Εισαγωγή στις Συνήθεις Διαφορικές Εξισώσεις

Σημειώσεις (σε εξέλιξη v4b)

Ε. Στεφανόπουλος

Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών & Πληροφορικής
Πολυτεχνική Σχολή
Πανεπιστήμιο Πατρών
Πρόλογος

Οι σημειώσεις αυτές είναι αποτέλεσμα επεξεργασίας σημειώσεων οι οποίες χρησιμοποιήθηκαν σε παραδόσεις μαθημάτων στις Συνήθεις Διαφορικές Εξισώσεις τα οποία διδάχθηκαν στα τμήματα Μαθηματικών του University of Tennessee, Εφαρμοσμένων Μαθηματικών του Πανεπιστημίου Κρήτης, Μαθηματικών και Στατιστικής του Πανεπιστημίου Κύπρου και Μαθηματικών του Πανεπιστημίου του Αιγαίου. Το υλικό είναι υπό εξέλιξη και υπάρχει μια σκέψη να εμπλουτισθεί με επιπλέον κεφάλαια ώστε να αποτελέσει μία σχετικά πλήρη σειρά σημειώσεων για ένα εισαγωγικό μάθημα στις Συνήθεις Διαφορικές Εξισώσεις. Προς αυτό την κατεύθυνση έμφαση δίνεται στον τρόπο επίλυσης, όπου αυτή είναι εφικτή, διαφόρων τύπων εξισώσεων.

v4b, Καλοκαίρι 2016, Ε.Σ.
Περιεχόμενα

1 Τι είναι διαφορική εξίσωση

1.1 Εισαγωγή .. 1
1.2 Ταξινόμηση διαφορικών εξισώσεων 3
1.3 Η γεωμετρική ματά ... 6
1.4 Ασκήσεις .. 9

2 Διαφορικές Εξισώσεις Πρώτης Τάξης

2.1 Εισαγωγή .. 11
2.2 Εξισώσεις Χωρίζομένων Μεταβλητών 16
2.3 Γραμμικές Εξισώσεις 20
2.4 Ακριβείς Εξισώσεις και Ολοκληρωτικοί Παράγοντες 26
2.5 Ομοιογενείς Εξισώσεις 34
2.6 Εξισώσεις Bernoulli .. 37
2.7 Εξισώσεις Riccati ... 39
2.8 Εξισώσεις Clairaut και Lagrange 43
2.8.1 Εξισώσεις Clairaut 43
2.8.2 Εξισώσεις Lagrange 45
2.9 Διαφορές μεταξύ Γραμμικών και μη Γραμμικών Εξισώσεων 47
2.10 Οι διαφορικές εξισώσεις ως μοντέλα 50
2.11 Το Θεώρημα Ύπαρξης και Μοναδικότητας 56
2.11.1 Απόδειξη του Θεώρημα του Ύπαρξης και Μοναδικότητας 57
2.12 Ασκήσεις .. 61

3 Γραμμικές Διαφορικές Εξισώσεις Δεύτερης Τάξης

3.1 Εισαγωγή .. 65
3.2 Κατασκευάζοντας μία δεύτερη λύση από μία υπάρχουσα – Υποβίβασμος της τάξης 69
3.3 Γραμμική Εξάρτηση – Ανεξάρτηση 70
3.3.1 Η ορίζουσα Wronski 73
3.4 Θεμελιώδεις Λύσεις και Γενικές Λύσεις 75
3.5 Ομοιογενείς Εξισώσεις με Σταθερούς Συντελεστές 77
3.5.1 Διακριτές Πραγματικές Ρίζες 78
3.5.2 Διπλή Ρίζα ... 79
3.5.3 Μηχανικές Ρίζες .. 80
3.6 Μη Ομοιογενείς Εξισώσεις με Σταθερούς Συντελεστές 82
3.6.1 Η Μέθοδος των Προσδιοριστέων Συντελεστών 82
3.6.2 Η Μέθοδος της Μεταβολής των Παραμέτρων 88
3.7 Εξισώσεις Euler ... 90
3.8 Γραμμικοί Διαφορικοί Τελεστές 93
3.9 Ασκήσεις ... 96

4 Συστήματα Γραμμικών Διαφορικών Εξισώσεων 99
4.1 Εισαγωγή ... 99
4.2 Θεμελιώδεις Πίνακες 106
4.3 Ομοιογενείς Γραμμικά Συστήματα με Σταθερούς Συντελεστές 109
4.4 Μη Ομοιογενείς Γραμμικά Συστήματα 115
4.4.1 Η μέθοδος των Προσδιοριστέων Συντελεστών 115
4.4.2 Η μέθοδος της Μεταβολής των Παραμέτρων 116
4.5 Ο Εικετικός Πίνακας 118
4.6 Συστήματα ειδικάς μορφής 123
4.7 Ασκήσεις ... 126

5 Η Μέθοδος των Δυναμοσειρών ... 128
5.1 Εισαγωγή ... 128
5.2 Περί Δυναμοσειρών .. 129
5.3 Ομαλά και Ανόμαλα σημεία 132
5.4 Το αναπτυγμα της λύσης γύρω από ένα ομαλό σημείο 137
5.5 Ξανακοστάξοντας τον εξίσωση του Euler 139
5.6 Το αναπτυγμα της λύσης γύρω από ένα κανονικό ανόμαλο σημείο 139

6 Ο Μετασχηματισμός Laplace .. 140
6.1 Εισαγωγή ... 140
6.2 Ορισμός του μετασχηματισμού Laplace 141
6.3 ιδιότητες του μετασχηματισμού Laplace 149
6.4 Επίλυση προβλημάτων αρχικών τιμών 152
6.5 Η συνέλεξ Laplace ... 156
6.6 Επίλυση γραμμικών συστημάτων 163
6.7 Συμπληρωματικά στοιχεία 165
6.7.1 Περιοδικές συναρτήσεις 165
6.7.2 Η συνάρτηση μοναδιαίου βήματος 166
6.7.3 Σειρές Taylor και μετασχηματισμός Laplace 168
6.8 Ασκήσεις ... 170
ΚΕΦΑΛΑΙΟ 1

Τι είναι διαφορική εξίσωση

1.1 Εισαγωγή

Από τον Απειροστικό Λογισμό γνωρίζουμε ότι η εικετική συνάρτηση $y = e^x$ έχει την χαρακτηριστική ιδιότητα να είναι ίση με την παράγωγό της, ικανοποιεί δηλαδή τη σχέση $y' = y$, ή ισοδύναμα

$$y' - y = 0. \tag{1.1}$$

Είναι φυσικό να αναφτιθούμε εάν υπάρχουν άλλες συναρτήσεις που να ικανοποιούν τη παραπάνω σχέση. Έστω λοιπόν y να είναι μία τέτοια συνάρτηση, τότε πολλαπλασιάζοντας με e^{-x} και παραγωγόζοντας τη έχουμε

$$(ye^{-x})' = y'e^{-x} - ye^{-x} = (y' - y)e^{-x} = 0,$$

από την υπόθεση μας. Επομένως για κάποια πραγματική σταθερά c θα είναι

$$ye^{-x} = c \Rightarrow y = ce^x.$$

Καταλήξουμε λοιπόν στο συμπέρασμα ότι κάθε συνάρτηση που ικανοποιεί την (1.1) είναι της μορφής $y = ce^x$, όπου c είναι μία αυθαίρετη πραγματική σταθερά. Έτσι η σχέση (1.1) είναι στην πραγματικότητα μία εξίσωση η οποία περιέχει μία άγνωστη συνάρτηση καθώς και την παράγωγό της. Μία τέτοια εξίσωση θα λέγεται διαφορική εξίσωση, και οι συναρτήσεις οι οποίες την ικανοποιούν, οι $y = ce^x$, $c \in \mathbb{R}$ για την (1.1), θα λέγονται λύσεις της εξίσωσης. Παρόμοια οι συναρτήσεις $\cos x$ και $\sin x$ είναι λύσεις της διαφορικής εξίσωσης

$$y'' + y = 0, \tag{1.2}$$

μας και $(\cos x)'' = -\cos x$ και $(\sin x)'' = -\sin x$. Θα αποδείξουμε, αργότερα, ότι κάθε λύση της εξίσωσης (1.2) είναι της μορφής

$$y = a \cos x + b \sin x, \tag{1.3}$$

όπου a και b είναι πραγματικές σταθερές. Σημειώνουμε ότι η λύση $y = \cos x$ προκύπτει από την (1.3) για $a = 1$ και $b = 0$, ενώ η $y = \sin x$ προκύπτει από την ίδια σχέση για $a = 0$ και $b = 1$.

1
Τι είναι διαφορική εξίσωση

Με αφορμή τις εξισώσεις (1.1) και (1.2) μπορεί κάποιος να σκεφτεί ότι οι διαφορικές εξισώσεις εκφράζουν ιδιότητες συναρτήσεων. Κάθε άλλο παρά αυτό συμβαίνει. Σκειρώντας από το γεγονός ότι τα παράγωγα μιας συνάρτησης που περιγράφει μία ποσότητα είναι ο ρυθμός μεταβολής της ποσότητας αυτής δεν θα πρέπει να μας ζητηθεί να το ζητήσουμε στο ρυθμό μεταβολής της ποσότητας αυτής. Θα πρέπει να μας ζητηθεί να χρησιμοποιήσουμε την προσέγγιση διαφορικών προβλημάτων που αφορούν μεταβολές και ενδιαφέρον τις φυσικές, κοινωνικές, ακονομικές και άλλες επιστήμες, καταλήγει συνήθως στη δημιουργία μοντέλων διαφορικών εξισώσεων οι οποίες περιλαμβάνουν άγνωστες συναρτήσεις καθώς και παραγόντες αυτών. Ένα τυπικό παράδειγμα είναι η απλούστερη δυνατή εξίσωση,

\[y' = 0 \] (1.4)

ίσως η πρώτη διαφορική εξίσωση που γράφτηκε ποτέ. Εάν η άγνωστη συνάρτηση \(y = y(t) \) δίνει τη ταχύτητα ενός σώματος το οποίο κινείται κατά μίκος μιας ευθείας, η ποσότητα \(y' \) εκφράζει το ρυθμό μεταβολής της ταχύτητας του σώματος, δηλαδή την επιτάχυνση. Οι λύσεις της εξίσωσης προκύπτουν με απλή ολοκλήρωση και είναι οι \(y = \text{constant} \). Η εξίσωση εκφράζει τον πρώτο νόμο του Newton σύμφωνα με τον οποίο ένα σώμα προκειμένου να κινείται με σταθερή ταχύτητα εφόσον δεν δρα επ' αυτό κάποια δύναμη.

Σαν δεύτερο παράδειγμα ας σκεφτούμε ότι μελετάμε μία ποσότητα ο ρυθμός μεταβολής της οποίας είναι ανάλογος της υπάρχουσας ποσότητας τη χρονική στιγμή \(t \). Έτσι ο \(y = y(t) \) είναι η υπάρχουσα ποσότητα τη στιγμή \(t \), τότε ο νόμος που διέπει την εξέλιξη του φαινομένου είναι \(y' = ky \), ισοδύναμα

\[y' - ky = 0, \] (1.5)

όπου \(k \) είναι η σταθερά αναλογίας και η οποία υπολογίζεται από τα πειραματικά δεδομένα. Το φαινομενικά απλό αυτό μοντέλο είναι θεμελιώδες μιας και διέπει την εξέλιξη συγκεκριμένων πληθυσμών για σχετικά σύντομους χρόνους, ή την φθορά (=απώλεια μάζας) ραδιενεργών υλικών. Στην τελευταία αυτή περίπτωση είναι \(k < 0 \). Εδώ παρατηρούμε ότι η διαφορική εξίσωση (1.1) είναι ειδική περίπτωση της (1.5). Κατ' αναλογία μπορεί να δειχθεί ότι όλες οι λύσεις της (1.5) είναι οι \(y = ce^{kt} \), όπου το \(c \) είναι πειραματική σταθερά.

Ένα άλλο παράδειγμα, ισώς το πιο γνωστό, είναι αυτό που περιγράφει την ελεύθερη πτώση ενός σώματος από κάποιο υποκεκριμένο ύψος. Σύμφωνα με τον δεύτερο νόμο του Newton η δύναμη που δρα σε ένα σώμα είναι ίση με την επιτάχυνση που του προσδίδει επί τη μάζα του σώματος. Έτσι η εξίσωση που περιγράφει την κίνηση του σώματος είναι

\[m \frac{d^2 h}{dt^2} = -mg. \] (1.6)

Εδώ \(m \) είναι η μάζα του σώματος, \(g \) είναι το μέτρο της επιτάχυνσης της βαρύτητας και \(h(t) \) είναι η θέση του σώματος τη χρονική στιγμή \(t \), έτσι ώστε \(h''(t) \) να είναι η επιτάχυνση του σώματος τη στιγμή \(t \). Ακόμη \(-mg \) είναι το μέτρο της δύναμης λόγω βαρύτητας που δρα στο σώμα.

Ως τέταρτο παράδειγμα δίνουμε την εξίσωση που περιγράφει την ταλάντωση μιας χορδής

\[\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} = 0. \] (1.7)

Εδώ \(u(x,t) \) είναι η θέση του σημείου \(x \) της χορδής τη χρονική στιγμή \(t \). Η εξίσωση (1.7) λέγεται κιμιατική εξίσωση και διατυπώθηκε από τον d’Alembert.
1.2 Ταξινόμηση διαφορικών εξισώσεων

Στη συνέχεια επαχθεούμε μια ταξινόμηση των διαφορικών εξισώσεων σε κατηγορίες με κοινά χαρακτηριστικά. Η πρώτη φυσιολογική κατηγοριοποίηση σχετίζεται με το αν η εμπλεκόμενη συνάρτηση είναι μίας ή περισσοτέρων μεταβλητών.

- Συνίθες και Μερικές Διαφορικές Εξισώσεις. Ένας πρώτος διαχωρισμός μεταξύ των διαφορικών εξισώσεων είναι μεταξύ αυτών των οποίων η άγνωστη συνάρτηση είναι μίας μεταβλητής και αυτών των οποίων η άγνωστη συνάρτηση είναι περισσοτέρων μεταβλητών. Τις πρώτες θα τις λέμε Συνίθες Διαφορικές Εξισώσεις, και τις δεύτερες Μερικές Διαφορικές Εξισώσεις.

'Έτσι οι (1.1), (1.2),(1.5), και (1.6) είναι Συνίθες Διαφορικές Εξισώσεις, ενώ η (1.7) είναι μία Μερική Διαφορική Εξίσωση. Ένα άλλο παράδειγμα Μερικής Διαφορικής Εξίσωσης είναι η εξίσωση που περιγράφει τη διάδοση της θερμότητας σε μία λεπτή ράβδο

\[\frac{du}{dt} - \frac{\partial^2 u}{\partial x^2} = 0. \]
(1.8)

Εδώ \(u(x,t) \) είναι η θερμοκρασία του συμείου \(x \) της ράβδου της χρονικής στιγμής \(t \).

- Τάξη μίας Διαφορικής Εξίσωσης ορίζεται να είναι η τάξη της μεγαλύτερης παραγώγου που εμφανίζεται στην εξίσωση. Έτσι η τάξη των εξισώσεων (1.1), και (1.5) είναι ένα ενώ των (1.2), (1.6), (1.7), και (1.8) είναι δύο. Ένα άλλο παράδειγμα Συνίθες Διαφορικές Εξίσωσης πρώτης τάξης είναι

\[\frac{dy}{dx} - x = 0. \]
(1.9)

Από την μορφή της (1.9) καταλαβαίνουμε ότι η ανεξάρτητη μεταβλητή είναι \(n \) \(x \) και η εξαρτημένη μεταβλητή είναι \(y \), θα είναι διπλαί \(y = y(x) \). Την ανεξάρτητη μεταβλητή συμβολίζουμε συνήθως με \(t \) ή \(x \). Έτσι μία Συνίθης Διαφορική Εξίσωση τάξης \(n \) μπορεί να παρατάστει με μία εξίσωση

\[F(t,y,y',\ldots,y^{(n)}) = 0, \]
(1.10)

όπου \(F \) είναι μία πραγματική συνάρτηση \(n+2 \) μεταβλητών, για παράδειγμα για την εξίσωση (1.9) είναι \(F(r,s,t) = st - r \). Στη περίπτωση που η εξίσωση (1.10) μπορεί να λυθεί ως προς την \(n+1 \) η μεγαλύτερης τάξης παράγωγο γράφουμε

\[y^{(n)} = f(t,y,y',\ldots,y^{(n-1)}), \]
(1.11)

όπου \(f \) τώρα είναι μία πραγματική συνάρτηση \(n+1 \) μεταβλητών. Σημειώνουμε ότι \(n \) (1.6) είναι ουσιαστικά της μορφής (1.11), αν διαφέρουμε και τα δύο μέλη της εξίσωσης με \(f \) ο, ενώ \(n \) (1.9) μπορεί να γραφεί στη μορφή (1.11) σαν

\[\frac{dy}{dx} = y. \]
(1.12)

Στη συνέχεια θα δειχθούμε συνήθως εξισώσεις της μορφής (1.11).

- Λόγω μίας Διαφορικής Εξίσωσης σε κάποιο ανώτερο διάστημα \(I \) είναι μία συνάρτηση, παραγωγής στο διάστημα τόσες φορές όσες και η τάξη της εξίσωσης, με συνεχείς παραγώγους.
και η οποία ικανοποιεί τη διαφορική εξίσωση στο \(I \), με την έννοια ότι αν αντικατασταθεί η διαφορική εξίσωση την επαληθεύει. Η εύρεση των λύσεων διάφορων τύπων συνήθων διαφορικών εξισώσεων είναι το ζητούμενο σε ένα εισαγαγικό μάθημα στο αντικείμενο. Για παράδειγμα λύσεις της (1.6) μπορούν να βρεθούν με απλά ολοκλήρωση. Έτσι διαφορότατα αρχικά με \(m \neq 0 \) προκύπτει \[\frac{d^2 h}{dt^2} = -g, \]
as το έπος ολοκληρώνοντας θα έχουμε \[\frac{dh}{dt} = -gt + a, \] (1.13) όπου \(a \) είναι μία σταθερά. Ολοκληρώνοντας ακόμη μια φορά παίρνουμε \[h(t) = -\frac{1}{2}gt^2 + at + b, \] (1.14) όπου \(b \) είναι μία άλλη σταθερά. Μπορεί εύκολα να διαπιστωθεί ότι η συνάρτηση που δίνεται στην (1.14) είναι λύση της διαφορικής εξίσωσης (1.6). Στη πραγματικότητα η (1.14) είναι μία οικογενειακή λύσεων, τόσων όσα και τα ξεχύνει πραγματικών αριθμών \((a, b)\). Ας δούμε περισσότερο προσεκτικά τη σημασία αυτών των σταθερών. Θέτοντας \(t = 0 \) στην (1.13) έχουμε \(h'(0) = a \), είναι δηλαδή το \(a \) την αρχική ταχύτητα του σώματος. Θέτοντας στη συνέχεια \(t = 0 \) στην (1.14) έχουμε \(h(0) = b \), το \(b \) δηλαδή είναι η αρχική θέση του σώματος. Αν λοιπόν ένα σώμα πέφτει από ύψος \(h_0 \) με αρχική ταχύτητα \(v_0 \) τότε η θέση του σε κάθε χρονική στιγμή \(t \) δίνεται από τη σχέση \[h(t) = -\frac{1}{2}gt^2 + v_0t + h_0. \] (1.15)

Παρατηρούμε λοιπόν ότι στη σειρά πτώση αυτή όπου η αρχική θέση και ταχύτητα είναι καθορισμένα, τότε έχουμε μοναδιαία λύση. Το ανάλογο αποτέλεσμα ισχύει και για τις λύσεις της (1.1). Εάν καθορίσουμε για παράδειγμα την αρχική συνθήκη \(y(0) = 2 \), η λύση θα είναι \(y = 2e^x \), επιλέγουμε δηλαδή από όλες τις καμπύλες \(y = ce^x \), που καλύπτουν το επίπεδο, εκείνα που περνά από το σημείο \((0, 2)\).

Ορισμός 1.1. Ένα πρόβλημα αρχικών τιμών αποτελείται από μία διαφορική εξίσωση \[y^{(n)} = f(t, y, y', \ldots, y^{(n-1)}), \quad t \in I \] (1.16) μαζί με τις αρχικές συνθήκες \[y(t_0) = y_0, \quad y'(t_0) = y_{01}, \quad \ldots, \quad y^{(n-1)}(t_0) = y_{0(n-1)}, \] (1.17) όπου \(t_0 \in I \).

Στα επόμενα κεφάλαια θα δούμε ότι εάν η \(f \) ικανοποιεί ορισμένες προϋποθέσεις τότε το πρόβλημα αρχικών τιμών έχει μοναδιαία λύση, όπως για παράδειγμα είδαμε στη λύση (1.15) της (1.6), που ικανοποιεί τις αρχικές συνθήκες \(h(0) = h_0 \), και \(h'(0) = v_0 \).

Σε αρκετές περιπτώσεις η διαδικασία επίλυσης μίας διαφορικής εξίσωσης καταλήγει στην εύρεση μίας σχέσης που περιέχει τη λύση. Για παράδειγμα η σχέση \[x^2 - y^2 = c, \] (1.18)
1.2 Ταξινόμηση διαφορικών εξισώσεων

όπου c είναι μία σταθερά, είναι λύση της (1.9). Πραγματικά παραγωγίζοντας την (1.18) ως προς x, από τον κανόνα της αλισιδίας, προκύπτει

\[2x - 2yy' = 0, \quad (1.19)\]

που είναι ισοδύναμο με την (1.9). Στις περιπτώσεις αυτές λέμε ότι η (1.18) είναι μία πεπλεγμένη λύση για την εξίσωση (1.9). Αντίθετα θα λέμε ότι η (1.14) είναι αναλυτική λύση της (1.6).

Γενικότερα έχουμε

Ορισμός 1.2. Η συνάρτηση \(\phi(t)\) θα λέγεται αναλυτική λύση της (1.10) ή (1.11) σε κάποιο διάστημα \(I\) του \(t\), εάν αντικαθιστούμενεν στην (1.10) ή (1.11) ικανοποιεί την αντίστοιχη εξίσωση για όλα τα σημεία \(t\) του \(I\). Η σχέση \(G(x, y) = 0\) θα λέγεται πεπλεγμένη λύση για την (1.10) ή (1.11) σε κάποιο διάστημα \(I\) του \(t\), εάν ορίζει κάποια αναλυτικά λύση της (1.10) ή (1.11) στο \(I\).

Άσκηση 1.1. Αφού γραφεί \(n\) (1.9) στη μορφή

\[\frac{d}{dx}\left(\frac{1}{2}y^2\right) = x,\]

να βρεθούν οι λύσεις της.

Σημειώνουμε εδώ ότι δεν είναι πάντα εύκολο να βρεθούν λύσεις μίας διαφορικής εξίσωσης. Θα μελετήσουμε, ωστόσο, στα επόμενα κεφάλαια, ειδικές μορφές διαφορικών εξισώσεων οι οποίες είναι δυνατό με κατάλληλες διαδικασίες να επιλύθονται.

- **Γραμμικές και μη Γραμμικές Εξισώσεις.** Θα λέμε ότι η εξίσωση (1.10) είναι γραμμική εάν η \(F\) είναι γραμμική συνάρτηση των \(y, y', ..., y^{(n)}\), ισχεί διπλάδι

\[a_n(t)y^{(n)} + a_{n-1}(t)y^{(n-1)} + \cdots + a_0(t)y = g(t). \quad (1.20)\]

Παρατηρούμε ότι οι συντελεστές των \(y, y', ..., y^{(n)}\) είναι συναρτήσεις της ανεξάρτητης μεταβλητής. Έτσι οι εξισώσεις (1.1), (1.2), (1.5), και (1.6) είναι γραμμικές, ενώ η (1.9) είναι μη γραμμικά. Ο ανάλογος χαρακτηρισμός ισχύει και για τις Μερικές Διαφορικές Εξισώσεις.

