U,CCBSS

Since we have

tp=—(D—-1)
520

November 19, 1996

D
Z ﬁd_1a|td|+|td—l|+"'+|t1|_d
t1=—(D-1)
120
D
Z ﬁd—Qalthﬁd—l|+"'+|t2|—(d—1)

to=—(D-1)
to#£0

5 alfdl—l] (B.3)

t :—(D—l)

470

D—1
P14 9 Z a|tk|—17

tr=1
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D-1

1l —a 1—OéDd_ef

]l -« ]l —«

Eq. (B.3) can be simplified to give

- qo -1 d —2.,d-1 d
- T [ﬁd e (1)ﬁd A (d— 1)57]

= (pdq%l)%[(l +0y)" - 1],

which on substituting v immediately yields Eq. (14).

C. Derivation of moments of retrial attempts

We derive the first and second moments of the number of retrial attempts k; of session
i. Since the probability of k; retrials is (1 — P,)* P, these moments are obtained simply
by noting the identities

and

I )
7=0
which immediately yield

1-p o (1=P)E=P)

k= =
Ph th

D. Derwation of mean residual time R

The mean residual time R will be calculated by using a graphical argument (see [Be(G92]).

In Figure 12 we plot the residual service time r(7) (that is, the remaining time for
completion of the session at the head of the link input-queue at time 7) as a function of 7.
Note that when session j proceeds to the head of the queue, r(7) takes the value X; + C},
and decays linearly to zero for X; 4+ C; time units. Consider a time ¢ at which r(7) = 0.

The time average of r(7) in the interval [0,1] is given by
M(#)

%/Otr(r)dT - _[% S (X5 +Cy) ] (D.1)

=1
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Connection delay of PR
on | & | Session |

Residual service
timer(1)

Holding time of Timet
Session |

Fig. 12. Tllustrating the residual service time of a session. The residual service time of the j*™ session X; +
C};, starts at X;4C; when the session advances to the head of the queue, and decays linearly to zero for

X; +C}; time units. The connection delay C; of the session is given by C; = Zfél (Xl‘“ + Vl]) + Voj.

where M (1) is the number of sessions that have completed transmission in the time interval

[0,%]. Equation (D.1) can be rewritten as

1 MO+ o)
?/o r(r)dr =5 M(t)

Taking the limit as as ¢ — oo, we obtain

M(t) 2
Lt 1 Mt YO x4 .
lim — [ r(7)dr = = lim L . lim > =1 (X; +C;)

t—oo tJo 9 t—co t t—00 M(t) ’

(D.2)

where we have assumed that the limits in Eq. (D.2) exist. Assuming that time averages
can be replaced by ensemble averages, the first term at the right hand side of Eq. (D.2)
corresponds to the time average of the departure rate at a link input-buffer, and it tends
to the arrival rate A\/2d as t — oo. Similarly, the second term at the right hand side of
Eq. (D.2) tends to the second moment m of the sum of the connection and holding
times. The limit at the left hand side is the time average of the residual service time, which
tends to the mean residual time R. Thus, replacing time averages by ensemble averages,

we obtain

A X rop. (D.5)
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E. Derivation of second moment C? of the Connection delay

Squaring Eq. (19) and expanding the resulting expression we get

_ kl
2 = (X”’+VZ)+V]
=
_ Z(X;MFVZ] PO SN V) 41
-]Z‘l S 12 ki 42 " }w ki . )
= ] 2] s ey
=

-i=1 7=1j5=1

_I_Q‘/Oz Z (X;,r 4 ‘/]2) T (‘/02)2
7=1

kl 1

= ZX” +ZZX”X”+Z_: VOR+Y > VY,

7=1 7=11=1 j=11=1
I#5 I#5

-

23XV 20 S (X V) 4

i=1j=1 i=1

(B
Taking expectations in Eq. (E.1), and conditioning on the number of retrial attempts k;,

we obtain

ElCA k] = KEX" )+ ki(k — DEXY] 4+ kEV?] + ki(k — D) E[V]
12k B[ X BV + 2k B[V E[X™ + V'], (E.2)
where we used the fact that X;’r and V]Z are independent for all j together with the fact
that both V]Z and X;’r are i.i.d. for all j. Removing the conditioning on k; in Eq. (E.2)

and taking the limits as 1 — oo, we obtain

C? = BX )+ (R-B(X )V +EVE+ R -F)V
PREXTV 2% V(X +V)+ V7,
or more simply
=X+ -BX +F+ )V + 4+ RV 422+ HX V. (E.3)
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Since, as shown in Subsection 4.2.1, the distribution of the residual times X" is related
to the distribution of the session holding times X by fx-(y) = (1 — Fx(y))/X, we have
X7 =X?2/2X and (X7)2 = X3/3X. Thus, Eq. (E.4) simplifies to
X+C)P = F+D)XTHVEL2XV)+ (B + RV
_ XV /X2\? _X®
2R + B + (7 - k)(—_) + T (E.5)

2X 3X°
Finally, substituting for & and k2 from Appendix A3, we obtain Eq. (28) as
S X2 VI42XV)  (1-P)—( X2
X+0) = ( > v(v :)
(X+0O) B + B\ + ~
SRR L) ()
P? 2X P, 3X /)

F. Caleulating Psyecess(00)

We perform the calculations for the case p odd, the case of p even being similar. Equa-

tions (10) and (11) can be rewritten as

qo qo o

a = \ (F.1)
I—g 1- (1= ) (p+:1))) @+ e
and

qo G0

_ — - (F.2)
_ — 4 —1)pd—1—(pd—

g -4 | _ 20 ) (dp=1)pe=1 = (p?-1))
] (pTFT—pd-1)

In writing Eqgs. (F.1) and (F.2), we have used the expressions for ¢; and g, given in Egs.
(7a) and (7b), respectively. Taking the limit p — oo, with ¢y being constant, we obtain

lim o =1, and lim 3 = qo. (F.3)

pP—0oO pP—0oO

Equation (F.1) also gives

) 4(1 — 4(1 —
lim (p+1)(1 —a) = lim ( ( <1qoq)o>) o) (F.4)
! ! o+ =5 o

We define
Psuccess(oo) = lim Psuccess (p)a

p—

where the dependence on the mesh size p is made explicit. To evaluate Psyeeess(00), we

rewrite Eq. (13) as

P _ @ (p+1)
Success (pd o 1) ﬁ
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- [(ﬁ o (<p+11_><CfD— a)))d - )

In order to evaluate Psyeeess(00) we also need to evaluate lim,_oo 1 — alsl, For p odd,

we have

p—1

li_>ml—ozL§J = 1- li_>mozL§J =1- li_>moz 7 -h_)moz
pP—00 pP—r0o0 pP—00 pP—00
= 1 — lim a®*V/2. lim a7t
pP—+00 pP—+00
I Qo (p+1)/2
= 1= [7% i =)

p+1
go(p+1) _ 2(1—qo)

- 1 lim [( 1 )4(1—%)] 2
- e 4(1—go)
r L+ qo(p-l?({)
2(1—qp)

= l—e @ (F.6)

where we have used the identity lim, .. (1 + %)“’ = e. Thus, combining the results of
Eqgs. (F.3), (F.4), and (F.6) and substituting in Eq. (F.5) we get after some simplification

(1 _2(1_‘10) d
— 90
Psuccess xX0) = 2 <

( ) qO 2d(1 . qo)d

(F7)
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