Παράδειγμα 1.1. Η διαφορική εξίσωση

\[\frac{d^2\theta}{dt^2} + \frac{g}{L} \sin \theta = 0, \quad (1.21)\]

περιγράφει την ταλαντωση ενός εικακρεμού. Εκδ. θ = θ(t) είναι η γωνία που μετρά την απομακρύνση από τη θέση ισορροπίας, \(g\) είναι το μέτρο της επιτάχυνσης της βαρύτητας, και \(L\) είναι το μήκος του νήματος. Η εξίσωση είναι μη γραμμικά. Ωστόσο για μικρές ταλαντώσεις είναι \(\sin \theta \approx \theta\), έτσι οι λύσεις της γραμμικής εξίσωσης

\[\frac{d^2\theta}{dt^2} + \frac{g}{L} \theta = 0, \quad (1.22)\]

λέμε ότι προσεγγίζουν αυτές της (1.21) για μικρά \(\theta\). Η (1.22) λέγεται γραμμικοποιημένη της (1.21).
• Αυτόνομες και μη Αυτόνομες Εξισώσεις. Μία ακόμη διαφορικά μεταξύ των εξισώσεων (1.9) και (1.1) είναι ότι η ανεξάρτητη μεταβλητή \(x \) στη μεν εξίσωσι (1.9) εμφανίζεται, στη δε (1.1) δεν εμφανίζεται. Μία εξίσωσι θα λέγεται αυτόνομη εάν η ανεξάρτητη μεταβλητή δεν εμφανίζεται ρητά στην εξίσωσι. Έτσι μία αυτόνομη εξίσωσι μπορεί να γραφεί σε μία από τις μορφές παρακάτω

\[
F(y, y', \ldots, y^{(n)}) = 0, \\
y^{(n)} = f(y, y', \ldots, y^{(n-1)}).
\]

(1.23)
(1.24)

Μία χαρακτηριστική ιδιότητα των αυτόνομων εξισώσεων είναι ότι εάν η \(y(t) \) είναι λύσι, τότε και η \(w(t) = y(t + c) \), όπου \(c \) μία σταθερά, είναι επίσης λύσι. Πραγματικά, εύκολα επαληθεύεται ότι η \(w(t) = e^{ct} \) είναι λύσι της (1.1). Στη γενική περίπτωσι, εάν η \(y(t) \) είναι λύσι της (1.24), τότε επειδή

\[
\frac{d^k}{dt^k}w(t) = y^{(k)}(t + c),
\]

για \(k = 0, 1, \ldots, n \), θα είναι

\[
w^{(n)} = f(w, w', \ldots, w^{(n-1)}).
\]

Είναι δηλαδή οι αυτόνομες εξισώσεις αναλλοίωτες ως προς τη μεταφορά.

1.3 Η γεωμετρική ματιά

Μια διαφορική εξίσωσι περιέχει πληροφορία για τις λύσεις της την οποία για να ανακτήσουμε δεν είναι απαραίτητο να γνωρίζουμε τον τύπο των λύσεων. Ας θεωρήσουμε τη γενική διαφορική εξίσωσι πρώτης τάξης \(y' = f(x, y) \). Σε κάθε σημείο του \(xy \)-επιπέδου στο οποίο ορίζεται η \(f(x, y) \)

\[
\text{Σχήμα 1.1: Το πεδίο κατευθύνσεων για την εξίσωσι } y' = y.
\]

η εξίσωσι δίνει την κλίσι της λύσης \(y(x) \) της εξίσωσις, εφόσον αυτή υπάρχει. Έτσι με αρχή κάθε τέτοιο σημείο μπορούμε να ζωγραφίσουμε ένα διάνυσμα μοναδιαίου μήκους με κλίσι ίση με \(f(x, y) \).
1.3 Η γεωμετρική ματιά

και κατεύθυνση ανάλογη του προσήμου της \(f(x, y) \), παράλληλη διπλανά στο \((1, f(x, y))\). Το σύνολο όλων αυτών των διανυσμάτων αποτελούν το πεδίο κατευθύνσεων της εξίσωσης. Η επιλογή ή ολοκλήρωση της εξίσωσης, διπλανά η εύρεση όλων των λύσεων ισοδύναμει με την κατασκευή όλων των καμπύλων \((x, y(x))\) με εφαρμόσμενα διανύσματα-ταχύτητες τα \((1, y') = (1, f(x, y))\). Τις καμπύλες αυτές τις λέμε ολοκληρωτικές καμπύλες της εξίσωσης. Για παράδειγμα το πεδίο κατευθύνσεων για την εξίσωση \(y' = \gamma \) με λύσεις, όπως είδαμε, τις \(y = ke^x \), όπου \(k \) είναι μια αυθαίρετη σταθερά, δείχνεται στο Σχήμα 1.1 στο οποίο έχουν σχεδιαστεί κάποιες ολοκληρωτικές καμπύλες-λύσεις για διάφορες τιμές του \(k \).

Παράδειγμα 1.2. Στο Σχήμα 1.2 αποδίδεται το πεδίο κατευθύνσεων της εξίσωσης

\[
y' = x + y
\]

καθώς και οι γεωμετρικές παραστάσεις κάποιων λύσεων της εξίσωσης (ολοκληρωτικές καμπύλες).

![Σχήμα 1.2: Το πεδίο κατευθύνσεων για την εξίσωση \(y' = x + y \).](image)

Παρατηρήστε ότι η κάθε μια από τις καμπύλες που έχουν σχεδιαστεί τέμνει τον \(y-\)ξόνα στο σημείο \((0, y(0))\), ισοδύναμα μια κάθε καμπύλη αντιστοιχεί στη λύση του προβλήματος αρχικών τιμών

\[
y' = x + y, \quad y(0) = y_0.
\]

Παρατηρήστε επίσης ότι οι ολοκληρωτικές καμπύλες, τουλάχιστον αυτές που έχουν σχεδιαστεί, δεν τέμνονται μεταξύ τους, ισοδύναμα λύσεις με διαφορετικές αρχικές συνθήκες δεν παίρνουν ποτέ την ίδια τιμή σε κάποιο σημείο. Στο φανόμενο αυτό θα αναφερθούμε αργότερα.

Στη συνέχεια παρουσιάζουμε ένα χαρακτηριστικό παράδειγμα διαφορικής εξίσωσης προκει-
μένου να εξάγουμε συμπεράσματα για την ποιοτική συμπεριφορά των λύσεων από το πεδίο κατευθύνσεων της εξίσωσης. Στο συγκεκριμένο παράδειγμα θα επανέλθουμε στο επόμενο κεφάλαιο όπου μετά τη θεωρία που θα έχουμε αναπτύξει θα επιβεβαιώσουμε τα ποιοτικά αποτελέσματα τα οποία προκύπτουν από την ανάλυση του πεδίου κατευθύνσεων.

Παράδειγμα 1.3. Θεωρούμε την λογιστική εξίσωση

\[y' = y(1 - y) \]

(1.25)

η οποία είναι ένα μοντέλο που περιγράφει την εξέλιξη πληθυσμών. Από τη μορφή της \(f(x, y) \) στο δεξί μέλος εξάγονται τα συμπεράσματα:

1. Οι σταθερές \(y = 0 \) και \(y = 1 \) είναι λύσεις της εξίσωσης καθώς μπορεί τους και τα δύο μέλη της (1.25).

2. Αν σε κάποιο διάστημα \(I \) η λύση \(y \) είναι τέτοια ώστε \(y(1 - y) > 0 \), τότε \(y \) είναι γνησίως αυξουσα αφού \(y' > 0 \), ενώ αν σε κάποιο διάστημα \(I \) η λύση \(y \) είναι τέτοια ώστε \(y(1 - y) < 0 \), τότε \(y \) είναι γνησίως φθίνουσα αφού \(y' < 0 \). Ειδικά αν \(y_0 < 0 \), ή \(y_0 > 1 \), τότε \(y \) λύση της εξίσωσης με \(y(0) = y_0 \) είναι γνησίως φθίνουσα στο διάστημα \(x > 0 \), ενώ αν \(0 < y_0 < 1 \) η αντίστοιχη λύση με \(y(0) = y_0 \) είναι γνησίως αύξουσα.

Οι πληροφορίες αυτές αποτυπώνονται και στο Σχήμα 1.3 στο πεδίο κατευθύνσεων της εξίσωσης στο οποίο έχουν σχεδιαστεί κάποιες ολοκληρωτικές καμπύλες.

Σχήμα 1.3: Το πεδίο κατευθύνσεων για την εξίσωση \(y' = y(1 - y) \).

Ασκηση 1.2. Επαληθεύστε ότι \(n \)

\[y(x) = \frac{y_0}{y_0 + (1 - y_0)e^{-x}} \]

(1.26)
1.4 Ασκήσεις

1. Να βρεθεί η τάξη και να χαρακτηρισθεί σαν γραμμική ή μη γραμμική και σαν συνήθης διαφορική ή μερική διαφορική κάθε μια από τις εξισώσεις:
 (α') \((1-t)y'' - 4t + 5y = \cos t.\)
 (β') \(t^2 \frac{d^2y}{dt^2} - 3 \left(\frac{dy}{dt} \right)^4 + y = 0.\)
 (γ') \(yy'' + 2y = 1 + x^2.\)
 (δ') \(\frac{dy}{dx} = \left\{ 1 + \left(\frac{dy}{dx} \right)^2 \right\}^{1/2}.\)
 (ε') \(\sin(xy)y''' + 4xy' = 0.\)
 (ζ') \(\frac{d^2u}{dx^2} + \frac{d^2u}{dy^2} = u.\)
 (η') \(\frac{dN}{dt} = \frac{d^2N}{dx^2} + \frac{N}{y} + kN, k = \text{σταθερά.}\)
 (θ') \(u_x + uu_x = 0.\)
 (ι') \(\frac{d^2y}{dx^2} + 9y = \sin y.\)

2. Να δειχθεί ότι \(y\) είναι λύση της αντίστοιχης διαφορικής εξίσωσης:
 (α') \(2y' + y = 0, \quad y = e^{-x/2}.\)
 (β') \(y' = 25 + y^2, \quad y = 5 \tan 5x.\)
 (γ') \(y' - \frac{1}{2}y = 1, \quad y = x \ln x, \quad x > 0.\)
 (δ') \(\frac{dy}{dt} = (2 - y)(1 - y), \quad t = \ln \frac{2-y}{1-y}.\)
 (ε') \(y'' + (y')^2 = 0, \quad y = \ln |x + c| + c_2.\)

3. Να εξετασθεί εάν η δομένη σχέση είναι πεπλεγμένη λύση της αντίστοιχης διαφορικής εξίσωσης.
(α') \(y - \ln y = t^2 + 1, \quad \frac{dy}{dt} = \frac{t}{y}\).

(β') \(x^2 - \sin(x + y) = 1, \quad \frac{dy}{dx} = 2x \sec(x + y) - 1\).

(γ') \(e^{xy} + y = x - 1, \quad \frac{dy}{dx} = \frac{e^{x-xy}}{x}\).

4. Να δείξετε ότι οι \(u_1\) και \(u_2\) είναι λύσεις της αντίστοιχης διαφορικής εξίσωσης.

(α') \(u_{xx} + u_{yy} = 0, \quad u_1(x, y) = \cos x \cosh y, \quad u_2(x, y) = \ln(x^2 + y^2), \quad (x, y) \neq (0, 0)\).

(β') \(u_{xx} - u_{tt} = 0, \quad u_1(x, t) = \cos(x - t), \quad u_2(x, t) = f(x - t) + g(x + t)\).

5. Να βρεθούν οι τιμές του \(m\) για τις οποίες \(y = e^{mx}\) είναι λύση της

(α') \(y'' - 5y' + 6y = 0\).

(β') \(y'' + 10y' + 25y = 0\).

6. Να βρεθούν οι τιμές του \(m\) για τις οποίες \(y = x^m\) είναι λύση της

(α') \(x^2y'' - y = 0\).

(β') \(x^2y'' + 6xy' + 4y = 0\).

7. Θεωρούμε την εξίσωση \(y' = 2x\).

(α') Να δείξετε ότι \((y - x^2)' = 0\), και έτσι να βρεθεί η λύση της εξίσωσης.

(β') Να δείξετε ότι η εξίσωση έχει μία και μόνο μία λύση που ικανοποιεί την αρχική συνθήκη \(y(x_0) = y_0\), για κάθε ξενόγαρο πραγματικών αριθμών \((x_0, y_0)\).

8. Εάν \(y'' = 0\) να δείξετε ότι \(y = c_1x + c_2\), όπου \(c_1\) και \(c_2\) είναι τυχαίες σταθερές.

9. Να εξετάσετε εάν \(n\)

\[y = \begin{cases} \sqrt{4 - x^2}, & -2 < x < 0 \\ -\sqrt{4 - x^2}, & 0 \leq x < 2 \end{cases}\]

είναι λύση της διαφορικής εξίσωσης \(\frac{dy}{dx} = -\frac{x}{y}\).

10. Για τη διαφορική εξίσωση \(y = ty' + (y')^2\)

(α') Να δείξετε ότι \(y = ct + c^2\), όπου \(c\) είναι μία σταθερά, είναι μία μονοπαραμετρική οικογένεια λύσεων.

(β') Να εξετασθεί εάν υπάρχει λύση της μορφής \(y = kt^2\), όπου \(k\) είναι κάποια σταθερά.
ΚΕΦΑΛΑΙΟ 2

Διαφορικές Εξισώσεις Πρώτης Τάξης

2.1 Εισαγωγή

Μία διαφορική εξίσωση πρώτης τάξης μπορεί συνήθως να παρασταθεί ως

\[F(t, y, \frac{dy}{dt}) = 0, \] \hspace{1cm} (2.1)

όπου \(F \) είναι μία γνωστή πραγματική συνάρτηση. Στην περίπτωση όπου \(F \) μπορεί να λυθεί ως προς \(y' \) μπορεί να αποδοθεί με μία εξίσωση

\[y' = f(t, y). \] \hspace{1cm} (2.2)

- Στη διαφορική εξίσωση (2.2) συνάρτηση \(f \) είναι συνεχής σε κάποιο χωρίο \(D \) του επιπέδου.

Ορισμός 2.1. Μία συνάρτηση \(\phi \) θα λέγεται άθεος της (2.1), ή της (2.2) σε κάποιο διάστημα \(I \) εάν ορίζεται και είναι παραγωγήσιμη στο \(I \), η παράγωγός της είναι συνεχής στο \(I \), δηλαδή \(\phi \in C^1(I) \), και επιπλέον επαλθεί με τη (2.1), ή την (2.2) αντίστοιχα, δηλαδή

\[F(t, \phi(t), \phi'(t)) = 0, \quad \text{ή} \quad \phi'(t) = f(t, \phi(t)), \]

gια όλα τα \(t \) στο διάστημα \(I \).

Ορισμός 2.2. Λέγοντας πρόβλημα αρχικών τιμών για μία διαφορική εξίσωση πρώτης τάξης εννοούμε μια εξίσωση (2.1), ή (2.2) μαζί με μία αρχική συνθήκη της μορφής

\[y(t_0) = y_0. \] \hspace{1cm} (2.3)

Την ανεξάρτητη μεταβλητή \(t \) το συμβολίζουμε με \(t \), ή \(x \) και έτσι θα είναι \(y = y(t) \), ή \(y = y(x) \). Μία διαφορική εξίσωση \(y' = f(x, y) \) μπορεί πάντα (γιατί) να γραφεί στη μορφή

\[M(x, y) + N(x, y)y' = 0, \] \hspace{1cm} (2.4)

όπου \(M \) και \(N \) είναι γνωστές συναρτήσεις. Από τη (2.4) είναι ξεκάθαρο ότι η εξισοτιμημένη μεταβλητή είναι \(y \) επομένως θα είναι \(y = y(x) \). Η εξίσωση όμως \(y' = f(x, y) \) ή τη (2.4) μπορεί να γραφεί και σε διαφορική μορφή

\[M(x, y) \, dx + N(x, y) \, dy = 0. \] \hspace{1cm} (2.5)
Παράδειγμα 2.1. Να λυθεί η εξίσωση

\[x \, dx + y \, dy = 0. \] (2.6)

Σκεφτόμαστε μία μέρος της αριστερής μέσης της (2.6) είναι το διαφορικό κάτω ένας γνωστός συνάρτησης. Θυμίζουμε ότι αν \(w = w(x,y) \) είναι μία διαφορική συνάρτηση, το διαφορικό \(dw \) της \(w \) είναι

\[dw = \frac{\partial w}{\partial x} \, dx + \frac{\partial w}{\partial y} \, dy. \]

Γράμματα αρχικά την εξίσωσις ως

\[\frac{\partial}{\partial x} \left(\frac{x^2}{2} \right) \, dx + \frac{\partial}{\partial y} \left(\frac{y^2}{2} \right) \, dy = 0, \]

βλέπουμε ότι μπορούμε να γράψουμε

\[\frac{\partial}{\partial x} \left(\frac{x^2 + y^2}{2} \right) \, dx + \frac{\partial}{\partial y} \left(\frac{x^2 + y^2}{2} \right) \, dy = 0, \]

και αναγνωρίζουμε ότι η έκφραση στο αριστερό μέλος είναι ολικό διαφορικό να πάρουμε τελικά, την

\[d \left(\frac{x^2 + y^2}{2} \right) = 0. \]

Έτσι προκύπτει ότι

\[\frac{x^2 + y^2}{2} = c, \]

με \(c \) να είναι μία σταθερά, ή τελικά

\[x^2 + y^2 = C, \] (2.7)

ότου \(C = 2c \) να είναι μία νέα σταθερά. Οι λύσεις διπλαί της (2.6) για \(C > 0 \) είναι ομοιογένεια κύκλω. Αν \((x,y)\) είναι ένα σημείο ενός κύκλου που περιγράφεται στη (2.7) τότε σε κάποια γενικότερη του σημείου μπορεί το \(y \) να εκφράσει σαν διαφορική συνάρτηση του \(x \) ή το \(x \) σαν διαφορική συνάρτηση του \(y \) από τις σχέσεις

\[y = \sqrt{C - x^2}, \quad y = -\sqrt{C - x^2}, \quad x = \sqrt{C - y^2}, \quad x = -\sqrt{C - y^2}. \] (2.8)

Οι κύκλοι (2.7) ικανοποιούν την εξίσωσις (2.6) και θα λέμε ότι η (2.7) είναι μία πεπλεγμένη λύση της (2.6), ενώ η κάθε μία από τις (2.8) είναι αναλυτική λύση σε κάποιο κατάλληλο διάστημα.

Αν τώρα θεωρήσουμε την εξίσωσις

\[x + yy' = 0 \] (2.9)
2.1 Εισαγωγή

τότε γράφοντας τη στη μορφή
\[
\left(\frac{1}{2}y^2\right)' = -x
\]
και ολοκληρώνοντας βρίσκουμε
\[
\frac{1}{2}y^2 = -\frac{1}{2}x^2 + c
\]
με \(c\) να είναι μία σταθερά, προκύπτει \(x^2 + y^2 = C\) με \(C = 2c\), που είναι \(2.7\). Το αποτέλεσμα αυτό δεν δεν θα πρέπει να μας ξαφνιάζει καθ’ όσον η εξίσωση \(2.6\) είναι η διαφορική μορφή της \(2.9\).

Στο Σχήμα 2.1 φαίνεται το πεδίο κατευθύνσεων της εξίσωσης \(x + yy' = 0\) έχοντας γράφει την εξίσωσιά ως
\[
y' = -\frac{x}{y}
\]
(2.10)

Σχήμα 2.1: Το πεδίο κατευθύνσεων για την εξίσωση \(y' = -\frac{x}{y}\).

Οι ολοκληρωτικές καμπύλες της \(2.9\) ή της \(2.10\) είναι οι ομόκεντροι κύκλοι \(x^2 + y^2 = C\). Όμως οι λύσεις της
\[
xx' + y = 0
\]
(2.11)
περιέχονται στη \(2.7\). Παρατηρούμε και εδώ ότι \(2.6\) είναι η διαφορική μορφή της \(2.11\). Παρατηρούμε επίσης ότι οι λύσεις \(2.8\) της \(2.6\), της \(2.11\), ή της \(2.12\) περιέχονται σε πεπλεγμένη μορφή στην
\[
\Phi(x, y) = C, \quad \text{όπου} \quad \Phi(x, y) = x^2 + y^2.
\]
Στη συνέχεια θα θεωρούμε εξισώσεις και σε διαφορική μορφή και θα υποθέτουμε, εκτός αν αναφέρεται διαφορετικά, ότι \(y\) είναι η εξαρτημένη μεταβλητή, θα είναι δηλαδή \(y = y(t)\) ή \(y = y(x)\).
Παρατήρηση 2.1. Εάν \(H \) είναι μία ομαλή, πραγματική συνάρτηση δύο μεταβλητών, τότε η σχέση

\[
H(x, y) = c,
\]

(2.12)

όπου \(c \) είναι μία πραγματική σταθερά, ορίζει, κάτω από ορισμένες προϋποθέσεις ομαλότπτας τη μία μεταβλητή ως συνάρτηση της άλλης. Εάν με \(H_x \) και \(H_y \) συμβολίζουμε τις πρώτες μερικές παραγώγους της \(H \) ως προς \(x \) και \(y \) αντίστοιχα, τότε για το μεν διαφορικό της (2.12) θα είναι

\[
dH = H_x \, dx + H_y \, dy = 0,
\]

(2.13)

για τη δε παράγωγο ως προς \(x \), αν \(y = y(x) \),

\[
\frac{d}{dx} H(x, y(x)) = H_x + H_y y' = 0.
\]

(2.14)

Θέλοντας λοιπόν να λύσουμε τις εξισώσεις (2.4) ή (2.5) και συγκρίνοντας τις αντίστοιχες με τις (2.13) ή (2.14) αναζητούμε μία συνάρτηση \(H \) τέτοια ώστε \(H_x = M \) και \(H_y = N \). Στις περίπτωσες αυτές η λύση ορίζεται έμπλεκτα από την (2.12). Στο θέμα αυτό θα επανέλθουμε στην παράγραφο 2.4.

Οι ολοκληρωτικές καμπύλες (2.7) που περιγράφουν γεωμετρικά τις λύσεις της διαφορικής εξίσωσης (2.6) (ή (2.9), ή (2.11)) είναι οι καμπύλες σταθερές \(H(x, y) = c \), όπου \(H(x, y) = x^2 + y^2 \). Η προσθήκα μίας αρχικής συνθήκης \(y(x_0) = y_0 \) στην εξίσωση (2.6) αντιστοιχεί στην επιλογή εκείνης της καμπύλης που περιέχει το σημείο \((x_0, y_0)\).

Παράδειγμα 2.2. Να λυθεί το πρόβλημα αρχικών τιμών

\[
x \, dx + y \, dy = 0, \quad y(1) = 1.
\]

Στο Παράδειγμα 2.1 βρίσκουμε ότι οι λύσεις της διαφορικής εξίσωσης δίνονται, σε πεπληγμένη μορφή, από τη σχέση \(x^2 + y^2 = C \). Από τις λύσεις αυτές θέλουμε εκείνη που περιέχει το σημείο \((1, 1)\). Έτσι βρίσκουμε \(C = 2 \) και η λύση η οποία δίνεται από την εξίσωση

\[
x^2 + y^2 = 2,
\]

tην ολοκληρωτική διπλαδή καμπύλη που περιέχει το σημείο \((1, 1)\), είναι \(y = \sqrt{2 - x^2}, -\sqrt{2} < x < \sqrt{2} \).

Παράδειγμα 2.3. Θεωρούμε το πρόβλημα αρχικών τιμών

\[
y' = 4x \sqrt{y}, \quad y(0) = 0.
\]
2.1 Εισαγωγή

Παρατηρούμε ότι η \(y = 0 \) είναι μία λύση του προβλήματος. Στη συνέχεια αναζητούμε άλλες λύσεις. Γράφοντας αρχικά την εξίσωση σαν

\[
\frac{y'}{\sqrt{y}} = 4x,
\]

εκεί όπου \(y > 0 \), βλέπουμε ότι είναι ισοδύναμα με την

\[
(2 \sqrt{y})' = 4x
\]

απ’ όπου ολοκληρώνοντας βρίσκουμε

\[
2 \sqrt{y} = 2x^2 - 2c, \quad x^2 \geq c
\]

όπου \(c \) είναι μία σταθερά, ή τελικά

\[
y = (x^2 - c)^2, \quad x^2 \geq c.
\]

Επιλέγοντας \(c = 0 \) έχουμε ότι η \(y = x^4 \) είναι μία δεύτερη λύση του προβλήματος. Παρατηρήστε ότι για \(c \geq 0 \) οι μονοπαραμετρικές οικογένειες συναρτήσεων

\[
y_c = \begin{cases}
0, & x < \sqrt{c} \\
(x^2 - c)^2, & x \geq \sqrt{c}
\end{cases}, \quad \text{ή} \quad y_c = \begin{cases}
(x^2 - c)^2, & x \leq -\sqrt{c} \\
0, & x > -\sqrt{c}
\end{cases}
\]

eίναι επίσης λύσεις του προβλήματος αρχικών τιμών (ιατρικά). Όμως για \(c_1, c_2 \geq 0 \) η

\[
y = \begin{cases}
(x^2 - c_1)^2, & x \leq -\sqrt{c_1} \\
-x\sqrt{c_1} < x < x_2 \sqrt{c_2} \\
(x^2 - c_2)^2, & x \geq -\sqrt{c_1}
\end{cases}
\]

eίναι επίσης λύσεις του προβλήματος. Η \(y = x^4 \) προκύπτει για \(c_1 = c_2 = 0 \), ενώ \(n y = 0 \) για \(c_1, c_2 \rightarrow \infty \). Το Σχήμα 2.2 δείχνει το πεδίο κατευθύνσεων καθώς και κάποιες ολοκληρωτικές καμπύλες για την εξίσωση \(y' = 4x \sqrt{y} \). Με κάθενα χρώμα είναι οι ολοκληρωτικές καμπύλες οι οποίες αντιστοιχούν σε λύσεις του προβλήματος των αρχικών τιμών, αυτές δηλαδή που περιέχουν το σημείο \((0,0)\).

![Σχήμα 2.2: Το πεδίο κατευθύνσεων για την εξίσωση \(y' = 4x \sqrt{y} \).](image-url)
Παρατηρούμε ότι στο μεν Παράδειγμα 2.2 έχουμε μία λύση στο δε Παράδειγμα 2.3 έχουμε άπειρες λύσεις. Ένα λογικό ερώτημα είναι το κατά πόσο ένα πρόβλημα αρχικών τιμών έχει λύση και κάτω από ποιές συνθήκες η λύση είναι μοναδική. Την απάντηση μας παρέχει το

Θεώρημα 2.1 (Picard–Lindelöf) Τοπικά Όπαρξη και Μοναδικότητα. Θεωρούμε το πρόβλημα αρχικών τιμών

\[y' = f(t, y), \quad y(t_0) = y_0 \]

(2.15)

Εάν οι συναρτήσεις \(f \) και \(\partial f / \partial y \) είναι συνεχείς σε ένα ορθογώνιο το οποίο περιέχει το σημείο \((t_0, y_0)\) τότε υπάρχει μοναδική λύση του (2.15) ορισμένη σε κάποιο διάστημα \(I \) το οποίο περιέχει το \(t_0 \).

Το Θεώρημα 2.1, μας λέει ότι αν οι υποθέσεις ισχύουν, τότε το πρόβλημα αρχικών τιμών έχει λύση σε κάποια περιοχή του \(t_0 \) και μάλιστα η λύση είναι μοναδική στην περιοχή αυτή. Την απόδειξη του θεωρήματος δίνουμε στο τέλος του κεφαλαίου. Αναφέρομενοι τώρα στο Παράδειγμα 2.3 εξετάζουμε εάν ικανοποιούνται οι προϋποθέσεις του θεωρήματος. Εδώ είναι

\[f(x, y) = 4x \sqrt{y}, \quad \frac{\partial f}{\partial y} = \frac{2x}{\sqrt{y}}, \]

dηλαδή η \(f \) ορίζεται και είναι συνεχής για \(-\infty < x < \infty \) και \(y \geq 0 \) και \(\partial f / \partial y \) δεν ορίζεται στο \(y_0 = 0 \). Επομένως οι συνθήκες του θεωρήματος δεν ικανοποιούνται, και κατά συνέπεια ο ισχυρισμός του θεωρήματος για την ύπαρξη και μοναδικότητα της λύσης δεν καταρρέπτεται. Αυτό που μπορούμε να πούμε στη περίπτωση που οι προϋποθέσεις του θεωρήματος δεν ισχύουν είναι ότι το πρόβλημα αρχικών τιμών μπορεί να έχει μοναδική λύση, μπορεί να έχει περισσότερες από μία λύσεις, ή μπορεί να μην έχει λύση. Θα επανέλθουμε στο Θεώρημα 2.1 στις παραγράφους 2.8, και 2.10.

Ασκήση 2.1. Να δείξετε ότι οι \(y_1 = 1 \) και \(y_2 = \cosh t \) είναι λύσεις του προβλήματος αρχικών τιμών

\[y' = \sqrt{|1 - y^2|}, \quad t > 0, \quad y(0) = 1. \]

Εξηγήστε γιατί αυτό το αποτέλεσμα δεν έχεται σε αντίθεση με το Θεώρημα 2.1.

2.2 Εξίσωσεις Χωρίζομένων Μεταβλητών

Ας θεωρήσουμε μία εξίσωση πρώτης τάξης σε λυμένη μορφή

\[y' = f(x, y). \]

Σε αυτή καθός και σε επόμενες παραγράφους θα μελετήσουμε ειδικές περιπτώσεις όπου η μορφή της συνάρτησης \(f \) επιτρέπει την επίλυση της εξίσωσης με σχετικά εύκολο τρόπο.

Μία διαφορική εξίσωση πρώτης τάξης λέγεται χωρίζομένων μεταβλητών εάν οι μεταβλητές στη συνάρτηση \(f \) διαιρούνται με την έννοια ότι \(f(x, y) = g(x)h(y) \), ισοδύναμα εάν η εξίσωση μπορεί να γραφεί στη μορφή

\[y' = g(x)h(y), \]

(2.16)
2.2 Εξισώσεις Χωριζομένων Μεταβλητών

όπου οι \(g\) και \(h\) είναι συνεχείς συναρτήσεις. Αν σε κάποιο σημείο \((x_0, y_0)\) είναι \(h(y_0) \neq 0\), τότε σε κάποιο διάστημα είναι \(h(y) \neq 0\). Σε αυτό το διάστημα μπορούμε να γράψουμε

\[
\frac{y'}{h(y)} = g(x),
\]

απ’ όπου ολοκληρώνοντας προκύπτει

\[
\int \frac{y'}{h(y)}\, dx = \int g(x)\, dx,
\]

ή τελικά μετά από αλλαγή μεταβλητής

\[
\int \frac{dy}{h(y)} = \int g(x)\, dx. \tag{2.17}
\]

Διαπιστώνεται έτσι ότι η επίλυση μίας εξίσωσης χωριζομένων μεταβλητών ανάγεται σε ολοκλήρωση. Παρατηρούμε ότι εάν η εξίσωση \(h(y) = 0\) έχει λύσεις τις σταθερές \(y = c\) τότε οι λύσεις αυτές είναι και λύσεις της (2.16) καθ’ όσον την επιληφθούν.

Σημειώνουμε εδώ ότι αν την εξίσωση (2.16) τη γράψουμε σαν

\[
\frac{dy}{dx} = g(x)h(y),
\]

τότε από την (2.17) υπαγορεύεται η θεώρηση της διαφορικής μορφής της εξίσωσης που είναι η

\[
\frac{1}{h(y)}\, dy = g(x)\, dx, \quad \text{ή} \quad g(x)\, dx - \frac{1}{h(y)}\, dy = 0.
\]

Αν \(ψ_x = g(x)\) και \(ψ_y = 1/h(y)\), τότε η λύση της εξίσωσης δίνεται από τη σχέση

\[
ψ(x, y) = \int g(x)\, dx - \int \frac{1}{h(y)}\, dy = c,
\]

όπου \(c\) είναι μια σταθερά, η οποία είναι η \(c\).

Σημείωση 2.1. Κάθε αυτόνομη εξίσωση

\[
y' = f(y)
\]

eίναι χωριζομένων μεταβλητών και η λύση της δίνεται (πεπληγμένα) από τη σχέση

\[
\int \frac{dy}{f(y)} = \int dx = x + c.
\]

Επίσης κάθε εξίσωση της μορφής \(y' = f(x)\) είναι τετριμμένα χωριζομένων μεταβλητών.
Παράδειγμα 2.4. Να λύσει την εξίσωση
\[y' = y^2 e^{-x}. \]

Η εξίσωση είναι χωρίζομένων μεταβλητών. Παρατηρούμε ότι \(y = 0 \) είναι μία λύση της εξίσωσης. Αν τώρα \(y \neq 0 \) έχουμε όπως στην (1;)
\[
\int \frac{dy}{y^2} = \int e^{-x} \, dx \Rightarrow \frac{1}{y} = -e^{-x} + c,
\]
όπου \(c \) είναι η σταθερά ολοκλήρωσης, ή τελικά
\[y = \frac{1}{-e^{-x} + c}, \quad (2.18) \]
Παρατηρούμε ότι \(y = 0 \) δεν περιέχεται στην οικογένεια λύσεων (2.18), δηλαδή δεν προκύπτει από την (2.18) για κάποια τιμή της σταθεράς \(c \). Αυτή είναι μία χαρακτηριστική ιδιότητα των μι θεμελικών εξίσωσεων που θα συζητήσουμε γενικότερα στον παράγραφο 2.8.

Παράδειγμα 2.5. Να λύσει τη διαφορική εξίσωση
\[\frac{dy}{dx} = \frac{4x - x^3}{2y + y^3}. \]

Η εξίσωση είναι χωρίζομένων μεταβλητών, οπότε όπως στην εισαγωγή της παραγράφου έχουμε
\[
(2y + y^3)y' = 4x - x^3 \Rightarrow \int (2y + y^3) \, dy = \int (4x - x^3) \, dx \Rightarrow y^2 + \frac{y^4}{4} = 2x^2 - \frac{x^4}{4} + c
\]
όπου \(c \) είναι μια σταθερά. Έτσι όλες τις λύσεις της εξίσωσης προκύπτουν από την
\[y^4 + 4y^2 + x^4 - 8x^2 = C. \]

Σχήμα 2.3: Ολοκληρωτικές καμπύλες της \(y' = (4x - x^3)/(2y + y^3) \).
Στο Σχήμα 2.3 έχουμε σχεδιάσει κάποιες ολοκληρωτικές καμπύλες της εξίσωσης. Οι ολοκληρωτικές αυτές καμπύλες είναι οι καμπύλες στάθμης της συνάρτησης \(\Phi(x,y) = y^4 + 4y^2 + x^4 - 8x^2 \). Η \(\Phi \) παίρνει την ελάχιστη τιμή της στα σημεία \((\pm2,0)\), όπως εξάλλου υποδεικνύει το σχήμα.

Παράδειγμα 2.6. Να λυθεί το πρόβλημα αρχικών τιμών

\[
y'(x) = (y(x) + 1)x, \quad y(0) = 1. \tag{2.19}
\]

Η εξίσωση είναι χωριζομένων μεταβλητών. Εάν τώρα είναι \(y \neq -1 \) τότε γράφοντας

\[
\frac{y'}{y + 1} = x,
\]

και ολοκληρώνοντας έχουμε

\[
\ln |y + 1| = \frac{1}{2} x^2 + C \quad \Rightarrow \quad |y + 1| = e^{x^2/2} \quad \Rightarrow \quad y + 1 = \pm e^{x^2/2},
\]

όπου \(C \) είναι μία σταθερά. Θέτοντας στη συνέχεια \(C = \pm e^c \), έχουμε

\[
y = Ce^{x^2/2} - 1. \tag{2.20}
\]

Η οικογένεια καμπύλων (2.20) καλύπτει όλο το επίπεδο, με την έννοια ότι για κάθε σημείο \((x_0, y_0)\) υπάρχει \(C \) τέτοιο ώστε η αντίστοιχη καμπύλη να περιέχει το σημείο. Πράγματι λύνοντας την εξίσωση \(y(x_0) = y_0 \), βρίσκουμε

\[
y_0 = Ce^{x_0^2/2} - 1 \quad \Rightarrow \quad C = (y_0 + 1)e^{-x_0^2/2}.
\]

Η τιμή λοιπόν της σταθεράς \(C \) υπολογίζεται από την αρχική συνθήκη. Έτσι από την (2.20) προκύπτει

\[
1 = Ce^0 - 1,
\]

άρα \(C = 2 \) και η λύση του προβλήματος (2.19) είναι

\[
y = 2e^{x^2/2} - 1.
\]

Παρατήρηση 2.2. Από την (2.19) παρατηρούμε ότι \(y = -1 \) είναι λύση της διαφορικής εξίσωσης, αλλά όχι του προβλήματος αρχικών τιμών, διότι \(y(0) \neq 0 \). Το γεγονός αυτό έχει την αντίθεση με το ανάλογο αποτέλεσμα στο Παράδειγμα 2.3. Αυτό οφείλεται στο ότι η εξίσωση (2.19) είναι γραμμική. Στη συνέχεια δείχνουμε ότι κάθε λύση της διαφορικής εξίσωσης δίνεται από την (2.20). Πραγματικά αν \(y_1 \) είναι μία λύση της
εξίσωσης στη (2.19) τότε

\[(y_1 - (Ce^{x^2/2} - 1))' = y_1' - Cxe^{x^2/2} = (y_1 + 1)x - Cxe^{x^2/2} = x(y_1 - (Ce^{x^2/2} - 1)).\]

Εάν τώρα ορίσουμε \(w = y_1 - C \exp(x^2/2) + 1\) τότε η τελευταία εξίσωση γράφεται

\[w' = xw,\]

που είναι μια εξίσωση χωρίζομενων μεταβλητών. Θα μπορούσαμε τώρα να διακρίνουμε τις περιπτώσεις (i) \(w = 0\), οπότε \(y_1 = C \exp(x^2/2) - 1\), που αποδεικνύει τον ισχυρισμό μας, και (ii) \(w \neq 0\), οπότε γράφοντας την \(w\)-εξίσωση στη μορφή

\[\frac{w'}{w} = x\]

και ολοκληρώνοντας θα είχαμε το αποτέλεσμα. Αντ' αυτού όμως προχωρήσαμε την περιπτώσεις έτσι πολλαπλασιάζοντας την \(w\)-εξίσωσι με \(\exp(-x^2/2)\) προκύπτει

\[e^{-x^2/2}w' - xe^{-x^2/2}w = 0 \iff (e^{-x^2/2}w)' = 0,\]

και ολοκληρώνοντας

\[e^{-x^2/2}w = A,\]

με \(A\) να είναι μία σταθερά, και έτσι

\[w = Ae^{x^2/2}.\]

Από τον ορισμό τώρα του \(w\) θα είναι

\[y_1 - Ce^{x^2/2} + 1 = Ae^{x^2/2},\]

οπότε τελικά

\[y_1 = (A + C)e^{x^2/2} - 1.\]

Θέτοντας \(B = A + C\) στην τελευταία σχέση ολοκληρώνουμε την απόδειξη του ισχυρισμού μας.

Σχετικά με τη μέθοδο που ακολουθήθηκε για την επίλυση της διαφορικής εξίσωσης θα αναφερθούμε αναλυτικότερα στην επόμενη παράγραφο.

2.3 Γραμμικές Εξισώσεις

Μία διαφορική εξίσωση πρώτης τάξης λέγεται γραμμικά εάν είναι της μορφής

\[y' + p(t)y = g(t),\]

όπου \(p\) και \(g\) είναι γνωστές συναρτήσεις.
2.3 Γραμμικές Εξισώσεις

Παρατηρούμε ότι η εξίσωση (2.19) είναι γραμμική. Παρατηρούμε επίσης ότι μία εξίσωση χωρίζομένων μεταβλητών είναι γραμμική αν και μόνον αν είναι της μορφής \(y' = p(t)(ay + b) \), όπου \(a \) και \(b \) είναι σταθερές. \(Η \) εξίσωση \(y' = ty + 1 \) είναι γραμμική αλλά δεν είναι χωρίζομένων μεταβλητών. ΠρόΘέσεις μας είναι να εκφράσουμε τη λύση της εξίσωσης (2.21) σε κλειστή μορφή.

Υποθέτουμε ότι οι \(p \) και \(g \) είναι συνεχείς συναρτήσεις σε κάποιο διάστημα \(I \), το οποίο είναι πιθανό να είναι άπειρο ή και ολόκληρη η πραγματική ευθεία, και θέλουμε να βρούμε τη λύση ορισμένη στο διάστημα αυτό.

Πολλαπλασιάζοντας την (2.21) με κάποια μη μονομερή συνάρτηση \(\mu(t) \) έχουμε την ισοδύναμη με την (2.21) εξίσωση

\[
\mu(t)y' + \mu(t)p(t)y = \mu(t)g(t).
\]

(2.22)

Στη συνέχεια απαιτούμε να συνάρτηση \(\mu(t) \) να είναι τέτοια ώστε

\[
\mu'(t) = \mu(t)p(t),
\]

(2.23)

να είναι διπλαδι, σαν λύση της εξίσωσης χωρίζομένων μεταβλητών (2.23),

\[
\mu(t) = e^{\int p(t) dt}.
\]

(2.24)

Έτσι το αριστερό μέλος της (2.22) είναι παράγωγος γινομένου κατά συνέπεια τη (2.22) γίνεται

\[
(\mu(t)y)' = \mu(t)g(t),
\]

απ' όπου ολοκληρώνοντας παίρνουμε

\[
\mu(t)y = \int \mu(t)g(t) dt + c
\]

ή τελικά

\[
y = \frac{1}{\mu(t)} \int \mu(t)g(t) dt + \frac{c}{\mu(t)}.
\]

(2.25)

Δείξαμε λοιπόν ότι οι λύσεις της (2.21) δίνονται από τον τύπο (2.25) όπου \(\mu = \mu(t) \) είναι μία οπτοιαδίποτε λύση της (2.23), δίνεται διπλαδι από την (2.24). Η συνάρτηση \(\mu \) λέγεται ολοκληρωτικός παράγοντας για τη γραμμική εξίσωση (2.21).

Παράδειγμα 2.7. Να λυθεί η εξίσωση

\[
y' + y = e^{-t}.
\]

(2.26)

Η εξίσωση είναι γραμμική. Ένας ολοκληρωτικός παράγοντας δίνεται από τη σχέση

\[
\mu(t) = e^{\int 1 dt} = e^{t+c} = Ce^t,
\]

οπότε πολλαπλασιάζοντας την εξίσωση με \(e^t \) και κατόπιν ολοκληρώνοντας έχουμε

\[
y'e^t + ye^t = e^{-t}e^t \Rightarrow (e^t y)' = 1 \Rightarrow e^t y = t + c.
\]

(2.27)

Κατά συνέπεια οι λύσεις της εξίσωσης είναι της μορφής

\[
y = te^{-t} + ce^{-t}.
\]
Παράδειγμα 2.8. Ας υποθέσουμε τώρα ότι θέλουμε να λύσουμε το πρόβλημα αρχικών τιμών

\[y' + y = e^{-t}, \quad y(t_0) = y_0. \]

Δείξουμε στο Παράδειγμα 2.7 ότι η λύση της εξίσωσης είναι \(y = t \exp(-t) + c \exp(-t) \) η οποία εξαρτάται από μία σταθερά \(c \). Αν τώρα \(y(t_0) = y_0 \) θα πρέπει να ισχύει

\[y_0 = t_0 e^{-t_0} + ce^{-t_0}, \]

απ` όπου λύνοντας ως προς \(c \) έχουμε

\[c = y_0 e^{t_0} - t_0. \]

Δηλαδή η λύση του προβλήματος αρχικών τιμών είναι

\[y = (t - t_0) e^{-t} + y_0 e^{-(t-t_0)}. \]

Το αποτέλεσμα στο Παράδειγμα 2.8 υποδηλώνει ότι κάθε λύση του (2.26) προέρχεται από τη (2.27). Αυτό όντως συμβαίνει και είναι απόρροια του Θεωρήματος 2.1 ύπαρξης και μοναδικότητας για διαφορικές εξισώσεις πρώτης τάξης. Για τις γραμμικές διαφορικές εξισώσεις πρώτης τάξης το θεώρημα αυτό μπορεί να διαβαστεί

Θεώρημα 2.2. Εάν οι \(p \) και \(g \) είναι συνεχείς συναρτήσεις σε κάστοι ανοικτοί διάστημα \(I \) και \(t_0 \) είναι σημείο του \(I \) τότε το πρόβλημα αρχικών τιμών

\[y' + p(t)y = g(t), \quad y(t_0) = y_0, \quad (2.28) \]

όπου \(y_0 \) είναι μία ανθαίρετη σταθερά, έχει μοναδική λύση στο \(I \).

Απόδειξη. Έχουμε ήδη δείξει ότι οι λύσεις της εξίσωσης στη (2.28) δίνονται από την (2.25), η οποία μπορεί να γραφεί σαν

\[y = \frac{1}{\mu(t)} \int_{t_0}^{t} \mu(s) g(s) ds + \frac{c}{\mu(t)}, \]

έτσι ώστε

\[y(t_0) = y_0 = \frac{c}{\mu(t_0)}. \]

Εάν τώρα επιλέξουμε τον ολοκληρωτικό παράγοντα \(\mu \) έτσι ώστε \(\mu(t_0) = 1 \), επίλεξουμε δηλαδή

\[\mu(t) = e^{\int_{t_0}^{t} p(s) ds}, \quad (2.29) \]

tότε θα είναι \(c = y_0 \). Έτσι η λύση του προβλήματος αρχικών τιμών (2.28) δίνεται από τη σχέση

\[y(t) = e^{-\int_{t_0}^{t} p(s) ds} \left\{ \int_{t_0}^{t} e^{\int_{t_0}^{\tau} p(s) ds} g(\tau) d\tau + y_0 \right\}. \quad (2.30) \]
2.3 Γραμμικές Εξισώσεις

Αποδεικνύουμε τώρα τη μοναδικότητα της λύσης του (2.28). Εάν \(y_1 \) και \(y_2 \) είναι λύσεις του (2.28) θα έχουμε
\[
y_i' + p(t)y_i = g(t), \quad y_i(t_0) = y_0, \quad i = 1, 2
\]
και αφαιρώντας
\[
(y_1 - y_2)' + p(t)(y_1 - y_2) = 0, \quad (y_1 - y_2)(t_0) = 0.
\]
Αν τώρα ορίσουμε τη συνάρτηση \(w = y_1 - y_2 \) τότε \(w \) ικανοποιεί το
\[
w' + p(t)w = 0, \quad w(t_0) = 0.
\]
Πολλάπλασιάζοντας αρχικά με τον ολοκληρωτικό παράγοντα (2.29) και ολοκληρώνοντας έχουμε
\[
(\mu w)' = 0 \Rightarrow \mu w = c,
\]
όπου \(c \) μία σταθερά. Έτσι
\[
w = c \exp \left(-\int_{t_0}^{t} p(s) \, ds \right).
\]
Η αρχική συνθήκη ικανοποιείται αν
\[
w(t_0) = c = 0,
\]
επομένως
\[
w = y_1 - y_2 = 0,
\]
για όλα τα \(t \) στο διάστημα \(I \). Έτσι \(y_1 = y_2 \). Η απόδειξη είναι πλήρης. \(\square \)

Στις περιπτώσεις λοιπόν των γραμμικών εξισώσεων μπορούμε να μιλούμε για τη γενική λύση της διαφορικής εξίσωσης υπονοούντας ότι η μοναδική λύση ενός προβλήματος αρχικών τιμών προκύπτει με τη κατάλληλη επιλογή της σταθεράς.

Σημείωση 2.2. Η (2.30) μπορεί να γραφεί στη μορφή
\[
y(t) = y_0 e^{-\int_{t_0}^{t} p(s) \, ds} + \int_{t_0}^{t} e^{-\int_{\tau}^{t} p(s) \, ds} g(\tau) \, d\tau, \quad (2.31)
\]
ή ισοδύναμα
\[
y(t) = U(t, t_0)y_0 + \int_{t_0}^{t} U(t, \tau)g(\tau) \, d\tau, \quad (2.32)
\]
όπου
\[
U(t, \xi) = e^{-\int_{\xi}^{t} p(s) \, ds}. \quad (2.33)
\]
Η λύση (2.31) ή (2.32) αναφέρεται σαν τύπος μεταβολής των παραμέτρων. Παρατηρούμε επίσης ότι εάν η συνάρτηση \(p \) στην (2.28) είναι σταθερά \(\text{έστω} \ p(t) = a \), τότε η (2.31) γράφεται
\[
y(t) = y_0 e^{-at(t-t_0)} + \int_{t_0}^{t} e^{-at(\tau-t)} g(\tau) \, d\tau. \quad (2.34)
\]
μία γενικεύση του τύπου (2.34) θα δούμε στο Κεφάλαιο 4.
ΑΣΚΗΣΗ 2.2. (Δικαιολογημένη του ονόματος τύπος μεταβολής των παραμέτρων και ένας άλλος τρόπος απόδειξης του θεώρηματος.) Να βρεθεί η λύση του προβλήματος αρχικών τιμών (2.28), ακολουθώντας τα βήματα:

1) Να βρεθεί μία λύση \(y_1 \) της εξίσωσης \(y' + p(t)y = 0 \) με \(y_1(t_0) = 1 \).
2) Υποθέτοντας ότι η λύση του \(y' + p(t)y = g(t), \) \(y(t_0) = y_0 \) είναι της μορφής \(y = c(t)y_1(t) \), όπου \(c(t) \) είναι μία "μεταβλητή σταθερά" αντικαταστήστε στην εξίσωση και υπολογίστε την άγωστη συναρτισμό \(c \), και έτσι την έκφραση του \(y \).

ΠΑΡΑΠΤΗΡΗΣΗ 2.3. Ο τύπος (2.31) ή (2.32) δίνει πληροφορία σχετικά με την εξάρτηση της λύσης του (2.28) από τις παραμέτρους του προβλήματος. Συγκεκριμένα εάν \(y_1 \) και \(y_2 \) είναι αντίστοιχα οι λύσεις των

\[
y'_i + p(t)y_i = g_i(t), \quad y_i(t_0) = y_0, \quad i = 1, 2
\]

από την (2.31) παρατηρούμε ότι

\[
y_01 \geq y_02 \implies y_1(t) \geq y_2(t),
\]

για όλα τα \(t \) στο διάστημα ορισμού των λύσεων. Όμως εάν \(y_1 \) και \(y_2 \) είναι αντίστοιχα οι λύσεις των

\[
y'_i + p(t)y_i = g_i(t), \quad y_i(t_0) = y_0, \quad i = 1, 2
\]

tότε

\[
g_1 \geq g_2 \implies y_1(t) \geq y_2(t),
\]

για όλα τα \(t \) στο διάστημα ορισμού των λύσεων. Το καθένα από τα αποτελέσματα αυτά έπεται από τη σχέση

\[
y_1(t) - y_2(t) = U(t, t_0)(y_01 - y_02) + \int_{t_0}^{t} U(t, \tau)(g_1(\tau) - g_2(\tau)) d\tau,
\]

με την κατάλληλη ανά περίπτωση επιλογή. Βλέπουμε διπλαί μία μονοτονική εξάρτηση της λύσης του (2.28) από τις παραμέτρους του προβλήματος.

ΠΑΡΑΔΕΙΓΜΑ 2.9. Να βρεθεί η τιμή του \(y_0 \) για τις οποίες η λύση του προβλήματος αρχικών τιμών

\[
y' - y = 1 + 2 \sin t, \quad y(0) = y_0,
\]

(1) παραμείνει πεπερασμένη καθώς \(t \to \infty \),
(2) είναι περιοδική συνάρτηση του \(t \) και
(3) είναι φραγμένη για κάθε \(t \in \mathbb{R} \).

Πολλαπλασιάζοντας την εξίσωση με τον ολοκληρωτικό παράγοντα

\[
\mu(t) = e^{\int_0^t ds} = e^{-t}
\]

έχουμε

\[
(e^{-t}y)' = e^{-t} + 2e^{-t} \sin t,
\]
και ολοκληρώνοντας

\[e^{-t}y = -e^{-t} + 2 \int e^{-t} \sin t \, dt + c \]
\[= -e^{-t} - e^{-t}(\cos t + \sin t) + c. \]

Έτσι η γενική λύση της εξίσωσης είναι η

\[y = ce^t - (\cos t + \sin t) - 1. \]

Από τη γενική λύση τώρα και την αρχική συνθήκη προκύπτει

\[y_0 = y(0) = c - 1 - 1, \]

απ’ όπου βρίσκουμε \(c = y_0 + 2 \) και αντικαθιστώντας στη γενική λύση έχουμε τελικά

\[y = (y_0 + 2)e^t - (\cos t + \sin t) - 1. \]

Από την έκφραση αυτή του \(y \) προκύπτει ότι η λύση είναι πεπερασμένη καθώς \(t \to \infty \), ή είναι περιοδική συνάρτηση του \(t \), ή είναι φραγμένη για κάθε \(t \in \mathbb{R} \), τότε και μόνον τότε όταν \(y_0 = -2 \).

Παρατήρηση 2.4. Σε διάφορες εφαρμογές συμβαίνει μία από τις, ή και οι δύο, συναρτήσεις \(p, g \) του προβλήματος (2.28) να έχουν άλματα ασυνεχείας στο διάστημα που ορίζονται. Στη περίπτωση αυτή λίνουμε το πρόβλημα σε κάθε υποδιάστημα στο οποίο οι συντελεστές είναι συνεχείς και στη συνέχεια οι επί μέρους λύσεις συναρμόζονται ώστε η συνάρτηση που προκύπτει να είναι συνεχής. Μία τέτοια συνάρτηση δεν είναι συνεχώς διαφορίζυμη σε ολόκληρο το διάστημα κατά συνέπεια δεν είναι λύση με την κλασσική έννοια. Η συνάρτηση αυτή λέγεται **γενικευμένη λύση**. Ας δούμε ένα

Παράδειγμα 2.10. Να βρεθεί η γενικευμένη λύση του προβλήματος

\[y' + y = g(t), \quad y(0) = 0, \]

όπου η συνάρτηση \(g \) δίνεται από τη σχέση

\[g(t) = \begin{cases}
1, & 0 \leq t \leq 1 \\
0, & 1 < t < \infty.
\end{cases} \]

Εδώ η συνάρτηση \(g \) έχει άλμα ασυνεχείας στο \(t = 1 \). Λίνουμε λοιπόν την εξίσωση \(y' + y = g(t) \) στα διαστήματα \((0, 1)\) και \((1, \infty)\). Εαν \(y_- \) είναι η λύση της εξίσωσης στο \((0, 1)\) θα έχουμε διαδοχικά

\[y_-' + y_- = 1 \Rightarrow (y_-e^t)' = e^t \Rightarrow y_-e^t = e^t + c_1 \Rightarrow y_- = 1 + c_1 e^{-t}. \]
ΔΕ. Πρώτης Τάξης

Επειδή \(y(0) = 0 \) θα είναι \(y_-(0) = 0 \), απ’ όπου βρίσκουμε \(c_1 = -1 \) και έτσι
\[
y_+ = 1 - e^{-t}, \quad 0 \leq t < 1.
\]

Εάν τώρα \(y_+ \) είναι η λύση της εξίσωσής στο (1, \(\infty \)) θα έχουμε
\[
y_+ + y_+ = 0 \Rightarrow (y_+ e')' = 0 \Rightarrow y_+ e' = c_2 \Rightarrow y_+ = c_2 e^{-t}.
\]

Συναρμοζόμενα τις λύσεις \(y_- \) και \(y_+ \) στο σημείο \(t = 1 \), ώστε να προκύψει συνεχής γενικευμένη
λύση στο (0, \(\infty \)), έχουμε
\[
\lim_{t \to 1^-} y_-(t) = \lim_{t \to 1^+} y_+(t) \Rightarrow 1 - e^{-1} = c_2 e^{-1} \Rightarrow c_2 = e - 1.
\]

και έτσι τελικά η λύση του προβλήματος αρχικών τιμών είναι
\[
y(t) = \begin{cases}
1 - e^{-t}, & 0 \leq t \leq 1 \\
(e - 1)e^{-t}, & 1 < t < \infty.
\end{cases}
\]

Η λύση \(y(t) \) είναι συνεχής για \(t \geq 0 \) αλλά δεν είναι παραγωγής μπροστά στο \(t = 1 \). Πραγματικά βλέπουμε ότι
\[
y'(t) = \begin{cases}
e^{-t}, & 0 < t < 1 \\
(1 - e)e^{-t}, & 1 < t < \infty
\end{cases}
\]
και κατά συνέπεια οι τελευταίες παράγωγες της \(y \) στο \(t = 1 \) διαφέρουν μεταξύ τους.

Άσκηση 2.3. Να λυθεί το πρόβλημα αρχικών τιμών
\[
y' + p(t)y = 0, \quad y(0) = 1,
\]
όπου
\[
p(t) = \begin{cases}
1, & 0 \leq t \leq 1 \\
2, & 1 < t < \infty.
\end{cases}
\]

2.4 Ακριβείς Εξίσωσεις και Ολοκληρωτικοί Παράγοντες

Υπενθυμίζουμε ότι εάν \(\psi \) είναι μία διαφορική συνάρτηση δύο μεταβλητών και \(y = y(x) \) είναι μία
διαφορική συνάρτηση τέτοια ώστε τα \((x, y(x))\) να ανήκουν στο πεδίο ορισμού της \(\psi \), τότε
\[
\frac{d}{dx} \psi(x, y(x)) = \frac{\partial \psi}{\partial x} + \frac{\partial \psi}{\partial y} y'.
\] (2.35)

Ας θεωρήσουμε τώρα μία διαφορική εξίσωση πρώτης τάξης της μορφής
\[
M(x, y) + N(x, y)y' = 0.
\] (2.36)
και ας υποθέσουμε ότι υπάρχει μία διαφορίσιμη συνάρτηση ψ τέτοια ώστε

\[\frac{\partial \psi}{\partial x} = M, \quad \frac{\partial \psi}{\partial y} = N, \]

(2.37)
tότε από τις (2.35), (2.36), (2.37) επεται ότι

\[\frac{d}{dx} \psi(x, y(x)) = 0. \]

(2.38)
Έτσι η σχέση

\[\psi(x, y(x)) = c, \]

(2.39)
orίζει λύσεις της (2.35) σε πεπλεμένη μορφή.

Ορισμός 2.3. Η διαφορική εξίσωση (2.36) θα λέγεται **ακριβής** εάν υπάρχει συνάρτηση ψ τέτοια ώστε οι σχέσεις (2.37) ικανοποιούνται.

Παράδειγμα 2.11. Να λυθεί η εξίσωση

\[x + 2yy' = 0. \]

Υποθέτουμε ότι υπάρχει συνάρτηση ψ τέτοια ώστε

\[\frac{\partial \psi}{\partial x} = x, \quad \frac{\partial \psi}{\partial y} = 2y. \]

Ολοκληρώνοντας τη πρώτη εξίσωση \(\psi_x = x \) ως προς \(x \) έχουμε

\[\psi(x, y) = \frac{1}{2} x^2 + h(y), \]

όπου \(h(y) \) είναι μία αυθαίρετη συνάρτηση του \(y \) η οποία είναι η σταθερά της ολοκλήρωσης. Παραγωγίζοντας στη συνέχεια τη συνάρτηση \(\psi \) ως προς \(y \) και συγκρίνοντας το αποτέλεσμα με τη δεύτερη εξίσωση \(\psi_y = 2y \) θα πρέπει να είναι

\[h'(y) = 2y, \]

οπότε

\[h(y) = y^2 + c, \]

όπου \(c \) είναι μία σταθερά. Έτσι τελικά

\[\psi(x, y) = \frac{1}{2} x^2 + y^2 + c, \]

και σύμφωνα με την (2.39) η σχέση

\[\frac{1}{2} x^2 + y^2 = C \]

περιέχει τις λύσεις της εξίσωσης οι οποίες, όπως παρατηρούμε, είναι ομόκεντρες ελλείψεις.
Ένα κριτήριο για το κατά πόσο μία εξίσωση της μορφής (2.36) είναι ακριβής μας παρέχει το

Θεώρημα 2.3. Εστώ ότι οι συναρτήσεις \(M \) και \(N \) καθώς και οι πρώτες μερικές παράγωγοι τους είναι συνεχείς σε κάποιο ορθογώνιο \(R \). Τότε η διαφορική εξίσωση

\[
M(x, y) + N(x, y)y' = 0
\]

είναι ακριβής στο \(R \) τότε και μόνο τότε όταν

\[
\frac{\partial M}{\partial y}(x, y) = \frac{\partial N}{\partial x}(x, y) \tag{2.40}
\]

σε κάθε σημείο \((x, y)\) του \(R \).

Στην απόδειξη του θεώρηματος χρειαζόμαστε το

Λήμμα 2.1. Εστώ ότι οι \(f \) και \(\delta f/\delta t \) είναι συνεχείς στο \([a, b] \times [c, d]\) και \(F(t) = \int_a^b f(x, t) \, dx \), τότε η \(F' \) υπάρχει και

\[
F'(t) = \int_a^b \frac{\partial}{\partial t} f(x, t) \, dx.
\]

Απόδειξη. Από την συνέχεια των \(f(x, t) \) και \(f_i(x, t) \) ως προς \(x \), έπειτα ότι τα ολοκληρώματα

\[
\int_a^b f(x, t) \, dx \quad \text{και} \quad \int_a^b f_i(x, t) \, dx
\]

υπάρχουν για κάθε \(t \), κατά συνέπεια η \(F \) ορίζεται και είναι παραγωγήσιμη. Για \(t \in (c, d) \) και \(h \) κοντά στο 0 έχουμε

\[
\left| \frac{F(t + h) - F(t)}{h} - \int_a^b f_i(x, t) \, dx \right| = \left| \int_a^b \frac{f(x, t + h) - f(x, t)}{h} \, dx - \int_a^b f_i(x, t) \, dx \right|
\]

\[
= \left| \int_a^b \left(f_i(x, t + rh) - f_i(x, t) \right) \, dx \right|
\]

από το Θεώρημα της μέσης τιμής, όπου \(0 < r < 1 \)

\[
\leq \int_a^b \left| f_i(x, t + rh) - f_i(x, t) \right| \, dx
\]

\[
\leq (b - a) \max_{a \leq x \leq b} \left| f_i(x, t + rh) - f_i(x, t) \right|.
\]

Από την ομοιόμορφη συνέχεια της \(f_i \) στο \([a, b] \times [c, d]\), έπειτα ότι για δοσμένο \(\epsilon > 0 \) υπάρχει \(\delta \) ώστε

\[
\text{αν} \quad |t - t'| < \delta, \ \text{τότε} \quad |f_i(x, t) - f_i(x, t')| < \frac{\epsilon}{b - a}
\]

gια κάθε \(x \in [a, b] \). Κατά συνέπεια για \(|h| < \delta \), έπειτα ότι

\[
\left| \frac{F(t + h) - F(t)}{h} - \int_a^b f_i(x, t) \, dx \right| < \epsilon
\]

απ' όπου έπειτα το συμπέρασμα.
2.4 Ακριβείς Εξισώσεις και Ολοκληρωτικοί Παράγοντες

Απόδειξη του θεώρηματος. Πρώτα δείχνουμε ότι εάν η εξίσωση είναι ακριβής τότε η σχέση (2.40) ικανοποιείται. Εάν \(\psi \) είναι η συνάρτηση για την οποία \(\psi_x = M \) και \(\psi_y = N \) τότε

\[
\psi_{xy} = M_y, \quad \psi_{yx} = N_x. \tag{2.41}
\]

Επειδή οι συναρτήσεις \(M_x \) και \(N_x \) είναι συνεχείς στο \(R \), επομένως και οι \(\psi_{xy} \) και \(\psi_{yx} \), από γνωστό θεώρημα του διαφορομετρικού λογισμού θα είναι \(\psi_{xy} = \psi_{yx} \). Έτσι η (2.40) προκύπτει από τη τελευταία ισότητα δια μέσο της (2.41). Στη συνέχεια δείχνουμε ότι εάν η (2.40) ισχύει, τότε η εξίσωση είναι ακριβής, υπάρχει διπλάδι συνάρτηση \(\psi \) τέτοια ώστε \(\psi_x = M \) και \(\psi_y = N \). Αν \((x_0, y_0) \) είναι ένα σημείο του ορθογώνιου \(R \), θεωρούμε τη συνάρτηση

\[
\psi(x, y) = \int_{x_0}^x M(s, y) \, ds + \int_{y_0}^y N(x, t) \, dt. \tag{2.42}
\]

Από το Θεμελιώδες Θεώρημα του Απειροστικού Λογισμού έπεται ότι \(\psi_x(x, y) = M(x, y) \), ενώ από το ίδιο θεώρημα και το Λήμμα 2.1 ότι

\[
\psi_y(x, y) = \int_{x_0}^x M_x(s, y) \, ds + N(x_0, y)
\]

\[
= \int_{x_0}^x N_x(s, y) \, ds + N(x_0, y)
\]

\[
= N(x, y) - N(x_0, y) + N(x_0, y) = N(x, y).
\]

Η απόδειξη είναι πλήρης. □

Σημείωση 2.3. Ένας ισοδύναμος τρόπος κατασκευής της συνάρτησης \(\psi \) είναι να εξηγήσει και να εξηγήσει το \(C^1 \) διανυσματικό πεδίο \(F(x, y) = (M, N) \) ορισμένο στο ορθογώνιο \(R \). Τότε η σχέση (2.40) είναι ισοδύναμη με την \(\nabla \times F = 0 \), δηλαδή το \(F \) είναι συντιμητικό πεδίο και επομένως υπάρχει συνάρτηση δυναμικού \(\psi \) ορισμένη στο \(R \) τέτοια ώστε \(F = \nabla \psi \). Εάν \((x_0, y_0) \) και \((x, y) \) είναι σημεία του \(R \) και \(\sigma \) είναι μία \(C^1 \) καμπύλη στο \(R \) τη συνάρτηση \(\psi \) μπορεί να ορισθεί από τη σχέση

\[
\int_{\sigma} \nabla \psi \cdot dr = \psi(x, y) - \psi(x_0, y_0),
\]

δηλαδή το επικαμπύλιο ολοκλήρωμα εξαρτάται μόνο από τα άκρα της καμπύλης. Ετσι η συνάρτηση δυναμικού \(\psi \) μπορεί να ορισθεί από τη σχέση

\[
\psi(x, y) = \int_{(x_0, y_0)}^{(x, y)} M(x, y) \, dx + N(x, y) \, dy, \tag{2.43}
\]

ότοτι η ολοκλήρωση γίνεται επάνω σε οποιαδήποτε \(C^1 \) καμπύλη που συνδέει τα σημεία \((x_0, y_0) \) και \((x, y) \). Η καμπύλη που συνδέει τα σημεία \((x_0, y_0) \) και \((x, y) \) μπορεί να είναι τμηματικά \(C^1 \). Μια τέτοια είναι η καμπύλη που αποτελείται από τα ευθύγραμα τμήματα που συνδέουν διαδοχικά τα...

1Για τα αποτελέσματα του Διανυσματικού Λογισμού που χρησιμοποιούμε παραπέμπουμε σε οποιοδήποτε βιβλίο Διανυσματικού Λογισμού, για παράδειγμα: J. Marsden, A. Tromba, Διανυσματικός Λογισμός, 9η έκδοση (μετάφραση της 3ης έκδοσης του προτοτύπου), Πανεπιστημιακές Εκδόσεις Κρήτης, 2007.
σημεία \((x_0, y_0), (x_0, y)\) και \((x, y)\) η οποία περιέχεται στο εσωτερικό του \(R\). Για τα καμπύλη αυτή η συνάρτηση \(\psi\) στην (2.43) γίνεται (γιατί):

\[
\psi(x, y) = \int_{x_0}^{x} M(s, y) \, ds + \int_{y_0}^{y} N(x_0, s) \, ds.
\]
(2.44)

Αν τώρα θεωρήσουμε τις καμπύλες που αποτελείται από τα ευθύγραμμα τμήματα που συνδέουν διαδοχικά τα σημεία \((x_0, y_0), (x, y_0)\) και \((x, y)\), τότε θα είναι

\[
\psi(x, y) = \int_{x_0}^{x} M(s, y_0) \, ds + \int_{y_0}^{y} N(x_0, s) \, ds.
\]
(2.45)

Παρατήρηση 2.5. Το σύνολο \(R\) στο Θεώρημα δεν είναι απαραίτητο να είναι ορθογώνιο, αλλά οποιοδήποτε απλά συνεκτικό χωρίο, δηλαδή ένα ανοιχτό σύνολο στο επίπεδο χωρίς τρύπες.

Παράδειγμα 2.12.

Να λυθεί η εξίσωση

\[
2xy - \sec^2 x + (x^2 + 2y)y' = 0.
\]

Εδώ είναι \(M(x, y) = 2xy - \sec^2 x\) και \(N(x, y) = x^2 + 2y\). Επειδή

\[
\frac{\partial M}{\partial y} = 2x = \frac{\partial N}{\partial x},
\]

η διαφορική εξίσωση είναι ακυρική, άρα υπάρχει συνάρτηση \(\psi\) η οποία ικανοποιεί τις σχέσεις

\[
\frac{\partial \psi}{\partial x} = 2xy - \sec^2 x, \quad \frac{\partial \psi}{\partial y} = x^2 + 2y,
\]
(2.46)

και η διαφορική εξίσωση γράφεται στη μορφή (2.38). Έτσι η λύση της δίνεται όπως στην (2.39). Ολοκληρώνοντας τη πρώτη εξίσωση στην (2.46) ως προς \(x\) βρίσκουμε

\[
\psi(x, y) = x^2y - \tan x + h(y),
\]

όπου \(h\) μία άγνωστη συνάρτηση του \(y\). Παραγωγίζοντας τη συνάρτηση \(\psi\) ως προς \(y\) και συγκρίνοντας το αποτέλεσμα με τη δεύτερη εξίσωση στην (2.46) θα είναι

\[
\frac{\partial \psi}{\partial y} = x^2 + h'(y) = x^2 + 2y,
\]

απ’ όπου προκύπτει ότι \(h(y) = y^2 + c\), όπου \(c\) είναι η σταθερά της ολοκλήρωσης, έτσι

\[
\psi(x, y) = x^2y - \tan x + y^2 + c
\]

και επομένως η σχέση

\[
x^2y - \tan x + y^2 = C
\]

εκφράζει τη λύση της εξίσωσης σε πεπληγμένη μορφή.
2.4 Ακριβείς Εξισώσεις και Ολοκληρωτικοί Παράγοντες

Οι συναρτήσεις M, N καθώς και οι μερικές παράγοντοι τους είναι συνεχείς, για παράδειγμα, στο ορθογώνιο $-\pi/2 < x < \pi/2$, $-a < y < a$, όπου a είναι ένας πραγματικός αριθμός. Έτσι για $(x_0, y_0) = (0, 0)$, από την (2.44) θα έχουμε

$$
\psi(x, y) = \int_0^x (2sy - \sec^2 s) \, ds + \int_0^y 2s \, ds
$$

$$
= \left[s^2y - \tan s \right]_0^x + \left[s^2 \right]_0^y
$$

$$
= x^2y - \tan x + y^2
$$

η οποία συμπροέει με τη ψ που βρίσκεται για $c = 0$.

Παράδειγμα 2.13. Να λυθεί η εξίσωση

$$
y^2 - 6xy + (3xy - 6x^2)y' = 0.\]

Εδώ είναι $M(x, y) = y^2 - 6xy$ και $N(x, y) = 3xy - 6x^2$, επομένως

$$
\frac{\partial M}{\partial y} = 2y - 6x \neq 3y - 12x = \frac{\partial N}{\partial x}.
$$

Άρα η διαφορική εξίσωση δεν είναι ακριβής. Πρέπει να προσπαθήσουμε να βρούμε μία συνάρτηση ψ με $\psi_x = y^2 - 6xy$ και $\psi_y = 3xy - 6x^2$ θα έχουμε ολοκληρώνοντας ως προς x και ως προς y αντίστοιχα

$$
\psi(x, y) = xy^2 - 3x^2y + h_1(y),
$$

$$
\psi(x, y) = \frac{3}{2}xy^2 - 6x^2y + h_2(x),
$$

όπου h_1 και h_2 είναι κατάλληλες συναρτήσεις που πρέπει να προσδιοριστούν. Από τις δύο αυτές σχέσεις εξισώνοντας καταλήγουμε στο

$$
h_2(y) - h_1(y) = 3x^2y - \frac{1}{2}xy^2,
$$

κατά συνέπεια τέτοιες συναρτήσεις h_1 και h_2 δεν υπάρχουν, όποτε και η συνάρτηση ψ δεν μπορεί να υπάρχει.

Ας μιμηθούμε όμως τη τεχνική του ολοκληρωτικού παράγοντα που εφαρμόστηκε στις γραμμικές εξισώσεις, και ας πολλαπλασιάσουμε την αρχική εξίσωση με μία συνάρτηση $\mu = \mu(x, y)$, η οποία πρέπει να προσδιορισθεί, με απώτερο σκοπό να εξίσωσε

$$
\mu(y^2 - 6xy) + \mu(3xy - 6x^2)y' = 0
$$

που προκύπτει να είναι ακριβής. Για να συμβαίνει αυτό θα πρέπει να ισχύει

$$
\frac{\partial}{\partial y}(\mu(y^2 - 6xy)) = \frac{\partial}{\partial x}(\mu(3xy - 6x^2)),
$$

μια συνάρτηση μ που πρέπει να είναι συνεχής.
ή κάνοντας παράξεις
\[\mu_y(y^2 - 6xy) + \mu(2y - 6x) = \mu_x(3xy - 6x^2) + \mu(3y - 12x), \]
απ' όπου έπεται η μερικά διαφορική εξίσωση
\[\mu_y(y - 6x)y - \mu(y - 6x) - \mu_x(y - 2x)3x = 0. \]
Αν τώρα επιλέξουμε \(\mu_x = 0 \) (γιατί), είναι διπλαδή \(\mu = \mu(y) \), τότε η τελευταία εξίσωση γίνεται
\[
\frac{d\mu}{dy} y(y - 6x) = \mu(y - 6x) \Leftrightarrow \left(y \frac{d\mu}{dy} - \mu \right)(y - 6x) = 0,
\]
η οποία ικανοποιείται για \(\mu = y \). Βλέπουμε λοιπόν ότι πολλαπλασιάζοντας τη μη ακριβή αρχική εξίσωση με \(y \) η εξίσωση που προκύπτει
\[
y^3 - 6xy^2 + (3xy^2 - 6x^2y)y' = 0. \tag{2.47}
\]
eίναι ακριβής. Στη συνέχεια επιλύουμε την τελευταία εξίσωση. Θέλουμε μία συνάρτηση \(\psi = \psi(x, y) \) τέτοια ώστε
\[
\psi_x = y^3 - 6xy^2, \quad \psi_y = 3xy^2 - 6x^2y.
\]
Ολοκληρώνοντας τη πρώτη εξίσωση βρίσκουμε
\[
\psi = xy^3 - 3x^2y^2 + h(y),
\]
απ' όπου παραγωγιζοντας ως προς \(y \) και συγκρίνοντας το αποτέλεσμά με τη δεύτερη εξίσωση έχουμε
\[
3xy^2 - 6x^2y + h'(y) = 3xy^2 - 6x^2y,
\]
απ' την οποία προκύπτει ότι \(h'(y) = 0 \), δηλαδή \(h(y) = c = \text{σταθερά} \). Έτσι είναι
\[
\psi(x, y) = xy^3 - 3x^2y^2 + c,
\]
και \(n \tag{2.47} \) γράφεται \(d\psi = 0 \), οπότε \(\psi = C \) και τελικά \(n \)
\[
xy^3 - 3x^2y^2 = k
\]
με \(k \) μία σταθερά, είναι \(n \) λύσι της \tag{2.47} και επομένως και της αρχικής.

Ορισμός 2.4. Ένας ολοκληρωτικός παράγοντας για τη διαφορική εξίσωση
\[
M(x, y) + N(x, y)y' = 0
\]
eίναι μία μη μπενική συνάρτηση \(\mu = \mu(x, y) \) τέτοια ώστε η εξίσωση
\[
\mu M(x, y) + \mu N(x, y)y' = 0
\]
2.4 Ακριβείς Εξισώσεις και Ολοκληρωτικοί Παράγοντες

είναι ακριβής.

Παράδειγμα 2.14. Θεωρούμε την τυπική γραμμική εξίσωση

\[y' + p(x)y = g(x). \]

Η εξίσωση δεν είναι ακριβής. Πράγματι γράφοντας τη στη μορφή

\[p(x)y - g(x) + y' = 0 \]

βλέπουμε ότι \(M(x,y) = p(x)y - g(x) \) και \(N(x,y) = 1 \), οπότε \(M_y = p(x) \) ενώ \(N_x = 0 \). Πολλαπλασιάζοντας ωστόσο με τον συνήθη ολοκληρωτικό παράγοντα \(\mu(x) = \exp(\int p(x) \, dx) = e^{P(x)} \) παίρνουμε την εξίσωση

\[e^{P(x)}(p(x)y - g(x)) + e^{P(x)}y' = 0 \] (2.48)

για την οποία ισχύει ότι

\[\frac{\partial}{\partial y} e^{P(x)}(p(x)y - g(x)) = e^{P(x)}p(x) = \frac{\partial}{\partial x} e^{P(x)} \]

αφού \(P' = p \), κατά συνέπεια η εξίσωση (2.48) είναι ακριβής. Έτσι τη (2.48) είναι για κάτι παράγοντα συνόρτηση \(\psi(x,y) \) η παράγοντος

\[\frac{d\psi}{dx} = \psi_x + \psi_y \frac{dy}{dx} = 0. \]

Έτσι

\[\psi_y = e^{P(x)} \Rightarrow \psi(x,y) = e^{P(x)}y + h(x) \Rightarrow \psi_x = e^{P(x)}p(x)y + h'(x) \]

απ’ όπου συγκρίνοντας με την (2.48) βρισκόμαστε ότι

\[h(x) = -\int e^{P(x)}g(x) \, dx. \]

Επομένως η λύση της εξίσωσης δίνεται από τη σχέση \(\psi = c \), ισοδύναμα

\[e^{P(x)}y - \int e^{P(x)}g(x) \, dx = c \]

από την οποία έπεται τη γνωστή αναπαράσταση της λύσης της γραμμικής εξίσωσης

\[y = e^{-P(x)} \int e^{P(x)}g(x) \, dx + ce^{-P(x)}. \]

Παρατήρηση 2.6. Η εύρεση ενός ολοκληρωτικού παράγοντα είναι σε αρκετές περιπτώσεις ένα δύσκολο πρόβλημα. Στη πράξη πρέπει να λυθεί η μερική διαφορική εξίσωση

\[(\mu M)_y = (\mu N)_x\]
34 Α.Ε. Πρώτης Τάξης

ή μετά από πράξεις, κ

\[\mu_y M - \mu_x N = \mu (N_x - M_x). \quad (2.49) \]

Στη συνέχεια παρουσιάζουμε δύο περιπτώσεις όταν η συνάρτηση \(\mu \) μπορεί να προσδιοριστεί σχετικά εύκολα. Η εξίσωση (2.49) μπορεί να γραφεί

\[\mu_y - \mu_x \frac{N}{M} = \mu \frac{N_x - M_y}{M}. \quad (2.50) \]

Εάν το κλάσμα στο δεξίο μέλος της (2.50) είναι συνάρτηση μόνο του \(y \), είναι διπλαδή

\[\frac{N_x - M_y}{M} = g(y), \]

μπορούμε να επιλέξουμε \(\mu_x = 0 \), οπότε η (2.50) μετατρέπεται στην

\[\frac{d\mu}{dy} = \mu \frac{N_x - M_y}{M} = \mu g(y), \]

που είναι μία γραμμική εξίσωση χωρίζων μεταβλητών. Λύνοντας την βρίσκουμε μία λύση

\[\ln |\mu(y)| = \int g(y) dy \Rightarrow \mu(y) = e^{\int g(y) dy}. \]

Κατά τον ίδιο τρόπο γράφοντας την (2.49) σαν

\[\frac{\mu_y M}{N} - \mu_x \frac{N_x - M_y}{N} = \mu \quad (2.51) \]

και εάν το κλάσμα στο δεξίο μέλος της (2.51) είναι συνάρτηση μόνο του \(x \) μπορούμε να επιλέξουμε \(\mu_y = 0 \), και η συνέχεια είναι παρόμοια με τη προηγούμενη περίπτωση.

Άσκηση 2.4. Να λύσει τη διαφορική εξίσωση

\[2x^2 + y + (x^2y - x)y' = 0. \]

Υπολειπόντας \(\Delta \).

2.5 Ομοιογενείς Εξισώσεις

Μία διαφορική εξίσωση πρώτης τάξης

\[y' = f(x, y) \quad (2.52) \]

λέγεται ομοιογενής εάν η συνάρτηση \(f \) εξαρτάται μόνο από το λόγο \(y/x \) ή \(x/y \), ισχύει διπλαδή

\[f(x, y) = F \left(\frac{y}{x} \right) \quad (2.53) \]

Υποθέτοντας τώρα ότι η (2.52) είναι ομοιογενής και ορίζοντας

\[y = xv, \quad (2.54) \]
όπου \(v = v(x) \) είναι μία άγνωστη συνάρτηση, έχουμε
\[
\frac{dy}{dx} = v + x \frac{dv}{dx}.
\]

επομένως η ομοιογενής εξίσωση (2.52) μετασχηματίζεται στην
\[
v + x \frac{dv}{dx} = F(v),
\]

ή τελικά
\[
\frac{dv}{dx} = \frac{F(v) - v}{x}.
\]

(2.55)

Βλέπουμε δηλαδή ότι η αλλαγή μεταβλητής \(y = x \), μετασχηματίζει την ομοιογενή εξίσωση σε μία εξίσωση χωρίζομενων μεταβλητών. Επιλύοντας τώρα την (2.55), η λύση της ομοιογενούς εξίσωσης προκύπτει από την λύση της (2.55).

Παράδειγμα 2.15. Να λύσει την εξίσωση

\[
\frac{dy}{dx} = \frac{y^2 - xy}{x^2}.
\]

(2.56)

Η εξίσωση γράφεται στη μορφή
\[
\frac{dy}{dx} = \left(\frac{y}{x}\right)^2 - \frac{y}{x},
\]

άρα είναι ομοιογενής. Για \(y = x \) έχουμε
\[
xv' + v = v^2 - v,
\]

όπου \(v' = dv/dx \), ή
\[
xv' = v(v - 2).
\]

(2.57)

Παρατηρούμε ότι οι \(v = 0 \) και \(v = 2 \) είναι λύσεις της (2.57) και αντιστοιχούν στις \(y = 0 \) και \(y = 2x \) οι οποίες είναι λύσεις της (2.56). Αν τώρα \(v \neq 0,2 \) (2.57) γίνεται
\[
\frac{v'}{v(v - 2)} = \frac{1}{x}.
\]

Αναλύοντας σε απλά κλάσματα και ολοκληρώνοντας έχουμε
\[
\frac{1}{2} \int \left(\frac{1}{v - 2} - \frac{1}{v}\right)dv = \int \frac{dx}{x} \Rightarrow |v - 2| = \ln|v| + \ln|c| = 2 \ln|x| + \ln c,
\]

με \(\ln c \) να είναι η σταθερά ολοκλήρωσης. Έτσι προκύπτει ότι
\[
\frac{v - 2}{v} = Cx^2 \Rightarrow v = \frac{2}{1 - Cx^2} \Rightarrow \frac{y}{x} = \frac{2}{1 - Cx^2}
\]

με \(C \) να είναι μία νέα σταθερά. Έτσι τελικά μία οικογένεια λύσεων της (2.56) είναι η
\[
y = \frac{2x}{1 - Cx^2}.
\]

(2.58)

Παρατηρούμε ότι η λύση \(y = 2x \) προκύπτει από την (2.58) για \(C = 0 \), ενώ η \(y = 0 \) δεν περιέχεται στην οικογένεια λύσεων (2.58).
Άσκηση 2.5. Να δειχθεί ότι η εξίσωση \(y' = f(x, y) \) είναι ομοιογενής τότε και μόνο τότε όταν η συνάρτηση \(f \) είναι τέτοια ώστε
\[
f(x, \lambda x) = f(1, \lambda),
\]
όπου \(\lambda \) είναι ένας πραγματικός αριθμός.

Άσκηση 2.6. Μία σημαντική κατηγορία ομοιογενών διαφορικών εξίσωσεων αποτελούν οι κλασματικές γραμμικές εξίσωσεις
\[
\frac{dy}{dx} = \frac{ax + by}{cx + dy}, \quad ad - bc \neq 0,
\]
όπου \(a, b, c, d \) είναι δοσμένοι πραγματικοί αριθμοί.

(1) Να δειχθεί ότι οι λύσεις της (2.60) δίνονται σε πεπλεγμένη μορφή από τη σχέση
\[
x = C \exp \left(\int F(v) \, dv \right),
\]
όπου \(C \) είναι μία σταθερά, \(v = y/x \) και \(F \) μία προσδιορισμένη συνάρτηση.

(2) Να βρεθούν οι λύσεις της εξίσωσης
\[
\frac{dy}{dx} = \frac{ax + by + r}{cx + dy + s}, \quad ad - bc \neq 0,
\]
όπου \(a, b, c, d, r, s \) είναι δοσμένοι πραγματικοί αριθμοί.

Υπολείψη: Δείτε ότι υπάρχουν σταθερές \(\lambda, \mu \) τέτοιες ώστε
\[
ax + by + r = \frac{a(x - \lambda) + b(y - \mu)}{c(x - \lambda) + d(y - \mu)}.
\]

Παρατήρηση 2.7. Μία συνάρτηση \(f = f(x, y) \) λέγεται ομοιογενής βαθμού \(k \) εάν είναι τέτοια ώστε
\[
f(tx, ty) = t^k f(x, y),
\]
για όλα τα \((x, y)\) του πεδίου ορισμού της. Για παράδειγμα οι συναρτήσεις
\[
f_1(x, y) = x^3 + 2x^2y + y^3, \quad f_2(x, y) = \frac{2xy + x^2}{x + y}
\]
ικανοποιούν αντίστοιχα τις σχέσεις
\[
f_1(tx, ty) = t^3 f_1(x, y), \quad f_2(tx, ty) = tf_2(x, y)
\]
άρα είναι ομοιογενείς βαθμού 3 και 1 αντίστοιχα. Υπό αυτό την έννοια η συνάρτηση \(f \) στη (2.58) είναι ομοιογενής βαθμού 0 γιατί
\[
f(x, \lambda x) = x^0 f(1, \lambda) = f(1, \lambda).
\]

Άσκηση 2.7. (Euler) Να δειχθεί ότι εάν η συνάρτηση \(f = f(x, y) \) είναι ομοιογενής βαθμού \(k \), τότε
\[
x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} = kf.
\]
2.6 Εξισώσεις Bernoulli

Ορισμός 2.5. Η διαφορική εξίσωση

\[M(x, y) + N(x, y)y' = 0. \]

θα λέγεται ομοιογενής εάν οι συναρτήσεις \(M \) και \(N \) είναι ομοιογενείς συναρτήσεις του ίδιου βαθμού.

Άσκηση 2.8. Να δειχθεί ότι οι δύο ορισμοί της ομοιογενούς διαφορικής εξίσωσης είναι ισοδύναμοι.

Άσκηση 2.9. Εάν η εξίσωση

\[M(x, y) + N(x, y)y' = 0 \]

είναι ομοιογενής να δειχθεί ότι η συνάρτηση

\[\mu(x, y) = \frac{1}{xM(x, y) + yN(x, y)} \]

eίναι ένας ολοκληρωτικός παράγοντας σε κάθε περιοχή του επιπέδου στην οποία ο παρανομαστής είναι διάφορος του μπενότης.

Άσκηση 2.10. Έστω ότι η εξίσωση

\[M(x, y) + N(x, y)y' = 0 \]

eίναι ομοιογενής και ακριβής και ας υποθέσουμε ότι η \(xM(x, y) + yN(x, y) \) δεν είναι σταθερά. Να δειχθεί ότι η λύση της \(M(x, y) + N(x, y)y' = 0 \) ορίζεται έμπλεκτικά από τη σχέση

\[xM(x, y) + yN(x, y) = C, \]

όπου \(C \) είναι μία σταθερά.

Άσκηση 2.11. Έστω ότι η εξίσωση

\[M(x, y) + N(x, y)y' = 0 \]

eίναι ομοιογενής. Να δειχθεί ότι ο μετασχηματισμός (πολλικές συντεταγμένες)

\[x = r \cos \theta, \quad y = r \sin \theta \]

μετατρέπει την αρχική εξίσωση σε μία εξίσωση χωρίζομένων μεταβλητών.

2.6 Εξισώσεις Bernoulli

Οι Εξισώσεις Bernoulli είναι της μορφής

\[y' + p(t)y = q(t)y^\rho, \quad (2.61) \]
όπου α είναι ένας πραγματικός αριθμός. Παρατηρούμε ότι εάν α = 0,1 τότε (2.61) είναι μία γραμμική εξίσωση, η οποία στη περίπτωση α = 1 είναι επιπλέον χωρίζομένων μεταβλητών. Παρατηρούμε επίσης ότι για α > 0 ν y = 0 είναι μία λύση της (2.61). Στη συνέχεια υποθέτουμε ότι α ≠ 0,1. εάν τώρα y ≠ 0 (2.61) γράφεται

\[y^{-\alpha}y' + p(t)y^{1-\alpha} = q(t), \]

και η αλλαγή μεταβλητής

\[v = y^{1-\alpha}, \] (2.62)

οδηγεί μετά από πράξεις στη γραμμική εξίσωση

\[v' + (1 - \alpha)p(t)v = (1 - \alpha)q(t). \] (2.63)

Με χρήση λοιπόν του μετασχηματισμού (2.62) μία εξίσωση Bernoulli ανάγεται σε μία γραμμική εξίσωση.

Παράδειγμα 2.16. Να λυθεί η εξίσωση

\[t^2y' + 2ty - y^3 = 0, \quad t > 0. \]

Γράφοντας τη διασμένη εξίσωση στη μορφή

\[y' + \frac{2}{t}y = \frac{1}{t^2}y^3, \]

dιαπιστώνεται ότι είναι μία εξίσωση Bernoulli με α = 3, και ότι η y = 0 είναι μία λύση της. Αν τώρα y ≠ 0 γράφοντας την εξίσωση σαν

\[y^{-3}y' + \frac{2}{t}y^{-2} = \frac{1}{t^2}, \]

και θέτοντας, όπως στην (2.62), v = y^{1-3} = y^{-2} προκύπτει η γραμμική εξίσωση

\[v' + \frac{-4}{t}v = \frac{-2}{t^2}, \quad t > 0. \]

Πολλαπλασιάζοντας τώρα με τη συνάρτηση (ολοκληρωτικό παράγοντα)

\[\mu(t) = \exp\left(\int_1^t -\frac{4}{s} \, ds\right) = \frac{1}{t^2}, \]

έχουμε την εξίσωση

\[\left(\frac{1}{t^2}v\right)' = -\frac{2}{t^5}, \]

tης οποίας η γενική λύση είναι

\[v = \frac{2}{5t} + ct^4, \]

όπου c είναι μία αυθαίρετη σταθερά. Επιστρέφοντας στην αρχική μεταβλητή y διά μέσου της

\[y = \pm1/\sqrt{v} \]

τελικά έχουμε τη γενική λύση της αρχικής εξίσωσης να είναι η

\[y = \pm\sqrt{\frac{5t}{2 + 5ct^8}}. \]
2.7 Εξισώσεις Riccati

Άσκηση 2.12. Για την εξίσωση Bernoulli

\[p(t)y - q(t)y^α + y' = 0 \]

να βρεθεί ένας ολοκληρωτικός παράγοντας στη μορφή

\[\mu(x, y) = f(x)y^{-α}, \]

ότε \(f \) συνάρτηση που πρέπει να προσδιοριστεί.

Άσκηση 2.13. Να προσδιοριστούν όλες οι συναρτήσεις \(f : [0, a] \rightarrow \mathbb{R}, \ a > 0 \), των οποίων η μέση τιμή σε κάθε διάστημα \([0, x], x > 0\), είναι ίση με το γεωμετρικό μέσο των \(f(0) \) και \(f(x) \). Το πρόβλημα αυτό εμφανίστηκε στο W.L.Putnam Mathematics Competition το 1962.

Υπολειπεί: Οι ξημούμενες συναρτήσεις \(f \) ικανοποιούν τη σχέση

\[\frac{1}{x} \int_0^x f(s) \, ds = \sqrt{f(0)f(x)}. \]

Διακρίνετε τις περιπτώσεις \(f(0) = 0 \) και \(f(0) \neq 0 \).

2.7 Εξισώσεις Riccati

Μία διαφορική εξίσωση της μορφής

\[y' = p(t)y^2 + q(t)y + g(t), \tag{2.64} \]

λέγεται εξίσωση Riccati. Η εξίσωση είναι μια γραμμική και επιπλέον δεν υπάρχει τύπος για τη λύση της. Εάν όμως γνωρίζουμε μία ειδική λύση της έστω \(y_1 \) τότε η αλλαγή μεταβλητής

\[y = y_1 + \frac{1}{v}, \tag{2.65} \]

μετασχηματίζει την εξίσωση Riccati σε μία γραμμική εξίσωση πρώτης τάξης για την άγνωστη συνάρτηση \(v \). Πρόγραμμα εάν \(y \) της μορφής (2.65) είναι λύση της (2.64) τότε μπορεί να δειχθεί ότι \(v \) ικανοποιεί την εξίσωση

\[v' = -(2py_1 + g)v - p. \tag{2.66} \]

Άσκηση 2.14. Να δειχθεί ότι \(v \) που ορίζεται στην (2.65) ικανοποιεί την εξίσωση (2.66).

Άσκηση 2.15. Να δειχθεί ότι εάν \(y_1 \) είναι μία λύση της (2.64) τότε η αλλαγή μεταβλητής

\[y = y_1 + v, \tag{2.67} \]

μετασχηματίζει την εξίσωση Riccati σε μία εξίσωση Bernoulli για την άγνωστη συνάρτηση \(v \).
Παράδειγμα 2.17. Να λυθεί η εξίσωση
\[y' = \frac{1}{t}y^2 + \frac{1}{t}y - \frac{2}{t}. \] (2.68)

Γράφοντας την εξίσωση σαν
\[y' = \frac{1}{t}(y^2 + y - 2) = \frac{1}{t}(y - 1)(y + 2) \]

βλέπουμε ότι οι σταθερές \(y = 1 \) και \(y = -2 \) είναι λύσεις της εξίσωσης. Αν τώρα \(y_1 = 1 \) και υποθέτοντας ότι μία λύση της (2.68) είναι της μορφής \(y = 1 + 1/v \) έχουμε \(y' = -v'/v^2 \), οπότε αντικαθιστώντας στην αρχική εξίσωση προκύπτει
\[-\frac{v'}{v^2} = \frac{1}{t} \left(1 + \frac{1}{v} \right)^2 + \frac{1}{t} \left(1 + \frac{1}{v} \right) - \frac{2}{t}, \]

απ' όπου μετά από πράξεις καταλήγουμε στην
\[v' + \frac{3}{t}v = -\frac{1}{t}. \] (2.69)

Πολλαπλασιάζοντας τώρα με τη συνάρτηση \(t^3 \) (ολοκληρωτικό παράγοντα) και λύνοντας την εξίσωση βρίσκουμε
\[v = \frac{c}{t^3} - \frac{1}{3}, \]

όπου \(c \) είναι μία σταθερά. Έτσι η λύση \(y = 1 + 1/v \) της αρχικής εξίσωσης είναι
\[y = 1 + \frac{1}{c/t^3 - 1/3} = \frac{C + 2t^3}{C - t^3}, \]

όπου \(C = 3c \) είναι μία ανθείρετη σταθερά. Παρατηρούμε ότι για \(C = 0 \) προκύπτει η λύση \(y = -2 \), ενώ αντίθετα η \(y = 1 \) δεν απορρέει απ' τη (2.69) για κάποια τιμή της παραμέτρου \(C \). Σημειώνουμε ότι τόσο \(t_1 \) (2.68) όσο και \(n_1 \) (2.69) είναι και εξισώσεις χορηγούμενων μεταβλητών.

Παράδειγμα 2.18. Να λυθεί η εξίσωση
\[y' = \frac{1}{t}y^2 + \frac{t - 1}{t}y - 1. \]

Η εξίσωση γράφεται
\[y' = \frac{1}{t}y^2 + (t - 1)y - t = \frac{1}{t}(y - 1)(y + t). \]

Διαλέγοντας σαν \(y_1 \) την \(y = 1 \) εργαζόμαστε όπως στο Παράδειγμα 2.17.
Παράδειγμα 2.19. Να λυθεί η εξίσωση

\[y' = y^2 - 2ty + t^2 + 1. \]

Η εξίσωση γράφεται

\[(y-t)' = (y-t)^2, \]

οπότε \(y = t \) είναι μία λύση της. Ορίζοντας \(y = t + 1/v \) η εξίσωση μετασχηματίζεται στην

\[-\frac{v'}{v^2} = \frac{1}{v^2} \Rightarrow v' = -1. \]

Κατά συνέπεια

\[v = c - t, \]

οπότε τελικά

\[y = t + \frac{1}{c-t} = \frac{1+ct-t^2}{c-t}. \]

Σημειώνουμε ότι η αρχική εξίσωση είναι χωριζόμενων μεταβλητών και σαν τέτοια θα μπορούσε (ευκολότερα) να λυθεί με τον αντίστοιχο τρόπο.

Παράδειγμα 2.20. Να λυθεί το πρόβλημα αρχικών τιμών

\[y' = y^2 + \frac{1}{t}y - \frac{3}{t^2}, \quad y(1) = 0. \tag{2.70} \]

Η έκφραση στο δεξιό μέλος της εξίσωσης υπαγορεύει να δοκιμάσουμε λύσεις της μορφής \(y = at^k \) (γιατί). Αντικαθιστώντας στην εξίσωση έχουμε

\[ak^{k-1} = a^2 t^{2k} + at^{k-1} - 3t^{-2} \Rightarrow a(k-1)t^{k-1} = a^2 t^{2k} - 3t^{-2}. \tag{2.71} \]

Στη τελευταία σχέση παρατηρούμε ότι οι εξισώσεις

\[k - 1 = 2k = -2 \]

έχουν λύση την \(k = -1 \). Έτσι \(n (2.71) \) ισοδύναμει με την

\[a^2 + 2a - 3 = 0 \]

tης οποίας οι λύσεις είναι \(a = 1 \) και \(a = -3 \). Επομένως δύο ειδικές λύσεις της εξίσωσης στη (2.70) είναι \(y_1 = \frac{1}{t}, \quad y_2 = \frac{-3}{t} \).

Θέτοντας

\[y = \frac{1}{t} + \frac{1}{v}, \tag{2.72} \]
και αντικαθιστώντας στην αρχική εξίσωση θα έχουμε διαδοχικά

\[-\frac{1}{t^2} - \frac{v'}{\sqrt{v^2}} = \frac{1}{t} + \frac{1}{\sqrt{4v^2 + 1}} + \frac{1}{t} + \frac{1}{\sqrt{4v^2 + 1}} - \frac{3}{t^2} \Rightarrow \frac{v'}{\sqrt{v^2}} + \frac{1}{\sqrt{4v^2 + 1}} = 0 \Rightarrow v' + \frac{3}{t}v = -1\]

Πολλαπλασιάζοντας με τον ολοκληρωτικό παράγοντα \(t^3\) επιλύουμε την εξίσωση και βρίσκουμε

\[t^3v' + 3t^2v = -t^3 \Rightarrow (t^3v)' = -t^3 \Rightarrow t^3v = -\frac{1}{4}t^4 + \frac{c}{4}\]

\[v = \frac{c - r^4}{4r^3}.\]

Έτσι από την (2.72) έχουμε ότι η λύση της εξίσωσης στη (2.70) είναι

\[y = \frac{1}{t} + \frac{4r^3}{c - r^4}.\]

Η αρχική συνθήκη ικανοποιείται εάν

\[y(1) = 1 + \frac{4}{c - 1} = 0,\]

από την οποία βρίσκουμε \(c = -3\). Η λύση λοιπόν του προβλήματος αρχικών τιμών (2.70) είναι

\[y = \frac{1}{t} - \frac{4r^3}{3 + r^4}.\]

Παράδειγμα 2.21.

Να βρεθεί ένας ολοκληρωτικός παράγοντας για την εξίσωση

\[y' = p(x)y^2 + q(x)y,\]

tης μορφής \(\mu(x, y) = f(x)y^{-2}\).

Η εξίσωση είναι τύπου Riccati, αλλά και Bernoulli. Πολλαπλασιάζοντας λοιπόν με \(\mu(x, y)\), θα έχουμε

\[-\mu(x, y)[p(x)y^2 + q(x)y] + \mu(x, y)y' = 0,\]

ή ισοδύναμα

\[-f(x)p(x) - f(x)q(x)y^{-1} + f(x)y^{-2}y' = 0.\]

Για να είναι η εξίσωση ακριβής θα πρέπει να ισχύει (γιατί;) \(f(x)q(x)y^{-2} = f'(x)y^{-2}\),

απ' όπου έπεται ότι η \(f\) ικανοποιεί την γραμμική αλλά και χωριζομένων μεταβλητών εξίσωση

\[f'(x) = f(x)q(x),\]
επομένως \(f(x) = \exp \int q(x) \, dx \). Έτσι ένας ολοκληρωτικός παράγοντας στη ζιτούμενη μορφή θα δίνεται από τη σχέση

\[
\mu(x,y) = \frac{1}{y^2}e^{\int q(x) \, dx}.
\]

\[\text{Ασκήση 2.16.} \] Εάν \(y_1 \) είναι μία λύση της εξίσωσης Riccati \(y' = p(x)y^2 + q(x)y + g(x) \), να δειχθεί ότι ένας ολοκληρωτικός παράγοντας για την εξίσωση δίνεται από τη σχέση

\[
\mu(x,y) = \frac{1}{(y - y_1)^2}e^{\int (2p(x)y_1 + q(x)) \, dx}.
\]

2.8 Εξίσωσεις Clairaut και Lagrange

Στη παράγραφο αυτή θεωρούμε δύο ειδικές περιπτώσεις μίας κατηγορίας διαφορικών εξισώσεων πρώτης τάξης της γενικώς μορφής

\[
y = f(x, y'),
\]

οπου \(f \) είναι μία συνεχώς διαφορίσιμη συνάρτηση (διπλάδι \(C^1 \)).

2.8.1 Εξίσωσεις Clairaut

Οι εξίσωσεις αυτές είναι της ειδικής μορφής

\[
y = xy' + g(y').
\]

Για την επίλυση της (2.74) αφού θέσουμε \(y' = p = p(x) \) και παραγωγίσουμε ως προς \(x \) την εξίσωση που προκύπτει \(y = xp + g(p) \), (2.75)

θα έχουμε

\[
y' = p = p + xp' + \frac{dg}{dp} p' \Rightarrow [x + g'(p)]p' = 0.
\]

1. Εάν \(p' = 0 \) \(\Rightarrow \) \(p = y' = c, \)

όπου \(c \) είναι μία σταθερά, τότε η λύση της (2.74), όπως προκύπτει από την (2.75), είναι η μονοπαραμετρική οικογένεια ευθειών

\[
y = cx + g(c).
\]

2. Εάν \(x + g'(p) = 0 \)
και η τελευταία εξίσωση μπορεί να λυθεί όστο p = p(x), τότε μία άλλη λύση της (2.74), όπως διαβάζουμε από την (2.75), είναι που

\[y = xp(x) + g(p(x)). \]

(2.77)

Διαφορετικά η δεύτερη λύση δίνεται παραμετρικά από τις σχέσεις

\[x = -g'(p) \]

\[y = -pg'(p) + g(p). \]

(2.78)

Κατά συνέπεια οι λύσεις της (2.74) δίνονται από τις σχέσεις (2.76) και (2.77), ή (2.78).

Σημείωση 2.4. Αναφερόμενοι στη περίπτωση 1. είναι

\[p' = 0 \Rightarrow p = y' = c \Rightarrow y = cx + c_1, \]

όπου και \(c_1\) είναι δύο σταθερές, αλλά λύση της εξίσωσης είναι εκείνη για την οποία \(c_1 = g(c)\), όπως εύκολα επιλαμβάνεται αντικαθιστώντας στην (2.74). Το αποτέλεσμα αυτό εξηγεί το γεγονός ότι μία κλάση λύσεων της εξίσωσης είναι η μονοπαραμετρική οικογένεια ευθείων (2.76).

Παράδειγμα 2.22. Να λυθεί η εξίσωση

\[y = xy' + ay' \sqrt{1 + (y')^2}, \]

όπου \(a\) είναι μία σταθερά.

Εδώ είναι

\[g(s) = \frac{as}{(1 + s^2)^{1/2}}, \quad g'(s) = \frac{a}{(1 + s^2)^{3/2}}. \]

Η αντίστοιχη της (2.76) λύση της εξίσωσης είναι που

\[y = cx + \frac{ac}{\sqrt{1 + c^2}}, \]

όπου \(c\) είναι μία σταθερά. Μία άλλη λύση δίνεται παραμετρικά από την (2.78)

\[x = -\frac{a}{(1 + p^2)^{3/2}} \]

\[y = \frac{ap^3}{(1 + p^2)^{3/2}}, \]

ή απαλείφοντας την παράμετρο \(p\) από

\[x^{2/3} + y^{2/3} = a^{2/3}. \]

Ασκηση 2.17. Να λυθεί η εξίσωση

\[y = ty' + (y')^2. \]
2.7 Εξισώσεις Clairaut και Lagrange

2.8.2 Εξισώσεις Lagrange

Οι εξισώσεις αυτές είναι τις ειδικές μορφές

\[y = xh(y') + g(y'), \quad (2.79) \]

και κατά συνέπεια μία τέτοια εξίσωση μπορεί να θεωρηθεί σαν γενίκευση της εξίσωσης Clairaut μιας και η (2.74) είναι ειδική περίπτωση της (2.79) για \(h(y') = y' \). Θέτοντας, όπως και στην περίπτωση της εξίσωσης Clairaut, \(y' = p \) και παραγωγίζοντας ως προς \(x \) την εξίσωση

\[y = xh(p) + g(p), \quad (2.80) \]

που προκύπτει, θα έχουμε

\[y' = p = h(p) + xh'(p)p' + g'(p)p' \Rightarrow [xh'(p) + g'(p)]p' = p - h(p). \]

Η τελευταία εξίσωση γράφεται

\[\left[x \frac{h'(p)}{p - h(p)} + g'(p) \right] \frac{dp}{dx} = 1, \]

απ' όπου προκύπτει η

\[\frac{dx}{dp} = \frac{h'(p)}{p - h(p)}x + \frac{g'(p)}{p - h(p)}. \]

Η τελευταία εξίσωση είναι θραμμική και έτσι αν \(n \) λύσιν της είναι \(x = \phi(p) \), τότε \(n \) λύσιν της (2.79) δίνεται, διά μέσο της (2.80), παραμετρικά από τις σχέσεις

\[x = \phi(p) \]
\[y = \phi(p)h(p) + g(p). \]

(2.81)

Παράδειγμα 2.23. Να λυθεί η εξίσωση

\[y = x + (y')^2 - \frac{2}{3}(y')^3. \]

Θέτοντας \(y' = p \) γράφουμε

\[y = x + p^2 - \frac{2}{3}p^3. \]

(2.83)

απ' όπου παραγωγίζοντας ως προς \(x \) βρίσκουμε

\[y' = p = 1 + 2pp' - 2p^2p' \Rightarrow 1 - p + 2p(1 - p)p' = 0 \Leftrightarrow (1 - p)(1 + 2pp') = 0. \]

1. Εάν \(p = 1 \), τότε αντικαθιστώντας στην (2.83) βρίσκουμε

\[y = x + \frac{1}{3}. \]

(2.84)
2. Εάν

\[2pp' = -1 \Rightarrow p^2 = c - x, \]

όταν \(c \) μία σταθερά, τότε η λύση της εξίσωσης δίνεται παραμετρικά από τις σχέσεις

\[x = c - p^2 \]
\[y = c - \frac{2}{3}p^3, \]

όταν \(c \) μία σταθερά. Απαλειφοντας την παράμετρο \(p \) από τις δύο εξισώσεις προκύπτει η λύση σε έμπλεκτι μορφή

\[4(c - x)^3 = 9(c - y)^2. \] (2.85)

Έτσι οι λύσεις της εξίσωσης (2.82) δίνονται από τις σχέσεις (2.84) και (2.85).

Σημείωση 2.5. Αναφερόμενοι στην περίπτωση 1. του παραδείγματος είναι

\[p = y' = 1 \Rightarrow y = x + c, \]

όταν \(c \) είναι μία σταθερά, αλλά λύση της εξίσωσης είναι εκείνη για την οποία \(c = 1/3 \), όπως εύκολα επαληθεύεται αντικαθιστώντας στην (2.81).

Όμοια αν θεωρήσουμε την περίπτωση 2. έχουμε

\[(y')^2 = c - x \Rightarrow y' = \pm \sqrt{c - x} \Rightarrow y = \pm \frac{2}{3}(c - x)^{3/2} + c' \Rightarrow 9(y - c')^2 = 4(c - x)^3. \]

Αντικαθιστούμε στην (2.81) και έχουμε

\[y = x + (c - x) - \frac{2}{3} \left[\pm(c - x)^{1/2} \right]^3 \Rightarrow \mp \frac{2}{3}(c - x)^{3/2} + c' = c \mp \frac{2}{3}(c - x)^{3/2}, \]

κατά συνέπεια \(c = c' \) όπως βρίσκαμε στην παραμετρική μορφή.

Άσκηση 2.18. Να λυθεί η εξίσωση

\[y = 2xy' + \frac{1}{y'}. \]

Άσκηση 2.19. Να λυθεί η εξίσωση

\[y = g(y'), \]

όπου \(g \) είναι μία συνεχώς διαφορίζιμη συνάρτηση.

Απάντηση. Η λύση δίνεται παραμετρικά από τις σχέσεις

\[x = \int \frac{g'(p)}{p} dp + c \]
\[y = g(p). \]
2.9 Διαφορές μεταξύ Γραμμικών και μη Γραμμικών Εξισώσεων

Στη παράγραφο αυτή συζητάμε συστηματικότερα κάποιες διαφορές μεταξύ Γραμμικών και μη Γραμμικών προβλημάτων. Μερικές από τις διαφορές αυτές έχουν ήδη εντοπιστεί και ως ένα βαθιό συζητηθεί στις προηγούμενες παραγράφους.

Αναφερόμαστε στο πρόβλημα αρχικών τιμών

\[y' = f(t, y), \quad y(t_0) = y_0. \]

I. Ύπαρξη και Μοναδικότητα. Εάν το πρόβλημα αρχικών τιμών είναι γραμμικό τότε υπάρχει μία και μόνο μία λύση, την οποία μάλλιστα δίνεται σε κλειστή μορφή από τη σχέση (2.30), ή (2.31). Στη περίπτωση όμως που το πρόβλημα είναι μη γραμμικό μπορεί να έχουμε περισσότερες από μία λύσεις, όπως είδαμε στο Παράδειγμα 2.3. Συνθήκες για τη μοναδικότητα της λύσης παρέχει το Θεώρημα 2.1.

Παράδειγμα 2.24. Να λυθεί το πρόβλημα

\[ty' = 2y, \quad y(0) = 0. \quad (2.86) \]

Στη περίπτωση αυτή είναι \(f(t, y) = 2y/t \), η οποία δεν είναι συνεχής στο \((0,0)\), για την ακρίβεια δεν ισχύει για \(t = 0 \). Όπως παρατηρούμε, μία λύση του προβλήματος είναι \(y = 0 \). Αναζητώντας άλλες λύσεις γράφουμε

\[\frac{y'}{y} = \frac{2}{t}, \]

για \(y \neq 0 \) απ’ όπου ολοκληρώνοντας παίρνουμε διαδοχικά

\[\ln|y| = 2 \ln|t| + \ln|c| \quad \Rightarrow \quad \ln|y| = \ln|ct^2| \quad \Rightarrow \quad y = \pm ct^2. \]

Άρα η εξίσωση \(ty' = 2y \) έχει μία διπαραμετρική οικογένεια λύσεων

\[y = \begin{cases}
 ct^2, & t < 0 \\
 ct^2, & t \geq 0,
\end{cases} \]

όπου \(c_1 \) και \(c_2 \) είναι πραγματικές σταθερές. Η οικογένεια αυτή των λύσεων ικανοποεί και την αρχική συνθήκη, οπότε έχουμε άπειρες λύσεις του (2.86).

Σημείωση 2.6. Στο σημείο αυτό θέλουμε να τονίσουμε ότι το αποτέλεσμα του Θεωρήματος 2.1 ειδικά για τη μοναδικότητα της λύσης είναι τοπικό. Για παράδειγμα ας θεωρήσουμε το πρόβλημα

\[ty' = 2y, \quad y(1) = 1. \quad (2.87) \]

Οι συναρτήσεις \(f(t, y) = 2y/t \) και \(f_y(t, y) = 2/t \) είναι συνεχείς σε κάθε ορθογώνιο που περιέχει το \((1,1)\) στο εσωτερικό του και περιέχεται στο ημιεπίπεδο \(t > 0 \), αλλά κάθε συνάρτηση της
μονοπαραμετρικής οικογένειας

\[y = \begin{cases} \frac{ct}{2}, & t < 0 \\ t^2, & t \geq 0 \end{cases} \]

είναι λύση του (2.87). Σε μία περιοχή όμως του \(t = 1, (1 - \delta, 1 + \delta) \) υπάρχει μοναδική λύση, συγκεκριμένα η \(y = t^2 \).

Ασκηση 2.20. Δίνεται το πρόβλημα αρχικών τιμών

\[y' = 2 \sqrt{|y|}, \quad y(0) = 0. \]

Να δειχθεί ότι για κάθε μια αρνητική τιμή της σταθεράς \(c \) η συνάρτηση

\[y = \begin{cases} 0, & t < c \\ (t - c)^2, & t \geq c \end{cases} \]

είναι λύση του προβλήματος. Σε κάθε διπλαδή διάστημα που περιέχει το \(0 \) υπάρχουν άπειρες λύσεις. Έχεται το γεγονός αυτό σε αντίθεση με το Θεώρημα 2.1; Δικαιολογήστε την απάντησή σας.

Ασκηση 2.21. Να βρεθούν όλες οι λύσεις του μια γραμμικού προβλήματος αρχικών τιμών

\[y' = 3y^{2/3}, \quad y(2) = 0. \]

Υπολειπόμενο: Η εξίσωση είναι αυτόνομη.

II. Διάστημα Ορισμού. Η λύση ενός γραμμικού προβλήματος αρχικών τιμών ορίζεται και είναι συνεχής στο κοινό διάστημα στο οποίο οι συντελεστές της εξίσωσης είναι συνεχείς. Το αποτέλεσμα αυτό απορρέει από το τύπο της λύσης (2.30). Στη περίπτωση όμως μια γραμμικών προβλημάτων δεν είναι πάντα αλήθεια ότι το διάστημα ύπαρξης της λύσης καθορίζεται από τη συνάρτηση \(f \) στο δεξιό μέλος της διαφορικής εξίσωσης όπως δείχνει το

Παράδειγμα 2.25. Για το πρόβλημα αρχικών τιμών

\[y' = y^2, \quad y(0) = a, \quad (2.88) \]

όπου \(a > 0 \) είναι μία σταθερά, να βρεθεί η λύση και να προσδιοριστεί το διάστημα ορισμού της λύσης.

Η συνάρτηση \(y^2 \) και η παράγωγος της 2\(y \) είναι συνεχείς, επομένως το Θεώρημα 2.1 εξασφαλίζει την ύπαρξη μοναδικής λύσης σε κάποιο διάστημα το οποίο περιέχει το \(t = 0 \). Γράφοντας την εξίσωση

\[\frac{y'}{y^2} = 1, \]

για \(y \neq 0 \) και ολοκληρώνοντας έχουμε

\[\frac{1}{y} = t + c \Rightarrow y = -\frac{1}{t + c}. \quad (2.89) \]
όπου c είναι μία σταθερά. Η αρχική συνθήκη ικανοποιείται εάν $a = \frac{1}{1-c}$, οπότε η λύση του προβλήματος είναι $y = \frac{a}{1-at}$.

Η συνάρτηση y είναι συνεχής για $t < 1/a$, και $t > 1/a$ αλλά το διάστημα ορισμού της λύσης είναι το $-\infty < t < 1/a$.(μετάφραση).

Άσκηση 2.22. Για το πρόβλημα αρχικών τιμών

$$y' = \frac{3x^2}{3y^2 - 4}, \quad y(1) = 0.$$

να βρεθεί η λύση και να προσδιοριστεί το διάστημα ορισμού της.

γιολεσίε: Στα σημεία μπέναμοι του παρανομαστή η ολοκληρωτική καμπύλη έχει κάθετα εφαπτομένη. Περιέχει επίσης το σημείο $(1,0)$, άρα αναζητούμε ένα διάστημα της μορφής $(1 - a, 1 + b)$ όπου a και b είναι θετικοί αριθμοί.

Άσκηση 2.23. Δίνεται η εξίσωση

$$y' = xy^3.$$

(1) Να λυθούν τα αντίστοιχα προβλήματα αρχικών τιμών με $y(0) = 1, y(0) = 2$.
(2) Να βρεθούν τα αντίστοιχα διαστήματα ορισμού για τις λύσεις του (1).
(3) Για το πρόβλημα αρχικών τιμών $y' = xy^3, y(0) = a, \text{ με } a > 0$ να δείξετε ότι καθώς $a \rightarrow 0+$ το διάστημα ορισμού προσεγγίζει ολοκλήρωση την ευθεία $(-\infty, \infty)$. Τι συμβαίνει καθώς $a \rightarrow \infty$?

Π. Γενικές και Ιδιάξοσες Λύσεις. Στα γραμμικά προβλήματα η λύση της διαφορικής εξίσωσης δίνεται αρ' ενός σε κλειστή μορφή από τύπο, δηλαδή αναλυτικά, και αρ' ετέρου η μοναδική λύση του προβλήματος αρχικών τιμών προκύπτει από τη παρατάση λύση με κατάλληλο προσδιορισμό της σταθεράς.

Στα μη γραμμικά προβλήματα τώρα, σε αρκετές περιπτώσεις η λύση εκφράζεται δια μέσου μίας εξίσωσης $F(t,y) = 0$, σε πεπλευθερισμένη διπλαδή μορφή, όπως έχουμε δεί σε παραδείγματα στις προηγούμενες παραγράφους. Ακόμη δεν είναι αλήθεια ότι η λύση ενός προβλήματος αρχικών τιμών (όταν αυτή υπάρχει) προκύπτει από κάποια ουκογένεια λύσεων με προσδιορισμό κάποιας σταθεράς. Λύσεις αυτού του τύπου, δηλαδή λύσεις οι οποίες δεν προκύπτουν από μία παραγωγικό ουκογένεια λύσεων με κατάλληλο προσδιορισμό της σταθεράς, λέγονται, συνήθως, ιδιάξοσεις λύσεις. Άστα στο μεν Παράδειγμα 2.4 $y = 0$ είναι ιδιάξοσα λύση της $y' = y^2 - 1$ στο δε Παράδειγμα 2.5 μπλέτουμε ότι $y' = (y + 1)^2, y \neq 0$ από καμία ιδιάξοσα λύση. Γενικά, όπως αποδείχθηκε, οι γραμμικές εξίσωσεις δεν έχουν ιδιάξοσες λύσεις.

Για το Παράδειγμα 2.4 ίσως κάποιος σκέφτεται ότι το αποτέλεσμα αυτό ήταν αναμενόμενο καθ’ ότι σωπόρα υποθέταμε ότι $y \neq 0$ από τη στιγμή που διαρέχει την αρχική εξίσωση με y^2. Ας παραβάλουμε όμως το παράδειγμα αυτό με το ανάλογο αποτέλεσμα που περιέχεται στο
Παράδειγμα 2.26. Να λυθεί το πρόβλημα αρχικών τιμών

\[y' = (y + 1)t, \quad y(0) = -1. \]

Εδώ είναι \(f(t, y) = (y + 1)t \) και \(f_y(t, y) = t \) οι οποίες είναι συνεχείς σε όλο το επίπεδο, άρα το πρόβλημα αρχικών τιμών έχει μοναδιαία λύση σε κάθε περιοχή του \(t = 0 \). Δεν είναι δύσκολο να παρατηρήσει κάποιος ότι η λύση αυτή είναι \(n = -1 \). Στο Παράδειγμα 2.6 λύσαμε την παρατάση γραμμική εξίσωση σαν εξίσωση χωρίζομένων μεταβλητών, υποθέσαμε διπλάδι ότι \(y \neq -1 \), και ακολουθώντας ανάλογα βήματα με αυτά του Παραδείγματος 2.25 αυτής της παραγράφου βρίσκαμε ότι η λύση της εξίσωσης είναι

\[y = c e^{t^2/2} - 1. \]

Από τη σχέση αυτή βλέπουμε ότι η λύση \(y \) που ικανοποιεί την αρχική συνθήκη είναι εκείνη για την οποία \(c = 0 \), προκύπτει διπλάδι από την παρατάση παραμετρική λύση με κατάλληλο προσδιορισμό της παραμέτρου.

Συμπεραίνει λοιπόν καινείς ότι η φύση της εξίσωσης είναι εκείνη που επιτρέπει την επιτρέπει την απόφοιτη της ειδικώς λύσης από μία καθολική έκφραση και όχι το τρόπος επίλυσης της. Έτσι στην περίπτωση των γραμμικών εξισώσεων και μόνο αυτών μπορεί κάποιος να μιλάει για τη γενική λύση.

2.10 Οι διαφορικές εξισώσεις ως μοντέλα

Στη παράγραφο αυτή μελετάμε, επιλεκτικά, κάποιες από τις εφαρμογές των διαφορικών εξισώσεων πρότυπας τάξης. Για την ακρίβεια δείξουμε πώς διάφορα φαινόμενα ή νόμιμα μπορούν να εκφραστούν και να περιγραφούν μέσω διαφορικών εξισώσεων.

Ι. Ορθογώνιες Τροχιές. Λέμε ότι οι ομαλές καμπύλες \(y_1 = \phi_1(t) \) και \(y_2 = \phi_2(t) \) τέμνονται ορθογώνια για \(t = t_0 \) εάν \(\phi_1(t_0) = \phi_2(t_0) \) και οι εφαπτόμενες ενθέθεις των δύο καμπυλών στο \(t = t_0 \) είναι κάθετες μεταξύ τους. Το ελεύθερο αποτέλεσμα ισοδύναμα με το ότι το γνώμενο των κλίσεων των καμπυλών στο \(t = t_0 \) είναι ίσο με \(-1 \), ισοδύναμα

\[\left. \frac{dy_1}{dt} \right|_{t=t_0} \left. \frac{dy_2}{dt} \right|_{t=t_0} = -1. \quad (2.90) \]

Παράδειγμα 2.27. Να δειχθεί ότι οι καμπύλες \(y = ax \) και \(x^2 + y^2 = c \), όπου \(a \) και \(c \) είναι θετικές σταθερές, είναι ορθογώνιες στα σημεία τομής τους.

Τα σημεία τομής των δύο καμπυλών δίνονται από την εξίσωση

\[x^2 + a^2 x^2 = c, \]
και έτσι οι λύσεις είναι \(\pm (x_0, y_0) \) με
\[
 x_0 = \sqrt{\frac{c}{1 + a^2}}, \quad y_0 = a \sqrt{\frac{c}{1 + a^2}}.
\]
Για τη πρώτη συνάρτηση είναι \(y'_1 = a \), ενώ από τη δεύτερη παραγωγότατα ως προς \(x \) προκύπτει
\(2x + 2yy' = 0 \), έτσι για \(y_2 \neq 0 \), είναι
\[
 y'_2 = -\frac{x}{y_2}.
\]
Επομένως υπολογίζουμε
\[
 \frac{dy_2}{dx} \bigg|_{\pm x_0} = -\frac{\sqrt{c/(1 + a^2)}}{a \sqrt{c/(1 + a^2)}} = -\frac{1}{a},
\]
και
\[
 y'_1(\pm x_0)y'_2(\pm x_0) = a \frac{-1}{a} = -1,
\]
που είναι ό,τι θέλαμε να αποδείξουμε.

Εάν θεωρήσουμε την διαφορική εξίσωση πρώτης τάξης
\[
 \frac{dy}{dt} = f(t, y),
\]
τότε σε κάθε λύση της αντιστοιχεί μία ολοκληρωτική καμπύλη που περιέχει τη λύση αυτή. Από την σχέση (2.90) τώρα βλέπουμε ότι οι ολοκληρωτικές καμπύλες της εξίσωσης
\[
 \frac{dy}{dt} = -\frac{1}{f(t, y)},
\]
eίναι ορθογώνιες με αυτές της (2.91). Τις ολοκληρωτικές καμπύλες της (2.92) θα τις λέμε ορθογώνιες τροχιές της εξίσωσης (2.91).

Παράδειγμα 2.28. Να βρεθούν οι ορθογώνιες τροχιές της οικογένειας των καμπυλών \(xy = c \).

Η δομημένη οικογένεια είναι μία οικογένεια υπερβολών με
\[
 y' = -\frac{c}{x^2}
\]
Απαλείφοντας τη σταθερά \(c \) βρίσκουμε
\[
 y' = \frac{xy}{x^2} = -\frac{y}{x},
\]
η οποία είναι η εξίσωση με ολοκληρωτικές καμπύλες της \(xy = c \). Έτσι οι ορθογώνιες τροχιές δίνονται από την
\[
 y' = \frac{x}{y}.
\]
Λύνοντας την παραπάνω εξίσωση έχουμε

\[yy' = x \Rightarrow \frac{1}{2} y^2 = \frac{1}{2} x^2 + c_1. \]

όπου \(c_1 \) είναι μία σταθερά. Έτσι οι ορθογώνιες τροχείς της ουκογένειας των υπερβολών \(xy = c \) είναι οι υπερβολές \(y^2 - x^2 = C \).

Άσκηση 2.24. Να βρεθούν οι ορθογώνιες τροχείς της ουκογένειας των καμπυλών

\[y^\alpha = cx^\beta, \quad x > 0 \]

όπου \(\alpha \) και \(\beta \) είναι θετικές σταθερές, και \(c \) είναι μία θετική παράμετρος.

II. Μοντέλοποισή. Οι διαφορομετρικές εξισώσεις πρώτης τάξης χρησιμοποιούνται στη διατύπωση μοντέλων σχετικά με προβλήματα στις φυσικές, βιολογικές, οικονομικές και κοινωνικές επιστήμες.

- Εκθετική αύξηση/μείωση. Σε αρκετά προβλήματα συμβαίνει ο ρυθμός μεταβολής μίας ποσότητας σε κάθε χρονική στιγμή να είναι ανάλογος της ποσότητας που υπάρχει εκείνη τη στιγμή. Έτσι αν \(Q(t) \) είναι η ποσότητα που υπάρχει τη χρονική στιγμή \(t \) ο νόμος που περιγράφει την εξέλιξη του φαινομένου είναι

\[\frac{dQ}{dt} = rQ, \]

όπου \(r \) είναι η σταθερά ανάλογιας. Η γενική λύση της γραμμικής αυτής εξίσωσης, όπως εύκολα μπορεί να δείχθει, είναι

\[Q(t) = ce^{rt}, \]

όπου \(c \) είναι μία σταθερά. Η προσθήκη μίας αρχικής συνθήκης, για παράδειγμα \(Q(0) = Q_0 \), προσδιορίζει τη σταθερά \(c \) και τη λύση του προβλήματος αρχικών τιμών γίνεται τότε

\[Q(t) = Q_0e^{rt}, \]

και δίνει την ποσότητα που υπάρχει κάθε χρονική στιγμή \(t \) σε κάθε άξονα διάστημα σχετικό με το πρόβλημα. Παρατηρούμε ότι αν \(r > 0 \) η ποσότητα \(Q \) αυξάνει με το χρόνο, ενώ αντίθετα ελλιπτώνεται εάν \(r < 0 \).

- Λογιστική αύξηση/μείωση. Σε κάποιες περιπτώσεις ο ρυθμός μεταβολής μίας ποσότητας δεν είναι σταθερό πολλαπλάσιο της ποσότητας αλλά εκφράζεται σαν μία συνάρτηση της ποσότητας αυτής, έτσι όστε το μοντέλο να είναι

\[\frac{dP}{dt} = h(P)P. \quad (2.93) \]

Μια ειδική περίπτωση της (2.93) είναι η λογιστική εξίσωση, ή εξίσωση του Verhulst που περιγράφει την εξέλιξη πληθυσμών

\[\frac{dP}{dt} = P(a - bP). \quad (2.94) \]
2.9 Οι διαφορικές εξισώσεις ως μοντέλα

Εδώ \(a\) είναι ο μέσος ρυθμός γεννήσεων και \(bP\) είναι ο μέσος ρυθμός θανάτων ο οποίος εκφράζεται ως ποσοστό του πληθυσμού που υπάρχει σε κάθε χρονικά στιγμή. Η εξίσωση (2.94) είναι χωριζομένων μεταβλητών. Οι σταθερές λύσεις \(P = 0\) και \(P = a/b\) λέγονται λύσεις ισορροπίας.

Άσκηση 2.25. Να δειχθεί ότι η λύση του προβλήματος αρχικών τιμών

\[
\frac{dP}{dt} = P(a - bP), \quad P(0) = P_0,
\]

δίνεται από τη σχέση

\[
P(t) = \frac{aP_0}{bP_0 + (a - bP_0)e^{-at}}.
\]

Για \(a > bP_0\) να μελετηθεί η συμπεριφορά της λύσης καθώς \(t \to \infty\). Τι παρατηρείται αν \(a < bP_0\).

Άσκηση 2.26. Μια παραλαγή του λογιστικού μοντέλου είναι η εξίσωση του Gompertz

\[
\frac{dP}{dt} = P(a - \ln P),
\]

που χρησιμοποιείται σε μοντέλα κατάλληλων πληθυσμών. Να λυθεί η εξίσωση και να μελετηθεί η συμπεριφορά της λύσης καθώς \(t \to \infty\).

- Συστήματα Αυτόνομων Εξισώσεων. Διάφορα μοντέλα κυρίως στην οικολογία περιγράφονται από συστήματα δύο αυτόνομων εξισώσεων

\[
\frac{dx}{dt} = f(x,y), \quad \frac{dy}{dt} = -g(x,y),
\]

όπου \(x\) και \(y\) είναι οι άγνωστες συναρτήσεις. Η απάλυμφη του \(t\) οδηγεί στην εξίσωση

\[
\frac{dy}{dx} = -\frac{g(x,y)}{f(x,y)},
\]

ή στην

\[
g(x,y) + f(x,y)y' = 0,
\]

που κάθε μία είναι εξίσωση πρώτης τάξης. Στις (2.96) και (2.97) θεωρούμε τη μεταβλητή \(y\) σαν συνάρτηση του \(x\), και \(y'\) στη (2.97) είναι η παράγωγος του \(y\) ως προς \(x\).

Παράδειγμα 2.29. Το μοντέλο θύτες/θήρια ή το σύστημα Lotka-Volterra. Εάν \(x(t)\) και \(y(t)\) είναι οι πληθυσμοί των θηραμάτων και θητών αντίστοιχα, τότε η εξέλιξη των δύο πληθυσμών, που αλληλεπιδρούν, περιγράφεται από τις εξισώσεις

\[
\frac{dx}{dt} = x(a - by), \quad \frac{dy}{dt} = y(-c + dx),
\]

όπου \(a, b, c,\) και \(d\) είναι θετικές σταθερές. Να βρεθεί η λύση του συστήματος.

Το σύστημα μετασχηματίζεται στην εξίσωση

\[
\frac{dy}{dx} = \frac{y(-c + dx)}{x(a - by)},
\]
ίασοδύναμα στην εξίσωση χωριζομένων μεταβλητών

\[
\left(\frac{a}{y} - b\right) \frac{dy}{dx} = \left(\frac{d}{x} - c\right).
\]

Ολοκληρώνοντας έχουμε τη πεπλεγμένη λύση

\[
a \ln y - by = dx - c \ln x + \rho,
\]

όπου \(\rho\) είναι μία σταθερά που προσδιορίζεται από τις αρχικές συνθήκες.

Άσκηση 2.27. Δίνεται το σύστημα

\[
\frac{dx}{dt} = -y, \quad \frac{dy}{dt} = x.
\]

Να βρεθεί η λύση του συστήματος και να εκφραστούν τα \(x\) και \(y\) σαν συναρτήσεις του \(t\).

- **Διάφορες Εφαρμογές.** Στη συνέχεια υπό μορφή παραδειγμάτων και ασκήσεων παρουσιάζουμε κάποιες ακόμη εφαρμογές των εξισώσεων πρώτης τάξης.

Παράδειγμα 2.30. Σώμα μάζας \(m\) αφύνεται να πέσει από σημείο προς το μέσο που προβάλλει αντίσταση ανάλογη του μέτρου \(v\) της σταθεράς ταχύτητας του σώματος. Να βρεθεί η ταχύτητα του σώματος σε κάθε σημείο \(t\).

Υποθέτοντας ότι στο σώμα δεν ασκούνται άλλες δυνάμεις πέρα από αυτή της βαρύτητας και την αντίσταση που προβάλλει το μέσο, από το δεύτερο νόμο του Newton θα έχουμε

\[
m \frac{dv}{dt} = mg - kv,
\]

όπου \(g\) είναι το μέτρο της επιτάχυνσης της βαρύτητας, και \(k\) η σταθερά αναλογίας. Θέτοντας \(a = k/m\), \(n\) (γραμμικά και χωριζομένων μεταβλητών) εξίσωση γράφεται διαδοχικά

\[
\frac{dv}{dt} = g - av \implies \frac{v'}{v - g/a} = -a.
\]

Ολοκληρώνοντας παίρνουμε

\[
\ln |v - g/a| = -at + c \implies v - g/a = \pm e^{-at+c},
\]

απ’ όπου λύνοντας ως προς \(v\) προκύπτει

\[
v = \frac{g}{a} + Ce^{-at},
\]

όπου \(C = \pm \exp c\) μία σταθερά, ή τελικά

\[
v = \frac{m}{k} g + Ce^{-(k/m)t}.
\]
2.9 Οι διαφορικές εξισώσεις ως μοντέλα

Τη χρονική στιγμή \(t = 0 \) το σώμα βρίσκεται σε κατάσταση ημείας, άρα θα είναι \(v(0) = mg/k + C = 0 \), απ’ όπου υπολογίζεται η τιμή του \(C \), είναι διπλαδή \(C = -mg/k \). Έτσι τελικά η ταχύτητα του σώματος σε κάθε στιγμή \(t \) δίνεται από τη σχέση

\[
v = \frac{m}{k} g \left(1 - e^{-(k/m)t} \right).
\]

Τι θα άλλαξε στην έκφραση του \(v \) αν το σώμα τη χρονική στιγμή \(t = 0 \) αντί να ημείει είχε μία αρχική ταχύτητα \(v_0 \).

Άσκηση 2.28 (Ο νόμος ρυθμήσης/θέρμανσης του Newton). Ο ρυθμός μεταβολής της θερμοκρασίας \(T(t) \) ενός ικτισμού είναι ανάλογος της διαφοράς της θερμοκρασίας \(M(t) \) του περιβάλλοντος και της θερμοκρασίας του ικτισμού. Έτσι θα είναι

\[
\frac{dT}{dt} = K(M - T),
\]

όπου \(K \) είναι μία σταθερά. Να βρεθεί η λύση της εξίσωσης αν \(T(0) = T_0 \).

Άσκηση 2.29 (Ο νόμος ακτινοβολίας του Stefan). Σύμφωνα με το νόμο αυτό ο ρυθμός μεταβολής της θερμοκρασίας ενός σώματος σε \(T \) βαθμούς της κλίμακας Kelvin σε ένα μέσο θερμοκρασίας \(M \) βαθμών της ίδιας κλίμακας είναι ανάλογος του \(M^4 - T^4 \), δηλατά

\[
\frac{dT}{dt} = k(M^4 - T^4),
\]

όπου \(k \) είναι μία θετική σταθερά. Να λυθεί την εξίσωση.

Άσκηση 2.30 (Χημικές αντιδράσεις). Η αλληλεπίδραση ενός μορίου μίας ουσίας \(A \) με ένα μόριο της ουσίας \(B \) με αποτέλεσμα τη δημιουργία ενός μορίου μίας νέας ουσίας \(X \), είναι μία δεύτερης τάξης χημική αντίδραση που συνήθως συμβολίζουμε με \(A + B \rightarrow X \). Εάν \(\alpha \) και \(\beta \) είναι οι αρχικές συγκεντρώσεις των ουσιών \(A \) και \(B \) αντίστοιχα και \(x(t) \) είναι η συγκέντρωση της νέας ουσίας \(X \) τη χρονική στιγμή \(t \), τότε ο ρυθμός που εξελίσσεται η αντίδραση δίνεται από

\[
\frac{dx}{dt} = k(\alpha - x)(\beta - x),
\]

όπου \(k \) είναι μία θετική σταθερά. Εάν \(x(0) = x_0 \) να βρεθεί η λύση του προβλήματος αρχικών τιμών στις περιπτώσεις \(\alpha \neq \beta \) και \(\alpha = \beta \) καθώς και η συμπεριφορά της λύσης καθώς \(t \rightarrow \infty \).

Άσκηση 2.31. Η καμπυλότητα \(\kappa \) μίας καμπύλης με εξίσωση \(y = f(x) \) ορίζεται από τη σχέση

\[
\kappa = \frac{y''}{\left[1 + (y')^2\right]^{3/2}}.
\]

Να υπολογισθεί η συνάρτηση \(y \) και επομένως η καμπύλη, για την οποία

(1) \(\kappa = 0 \), και
(2) \(\kappa = 1 \).

Υπολειπεί: Η εξίσωση ανάγεται σε εξίσωση πρώτης τάξης.
2.11 Το Θεώρημα Ύπαρξης και Μοναδικότητας

Στη παράγραφο αυτή συζητάμε το Θεώρημα 2.1 σχετικά με την ύπαρξη και μοναδικότητα της λύσης του προβλήματος αρχικών τιμών

\[y' = f(t, y), \quad y(t_0) = y_0. \] (2.98)

που διατυπώθηκε στην παράγραφο 2.1. Έχουμε δείξει ότι στη περίπτωση γραμμικώς εξίσωσης η μοναδική λύση εκφράζεται σε κλειστή μορφή. Στη γενική όμως περίπτωση τέτοιος τύπος δεν υπάρχει.

Στις συνέχειες περιγράφουμε ένα τρόπο απόδειξης του θεωρήματος που την ίδια στιγμή μας παρέχει και τρόπο εύρεσης μίας προσέγγισης της λύσης.

Αρχικά βλέπουμε ότι πρόβλημα (2.98) είναι ισοδύναμο με την ολοκληρωτική εξίσωση

\[y(t) = y_0 + \int_{t_0}^{t} f(s, y(s)) \, ds. \] (2.99)

Πραγματικά εάν ολοκληρώσουμε την (2.98) προκύπτει η (2.99), ενώ αν παραγωγίσουμε την (2.99) προκύπτει η (2.98). Ένας τρόπος που χρησιμοποιείται για να δείξει ότι η εξίσωση (2.99), και άρα η (2.98), έχει λύση είναι ο μέθοδος των διαδοχικών προσεγγίσεων του Picard. Η μέθοδος αυτή συνίσταται στην κατασκευή μίας αναδρομικής ακολουθίας συναρτήσεων όπως παρακάτω

\[
\begin{align*}
y_1(t) &= y_0 + \int_{t_0}^{t} f(s, y_0(s)) \, ds, \\
y_2(t) &= y_0 + \int_{t_0}^{t} f(s, y_1(s)) \, ds, \\
y_3(t) &= y_0 + \int_{t_0}^{t} f(s, y_2(s)) \, ds, \\
& \vdots \\
y_n(t) &= y_0 + \int_{t_0}^{t} f(s, y_{n-1}(s)) \, ds, \\
& \vdots
\end{align*}
\]

όπου \(y_0(s) \) να είναι μία αυθαίρετη συνάρτηση. Στη πράξη επιλέγουμε σων πρώτη προσέγγιση την αρχική συνθήκη, δηλαδή \(y_0(s) = y_0 \) και παρατηρούμε ότι κάθε μέλος της ακολουθίας \(y_1, y_2, y_3, \ldots \) ικανοποιεί την αρχική συνθήκη. Αποδεικνύεται ότι εάν οι υποθέσεις του θεωρήματος ισχύουν γιατί η αναδρομική αυτή ακολουθία των συναρτήσεων συγκλίνει στη μοναδική λύση του (2.98).

Προτού δώσουμε την απόδειξη του θεωρήματος ας δούμε ένα

Παράδειγμα 2.31. Να λυθεί το πρόβλημα αρχικών τιμών

\[y' = y, \quad y(0) = 1. \]
2.10 Το Θεώρημα 'Υπαρξής και Μικρακτότητας

Δεν είναι δύσκολο να δούμε ότι η λύση του προβλήματος είναι \(y = e' \), αλλά ας ακολουθήσουμε τον μέθοδο των διαδοχικών προσεγγίσεων. Ετσι θα έχουμε

\[
\begin{align*}
y_0(t) &= 1 \\
y_1(t) &= 1 + \int_0^t 1 \, ds = 1 + t \\
y_2(t) &= 1 + \int_0^t (1 + s) \, ds = 1 + t + \frac{t^2}{2} \\
y_3(t) &= 1 + \int_0^t \left(1 + s + \frac{s^2}{2}\right) \, ds = 1 + t + \frac{t^2}{2} + \frac{t^3}{2 \cdot 3} \\
& \quad \vdots \\
y_n(t) &= 1 + t + \frac{t^2}{2} + \frac{t^3}{2 \cdot 3} + \cdots + \frac{t^n}{2 \cdot 3 \cdots n} = 1 + t + \frac{t^2}{2!} + \frac{t^3}{3!} + \cdots + \frac{t^n}{n!} \\
& \quad \vdots
\end{align*}
\]

Διαφημίζουμε ότι καθός \(n \to \infty \), τότε

\[y_n(t) \to 1 + \sum_{k=1}^{\infty} \frac{t^k}{k!} = e', \]

όπως ήδη παρατηρήσαμε.

Άσκηση 2.32. Να χρησιμοποιηθεί ο μέθοδος του Picard με \(y_0(t) = 0 \), για να βρεθούν τρεις διαδοχικές προσεγγίσεις της λύσης του προβλήματος αρχικών τιμών

\[y' = t - y^2, \quad y(0) = 0. \]

Άσκηση 2.33. Το μπλοκάρκικ πρόβλημα αρχικών τιμών

\[y' = 3y^{2/3}, \quad y(2) = 0, \]

dεν έχει μοναδική λύση. Να δειχθεί ότι ο μέθοδος του Picard με \(y_0(t) = 0 \) δηληγεί στη λύση \(y = 0 \), ενώ η ίδια μέθοδος ασχίζοντας με \(y_0(t) = t - 2 \) δηληγεί στη λύση \(y = (t - 2)^3 \).

Υπολειπόμενο: Για τη περίπτωση \(y_0(t) = t - 2 \) δείξτε ότι \(y_n(t) = a_n(t - 2)^{b_n} \) και καθός \(n \to \infty \), \(a_n \to 1 \) και \(b_n \to 3 \).

2.11.1 Απόδειξη του Θεώρηματος Έπαιρξης και Μικρακτότητας

Αποδεικνύουμε το Θεώρημα 'Υπαρξής και Μικρακτότητας για το πρόβλημα αρχικών τιμών (2.98) στην περίπτωση όπου η υπόθεση ότι η συνάρτηση \(\frac{df}{dy} \) είναι συνεχής αντικαθίσταται από την αισθενότερη υπόθεση ότι η συνάρτηση \(f \) ακανοτοεύει την συνθήκη Lipschitz

\[|f(t, y_1) - f(t, y_2)| \leq C|y_1 - y_2|, \quad (2.100) \]
όπου C είναι μία θετική σταθερά, σε ένα ορθογώνιο το οποίο περιέχει το σημείο (t_0, y_0) και στο οποίο f είναι συνεχής. Σημειώνουμε ότι αν $n \frac{df}{dy}$ υπάρχει και είναι συνεχής σε ένα κλειστό ορθογώνιο R το οποίο περιέχει το σημείο (t_0, y_0), τότε θα είναι:

$$|f(t, y_1) - f(t, y_2)| = \left| \frac{df}{dy}(t, \xi) \right| |y_1 - y_2| \leq \max_{(t, y) \in R} \left| \frac{df}{dy}(t, y) \right| |y_1 - y_2|,$$

όπου το ξ είναι μεταξύ y_1 και y_2, δηλαδή f ικανοποιεί μία συνθήκη της μορφής (2.100).

Απόδειξη. Έστω $a > 0$, $b > 0$, και

$$R = \{ (t, y) : |t - t_0| \leq a, |y - y_0| \leq b \}$$

έτσι όταν f να ορίζεται, να είναι συνεχής και να ικανοποιεί την (2.100) στο R, δηλαδή για $|t - t_0| \leq a$, $|y - y_0| \leq b$, και έτσι

$$\max_{(t, y) \in R} |f(t, y)| \leq M, \quad T = \min\left\{ a, \frac{b}{M} \right\}.$$

Θα αποδείξουμε ότι το πρόβλημα αρχικών τιμών (2.98) έχει μοναδική λύση στο διάστημα $|t - t_0| \leq T$.

Υποθέσεις της λύσης. Ορίζουμε την ακολουθία των διαδοχικών προσεγγίσεων

$$y_0(s) = y_0, \quad y_n(t) = y_0 + \int_{t_0}^{t} f(s, y_{n-1}(s)) \, ds, \quad n = 1, 2, \ldots, \quad |t - t_0| \leq T.$$

Βήμα 1. Αποδεικνύουμε ότι η ακολουθία αυτή είναι καλά ορισμένη με την έννοια ότι $(t, y_n(t)) \in R$, για $|t - t_0| \leq T$, κατά συνέπεια $|f(t, y_n(t))| \leq M$ για $|t - t_0| \leq T$ και $n = 1, 2, \ldots$. Από την κατασκευή των y_n έχουμε

$$|y_1(t) - y_0| = \left| \int_{t_0}^{t} f(s, y_0) \, ds \right| \leq M|t - t_0|,$$

επομένως αν $|t - t_0| \leq T$ έπειτα ότι

$$|y_1(t) - y_0| \leq MT \leq b,$$

από τον ορισμό του T. Όμως

$$|y_2(t) - y_0| = \left| \int_{t_0}^{t} f(s, y_1(s)) \, ds \right| \leq M|t - t_0| \leq MT \leq b,$$

και επαγωγικά για $|t - t_0| \leq T$

$$|y_n(t) - y_0| \leq b, \quad n = 1, 2, \ldots,$$

κατά συνέπεια $|f(t, y_n(t))| \leq M$ για $|t - t_0| \leq T$ και $n = 1, 2, \ldots$.

Βήμα 2. Αποδεικνύουμε ότι η ακολουθία των διαδοχικών προσεγγίσεων συγκλίνει σε λύση του προβλήματος αρχικών τιμών (2.98). Διαμέσου της (2.101) υπολογίζουμε

$$|y_2(t) - y_1(t)| = \left| \int_{t_0}^{t} (f(s, y_1(s)) - f(s, y_0)) \, ds \right|$$

$$\leq C \int_{t_0}^{t} |y_1(s) - y_0| \, ds$$

$$\leq C \int_{t_0}^{t} M|s - t_0| \, ds$$

$$= CM\frac{|t - t_0|^2}{2}$$
και σαν επόμενο βήμα, κάνοντας χρήση της παραπάνω εκτίμησης

\[|y_3(t) - y_2(t)| = \left| \int_{t_0}^{t} (f(s, y_2(s)) - f(s, y_1(s))) \, ds \right| \]

\[\leq C \left| \int_{t_0}^{t} \left| y_2(s) - y_1(s) \right| \, ds \right| \]

\[\leq C \left| \int_{t_0}^{t} CM \frac{|s - t_0|^2}{2} \, ds \right| \]

\[= C^2 M \frac{|t - t_0|^3}{3!} \]

και έτσι επαγωγικά\(^2\), για \(n > 1 \),

\[|y_n(t) - y_{n-1}(t)| = \left| \int_{t_0}^{t} (f(s, y_{n-1}(s)) - f(s, y_{n-2}(s))) \, ds \right| \]

\[\leq C \left| \int_{t_0}^{t} |y_{n-1}(s) - y_{n-2}(s)| \, ds \right| \]

\[\leq C \left| \int_{t_0}^{t} C^{n-2} M \frac{|s - t_0|^{n-1}}{(n-1)!} \, ds \right| \]

\[= C^{n-1} M \frac{|t - t_0|^n}{n!}. \]

Επομένως για κάθε \(n > 1 \) έχουμε

\[|y_n(t) - y_{n-1}(t)| \leq C^{n-1} M \frac{|t - t_0|^n}{n!} \leq C^{n-1} M \frac{T^n}{n!} = \frac{M (CT)^n}{C \, n!}. \]

Έτσι για \(n > m \) έχουμε

\[|y_n(t) - y_m(t)| \leq |y_n(t) - y_{n-1}(t)| + |y_{n-1}(t) - y_{n-2}(t)| + \cdots + |y_{m+1}(t) - y_m(t)| \]

\[\leq \frac{M}{C} \sum_{k=m+1}^{n} \frac{(CT)^k}{k!}. \]

Η σειρά \(\sum_{k=0}^{\infty} (CT)^k/k! \) συγκλίνει, στο \(e^{CT} \), κατά συνέπεια η ακολουθία των διαδοχικών προσεγγίσεων \(y_1, y_2, \ldots \) είναι μία ακολουθία Cauchy και σαν τέτοια συγκλίνει ομοιόμορφα στο κλειστό διάστημα \(|t - t_0| \leq T \) σε μία συνεχή συνάρτηση \(y \). Στη συνέχεια δείχνουμε ότι \(y \) ικανοποιεί τη σχέση

\[y(t) = y_0 + \int_{t_0}^{t} f(s, y(s)) \, ds, \]

\(^2\)Εδώ χρησιμοποιούμε το γεγονός ότι

\[\left| \int_{t_0}^{t} \frac{|s - t_0|^k}{k!} \, ds \right| = \int_{t_0}^{t} \frac{|s - t_0|^k}{k!} \, ds = \frac{|t - t_0|^{k+1}}{(k+1)!} \]

για κάθε \(k = 1, 2, \ldots \).
κατά συνέπεια είναι λύση του προβλήματος αρχικών τιμών (2.98). Από τον ορισμό της ακολούθιας
των \(y_n, n = 1, 2, \ldots \) έχουμε για \(|t - t_0| \leq T\)
\[
\left| y(t) - y_0 - \int_{t_0}^{t} f(s, y(s)) \, ds \right| = \left| y(t) - y_0 - \int_{t_0}^{t} f(s, y(s)) \, ds \right|
\leq |y(t) - y_n(t)| + \int_{t_0}^{t} \left| f(s, y(s)) - f(s, y_{n-1}(s)) \right| \, ds
\leq |y(t) - y_n(t)| + C \int_{t_0}^{t} |y(s) - y_{n-1}(s)| \, ds.
\]

Για \(\epsilon > 0 \), από την ομοιόμορφη συγκέντρωση \(y_n \rightarrow y \) στο διάστημα \(|t - t_0| \leq T\) έπεται ότι υπάρχει
\(N \in \mathbb{N} \) έτσι ώστε
\[
\max_{|t-t_0| \leq T} |y(t) - y_n(t)| < \epsilon_1, \quad \epsilon_1 = \frac{\epsilon}{1 + CT}
\]
για κάθε \(n \) τέτοιο όστε \(n - 1 > N \), συνεπώς για κάθε \(t \) στο ίδιο διάστημα θα είναι
\[
|y(t) - y_0| \leq |y(t) - y_n(t)| + |y_n(t) - y_0| < \epsilon + \beta,
\]
για κάθε \(|t - t_0| \leq T\), όπως \(|y(t) - y_0| \leq \beta\).

Μοναδικότητα της λύσης. Αν \(y_\ast \) είναι μία άλλη λύση του προβλήματος αρχικών τιμών στο
κλειστό διάστημα \([t - t_0] \leq T\) τότε θα υιοθετεί την ολοκληρωτική εξίσωση (2.99). Κατά συνέπεια
έχουμε την αρχική εκτίμηση\(^3\)
\[
|y(t) - y_\ast(t)| = \left| \int_{t_0}^{t} (f(s, y(s)) - f(s, y_\ast(s))) \, ds \right| \leq 2M|t - t_0|
\]

\(^3\)Εδώ χρησιμοποιούμε το γεγονός ότι \(|f(s, y(s))| \leq M\). Αυτό είναι απόρροια του

Λεμάρια 2.2. Εάν \(y \) είναι μία λύση του προβλήματος αρχικών τιμών (2.98) στο \(|t - t_0| \leq T\), όταν \(T \leq \min(a, b/M)\), τότε
\(|y(t) - y_0| \leq \beta\).

Απόδειξη. Εστώ \(|t, - t_0| \leq T\) και \(|y(t) - y_\ast| \geq \beta\), και έστω \(T_1 = \sup |t : |y(t) - y_\ast| \geq \beta\) για \(|t - t_0| \leq T_1\), τότε \(T_1 < T\). Η \(y \) υιοθετεί την ολοκληρωτική εξίσωση, επομένως αν \(|t - t_0| \leq T_1\) θα είναι
\[
|y(t) - y_0| = \left| \int_{t_0}^{t} f(s, y(s)) \, ds \right| \leq MT_1 < MT \leq b.
\]
Από τη συνέχεια της \(y \) έπεται ότι υπάρχει \(\epsilon > 0 \) έτσι ώστε αν \(|t - t_0| \leq T_1 + \epsilon\), τότε \(|y(t) - y_0| \leq b\). Αυτό ομοιός είναι
άτομο από τον ορισμό του \(T_1\). Κατά συνέπεια δεν υπάρχει Τέτοιο \(t\), ισοδύναμα \(T_1 = T\) γεγονός που αποδεικνύει τον
ισχυσμό μας.
2.11 Ασκήσεις

tιν οποία αντικαθιστώντας πίσω στο ολοκλήρωμα παίρνουμε

\[|y(t) - y_*(t)| = \left| \int_0^t (f(s,y(s)) - f(s,y_*(s))) \, ds \right| \leq C \int_0^t |y(s) - y_*(s)| \, ds \leq C \int_0^t 2M|s - t_0| \, ds = 2MC \frac{|t - t_0|^2}{2}.\]

Επαναλαμβάνοντας τη διαδικασία αυτή, της αντικατάστασης δηλαδή της τελευταίας εκτίμησης στο ολοκλήρωμα, βρίσκουμε μετά από \(n \) επαναλήψεις

\[|y(t) - y_*(t)| \leq \frac{2M (CT)^n}{C \cdot n!},\]

για κάθε \(n = 1, 2, \ldots \). Επειδή \((CT)^n/n! \rightarrow 0\), καθώς \(n \rightarrow \infty\), σαν \(n \)-οστός όρος συγκλίνουσας σειράς, \(\varepsilon \) \(y(t) = y_*(t) \) για κάθε \(|t - t_0| \leq T \) γεγονός που αποδεικνύει ότι η λύση είναι μοναδική σε κάποια περιοχή του \(t_0 \). \(\square \)

Παρατήρηση 2.8. Αναφερόμενοι στο Παράδειγμα 2.3 δείχνουμε ότι το προβλήμα αρχικών τιμών

\[y' = 4x \sqrt{y}, \quad y(0) = 0\]

έχει άπειρες λύσεις. Το αποτέλεσμα αυτό οφείλεται στο γεγονός ότι η συνάρτηση \(f(x,y) = 4x \sqrt{y} \) δεν είναι Lipschitz κοντά στο \(0 \). Πραγματικά αν υποθέσουμε ότι υπάρχει θετική σταθερά \(C \) ώστε να ισχύει

\[|f(x,y_1) - f(x,y_2)| \leq C|y_1 - y_2|\]

για \(y_1, y_2 \) κοντά στο \(0 \), ισοδύναμα θα έχουμε ότι

\[|4x \sqrt{y_1} - 4x \sqrt{y_2}| \leq C|y_1 - y_2| \iff \frac{4}{C}|x| \leq |\sqrt{y_1} + \sqrt{y_2}|,\]

για \(y_1 \neq y_2 \). Η τελευταία όμως ανίσωση είναι αδύνατη μας και για κάθε \(x \neq 0 \) και \(C > 0 \) το δεξί μέλος μπορεί να έπελεγε \(\varepsilon \) ώστε να είναι ανθετικά κοντά στο \(0 \).

Σημείωση 2.7. Στη περίπτωση της γραμμικής εξίσωσης \(y' + p(t)y = g(t) \), όπου \(p \) και \(g \) είναι συνεχείς σε κάποιο διάστημα \(I \), είναι

\[y' = g(t) - p(t)y = f(t,y)\]

επομένως \(f \) είναι συνεχής στο \(I \times \mathbb{R} \) και επιτυγχάνει την συνθήκη Lipschitz

\[|f(t,y_1) - f(t,y_2)| = |p(t)(y_1 - y_2)| \leq \left(\max_{a \leq t \leq b} |p(t)| \right)|y_1 - y_2|,\]

όπου \([a, b] \subset I\).

2.12 Ασκήσεις

1. Να λυθούν οι εξίσωσεις και τα προβλήματα αρχικών τιμών
2. Να λυθούν οι εξισώσεις και τα προβλήματα αρχικών τιμών

\[
\begin{align*}
\text{(α')} & \quad y' - y = e^t. \\
\text{(β')} & \quad y' + 3y = t. \\
\text{(γ')} & \quad y' - 2ty = t. \\
\text{(δ')} & \quad y' \cos t = y \sin t + \sin 2t, \quad -\frac{\pi}{2} < t < \frac{\pi}{2}. \\
\text{(ε')} & \quad \frac{dy}{dt} - y \tan \theta = 1, \quad -\frac{\pi}{2} < t < \frac{\pi}{2}. \\
\text{(ζ')} & \quad \frac{dy}{dt} + r \tan \theta = \sec \theta.
\end{align*}
\]

3. Να εξετασθεί εάν κάθε μία από τις παρακάτω εξισώσεις είναι ακριβής

\[
\begin{align*}
\text{(α')} & \quad x \sin y + (y \cos x)y' = 0. \\
\text{(β')} & \quad 2xy^3 \; dx + 3x^2y^2 \; dy = 0.
\end{align*}
\]

4. Να βρεθούν οι τιμές του \(k \) για τις οποίες κάθε μία από τις παρακάτω εξισώσεις είναι ακριβής

\[
\begin{align*}
\text{(α')} & \quad 2xyy' + y^4 = 0. \\
\text{(β')} & \quad x^2y^3y' + kx^2y^4 = 0. \\
\text{(γ')} & \quad (xy^2 + kx^2y) + (x + y)x^2y' = 0.
\end{align*}
\]

5. Να εξετασθεί εάν κάθε μία από τις παρακάτω εξισώσεις είναι ακριβής. Εάν είναι να λυθεί

\[
\begin{align*}
\text{(α')} & \quad 3xy - 2 + (3y^2 - x^2)y' = 0. \\
\text{(β')} & \quad \sin y + (1 + x \cos y)y' = 0. \\
\text{(γ')} & \quad x \ln y \; dx - (x + y \ln x) \; dy = 0.
\end{align*}
\]

6. Να λυθούν τα προβλήματα αρχικών τιμών

\[
\begin{align*}
\text{(α')} & \quad 3x^2 + 2xy + 3y^2 + (x^2 + 6xy)y' = 0, \quad y(1) = 2. \\
\text{(β')} & \quad 1 + y \cos(xy) + (x \cos(xy))y' = 0, \quad y(1) = 0. \\
\text{(γ')} & \quad \ln y + 3y^2 + \left(\frac{x}{3} + 6xy\right)y' = 0, \quad y > 0, \quad y(1) = 1.
\end{align*}
\]

7. Για κάθε μία από τις παρακάτω εξισώσεις να βρεθεί ένας ολοκληρωτικός παράγοντας και στη συνέχεια να βρεθεί μία λύση.

\[
\begin{align*}
\text{(α')} & \quad 3xy + 2y^2 + (x^2 + 2xy)y' = 0.
\end{align*}
\]
(β') \[1 - xy + x(y - x)y' = 0, \quad x > 0. \]

8. Να δείξετε ότι κάθε εξίσωση χωριζομένων μεταβλητών είναι ακριβής.

9. Να εξετασθεί εάν κάθε μία από τις παρακάτω εξισώσεις είναι ομοιογενής. Εάν είναι να λυθεί

\[
\begin{align*}
(α') & \quad y' = \frac{y+x^2}{x^2} = \frac{y}{x}, \\
(β') & \quad y' = \ln y - \ln x, \\
(γ') & \quad y' = \frac{y}{x^2}.
\end{align*}
\]

(δ') \[\sqrt{x^2 + y^2} \, dx + y \, dy = 0, \quad x > 0. \]

(ε') \[xy' \sin \frac{y}{x} = y \sin \frac{x}{y} - x. \]

(ζ') \[xy' = y + xe^{y/x}. \]

10. Να λυθούν οι εξισώσεις

\[
\begin{align*}
(α') & \quad ty' + y = -ty^2, \\
(β') & \quad y' + \frac{2}{x}y = \frac{y^3}{x^2}, \\
(γ') & \quad y' + y = ty^3. \\
\end{align*}
\]

(δ') \[y' = -e^{-i}y^2 + y + e'. \]

(ε') \[y' + \frac{2}{x}y = \frac{y^2}{x^2}. \]

(ζ') \[y' = \frac{t^3(y - t)^2 + y}{t}, \quad y = t \text{ είναι μία λύση}. \]

11. Έστω ότι \(y_1 \) είναι λύση της εξίσωσης Riccati \(y' = p(x)y^2 + q(x)y + g(x) \). Να δείξετε ότι ο μετασχηματισμός \(y = hY + y_1 \) οδηγεί σε μία εξίσωση χωριζομένων μεταβλητών για την \(Y \), εάν η \(h \) είναι λύση μίας κατάλληλης γραμμικής εξίσωσης. Να βρεθεί η εξίσωση που ικανοποιεί \(Y \) και να λυθεί, και έτσι να υπολογισθεί η λύση \(y \).

12. Ας είναι \(y_1 \) και \(y_2 \) λύσεις της εξίσωσης Riccati \(y' = p(x)y^2 + q(x)y + g(x) \), και ας υποθέσουμε ότι καμία δεν είναι πολλαπλάσιο της άλλης. Σύμφωνα με το αποτέλεσμα της Άσκησης 2.16 οι \(\mu_i(x, y) = \frac{1}{(y - y_i)^2} e^{\int (2p(x)y + q(x)) \, dx} \), \(i = 1, 2 \), είναι ολοκληρωτικοί παράγοντες για την εξίσωση. Να δείξετε ότι η σχέση \(\frac{\mu_1(x, y)}{\mu_2(x, y)} = c \), όπου \(c \) μία σταθερά, ορίζει πεπληγμένα τις λύσεις της εξίσωσης.

13. Να δείξετε ότι η λύση της εξίσωσης Riccati μπορεί να εκφρασθεί από τη σχέση \(y = \frac{f + cg}{F + cG} \). όπου \(f, g, F, G \) είναι κατάλληλες συναρτήσεις και \(c \) είναι μία σταθερά.

14. Για την εξίσωση Riccati \(y' = ay^2 + bt^4 \), με \(a \) και \(b \) σταθερές, να δείξετε ότι η λύση μπορεί να εκφρασθεί σε κλειστή μορφή εάν \(\lambda = \frac{-4n}{2n + 1} \), όπου το \(n \) είναι μια αρνητικής ακέραιος. Αποδεικνύεται ότι η λύση δεν μπορεί να εκφρασθεί σε κλειστή μορφή εάν το \(\lambda \) δεν είναι της παραπάνω μορφής.
15. Να χαρακτηρισθεί κάθε εξίσωση σαν (i) χωρίζομένων μεταβλητών ή όχι, (ii) γραμμικά ή όχι, (iii) ακριβής ή όχι, (iv) ομοιογενής ή όχι, και στη συνέχεια να λυθεί

(a') $y' = y + \sin t$.
(b') $y' = y \sin t$.
(c') $x - e^t + 4y^3y' = 0$.
(d') $y' = \frac{\sin^2 y}{x}$.
(e') $ty' + y^2 = 1$.
(f') $ty' = \sqrt{1 + t^2} + 2y$.
(g') $2(t + yy') + e^y(1 + ty') = 0$.

16. Να λυθούν τα προβλήματα αρχικών τιμών

(a') $y' = \frac{1}{y} + \frac{y}{7}$, $y(1) = -4$.
(b') $(2y^2 + 4x^2) - xyy' = 0$, $y(1) = -2$.
(c') $y' = \frac{2y}{7} - \frac{1}{y}$, $y(1) = 3$.
(d') $\sqrt{y} + (x^2 + 4)y' = 0$, $y(0) = 4$.

17. Να βρεθούν οι ορθογώνιες τροχίες για κάθε μία από τις οικογένειες καμπτολών.

(a') $y = kt^2$.
(b') $y = (k + x)^{-1}$.
(c') $x^2 - y^2 = k$.
(d') $y = ke^{-x}$.

18. Εάν a και b είναι σταθερές, και λ είναι μία παράμετρος, να δειχθεί ότι η οικογένεια των καμπτολών

$$\frac{x^2}{a^2 + \lambda} + \frac{y^2}{b^2 + \lambda} = 1$$

ικανοποιεί μία εξίσωση, που δεν περιέχει το λ, η οποία παραμένει η ίδια εάν το y' αντικατασταθεί με $-1/y'$. Τι μας λέει το αποτέλεσμα αυτό για τις ορθογώνιες τροχίες της αρχικής οικογένειας?

19. Να λυθούν οι εξίσωσεις

(a') $y' = x^2 + 2xy + y^2$.
(b') $y' = \frac{x}{y} + \frac{1}{y}$.
(c') $yy'' = 2(y')^2$.

Δ.Ε. Πρώτης Τάξης
ΚΕΦΑΛΑΙΟ 3

Γραμμικές Διαφορικές Εξισώσεις Δεύτερης Τάξης

3.1 Εισαγωγή

Ένα γραμμικό πρόβλημα αρχικών τιμών δεύτερης τάξης αποτελείται από μία εξίσωση

\[p(t)y'' + q(t)y' + r(t)y = g(t), \]

(3.1)

μαζί με τις αρχικές συνθήκες

\[y(t_0) = y_0, \quad y'(t_0) = y_{01}. \]

(3.2)

Οι συντελεστές της εξίσωσης \(p(t), q(t), \) και \(r(t) \) καθώς και η συνάρτηση \(g(t) \) είναι συνήθως συνεχείς συναρτήσεις που ορίζονται σε κάποιο διάστημα \(I \) και \(t_0 \) είναι σημείο του \(I \).

Η εξίσωση (3.1) θα λέγεται ομοιογενής εάν το δεξίο μέλος είναι ταυτοτικά ίσο με μηδέν, δηλαδή \(g(t) \equiv 0 \), διαφορετικά θα λέγεται μη ομοιογενής.

Μία λύση της εξίσωσης (3.1) στο διάστημα \(I \) είναι μία \(C^2(I) \) συνάρτηση \(\phi(t) \) που ικανοποιεί την εξίσωση στο \(I \). Μία λύση του προβλήματος αρχικών τιμών (3.1), (3.2) είναι μία λύση της εξίσωσης η οποία επιτρέπει ικανοποιεί τις αρχικές συνθήκες, δηλαδή \(\phi(t_0) = y_0 \), και \(\phi'(t_0) = y_{01} \).

Υποθέτουμε ότι \(p(t) \neq 0 \), για κάθε \(t \) στο διάστημα \(I \), οπότε διαφορώνται και τα δύο μέλη της (3.1) με \(p(t) \) παίρνουμε μία εξίσωση στην οποία ο συντελεστής του \(y'' \) είναι 1.

Σχετικά με την ύπαρξη λύσεως ενός προβλήματος αρχικών τιμών έχουμε το ακόλουθο ανάλογο του Θεώρηματος ‘Υπαρξης και Μοναδικότητας του Κεφάλαιου 2

Θεώρημα 3.1. Εάν οι \(p, q \) και \(g \) είναι συνεχείς συναρτήσεις σε κάποιο ανοικτό διάστημα \(I \) και \(t_0 \) είναι σημείο του \(I \) τότε το πρόβλημα αρχικών τιμών

\[y'' + p(t)y' + q(t)y = g(t), \quad y(t_0) = y_0, \quad y'(t_0) = y_{01}, \]

(3.3)

όπου \(y_0 \) και \(y_{01} \) είναι αυθεντικές σταθερές, έχει μοναδική λύση στο \(I \).

Δίνουμε την απόδειξη του θεώρηματος σε γενικότερο πλαίσιο στο Κεφάλαιο 4, Θεώρημα 4.1.
Παράδειγμα 3.1. Να προσδιοριστεί το σημείο t_0 και να βρεθεί το μεγαλύτερο διάστημα ύπαρξης και μοναδικότητας της λύσης του προβλήματος αρχικών τιμών

$$y'' + \frac{1}{t-2}y' + \sqrt{t+1}y = \ln t, \quad y(t_0) = y_0, \quad y'(t_0) = y_{01}.$$

Η συνάρτηση $1/(t - 2)$ είναι συνεχής στο $(-\infty, 2) \cup (2, \infty)$, ενώ η $\sqrt{t+1}$ στο $[-1, \infty)$, και η $\ln t$ στο $(0, \infty)$. Έτσι το κοινό διάστημα ύπαρξης και συνέχειας των συντελεστών και του μη ομοιογενούς όρου της εξίσωσης είναι το $(2, \infty)$. Κατά συνέπεια, σύμφωνα με το Θεώρημα 3.1, για $t_0 > 2$ το προβλήμα αρχικών τιμών έχει μοναδική λύση στο διάστημα $(2, \infty)$.

Παρατήρηση 3.1. Έστω ότι η $\phi(t)$ είναι λύση της εξίσωσης $y'' + p(t)y' + q(t)y = 0$ στο διάστημα (a, b), στο οποίο οι συντελεστές $p(t)$ και $q(t)$ είναι συνεχείς, και έστω $\phi(t_0) = 0$, για κάποιο t_0 στο (a, b). Αν $\phi(t) \neq 0$, να δειχθεί ότι $\phi(t_0) \neq 0$.

Ας υποθέσουμε ότι $\phi(t_0) = 0$. Τότε η $\phi(t)$ θα είναι η λύση του προβλήματος αρχικών τιμών

$$y'' + p(t)y' + q(t)y = 0, \quad y(t_0) = 0, \quad y'(t_0) = 0.$$

Όμως και η $y \equiv 0$ είναι λύση του ιδίου προβλήματος, οπότε από το Θεώρημα 3.1 (μοναδικότητα) έπεται ότι $\phi(t) \equiv 0$ που έφερθε σε αντίθεση με την υπόθεση $\phi(t) \neq 0$. Λοιπόν $\phi(t_0) \neq 0$.

Το αριστερό μέλος της εξίσωσης στην (3.3) μπορούμε να το δούμε σαν το αποτέλεσμα της δράσης ενός τελεστή, δηλαδή μίας συνάρτησης, στη συνάρτηση y. Συγκεκριμένα αν ορίσουμε

$$L[y] := y'' + p(t)y' + q(t)y,$$ \hspace{1cm} (3.4)

τότε ο L είναι ένας διαφορικός τελεστής που δρα πάνω σε συναρτήσεις που είναι δύο φορές παραγωγήδες. Έχοντας ορίσει τον L στην (3.4) μπορούμε να γράψουμε την εξίσωση στην (3.3) στη μορφή

$$L[y] = g.$$

Ο τελεστής L είναι ένας γραμμικός τελεστής. Πραγματικά αν y_1, y_2 είναι δύο φορές παραγωγήδες συναρτήσεις ορισμένες σε κάποιο διάστημα I, και c_1, c_2 είναι σταθερές τότε $L[y] = 0$ είναι

$$L[c_1y_1 + c_2y_2] = (c_1y_1 + c_2y_2)'' + p(t)(c_1y_1 + c_2y_2)' + q(t)(c_1y_1 + c_2y_2)$$

$$= (c_1y_1'' + c_2y_2'') + p(t)(c_1y_1' + c_2y_2') + q(t)(c_1y_1 + c_2y_2)$$

$$= c_1(y_1'') + p(t)y_1' + q(t)y_1 + c_2(y_2'') + p(t)y_2' + q(t)y_2$$

$$= c_1L[y_1] + c_2L[y_2].$$

Απόρροια της γραμμικότητας του τελεστή L είναι το

Θεώρημα 3.2 (Αρχή της Υπέρβεσης). Εάν y_1, y_2 είναι λύσεις της ομοιογενούς εξίσωσης

$$L[y] = y'' + p(t)y' + q(t)y = 0,$$ \hspace{1cm} (3.5)

τότε κάθε γραμμικός συνδυασμός τους $c_1y_1 + c_2y_2$, όπου c_1 και c_2 είναι σταθερές, είναι επίπεδη λύση της ομοιογενούς εξίσωσης.
3.1 Εισαγωγή

Απόδειξη. Οι \(y_1, y_2 \) είναι λύσεις της εξίσωσης, επομένως θα είναι \(L[y_1] = 0 \) και \(L[y_2] = 0 \). Έτσι

\[
L[c_1 y_1 + c_2 y_2] = c_1 L[y_1] + c_2 L[y_2] = c_1 0 + c_2 0 = 0,
\]

άρα \(c_1 y_1 + c_2 y_2 \) είναι λύση της (3.5).

\[\square\]

Παρατήρηση 3.2. Εάν τώρα \(y_* \) είναι λύση της μη ομοιογενούς εξίσωσης \(y'' + p(t)y' + q(t)y = g(t) \), ενώ \(y_1 \) είναι λύση της αντίστοιχης ομοιογενούς \(y'' + p(t)y' + q(t)y = 0 \), τότε ο γραμμικός συνδυασμός

\(c_1 y_1 + y_* \),

όπου \(c_1 \) είναι μία σταθερά, είναι λύση της μη ομοιογενούς εξίσωσης. Πραγματικά όπως στην απόδειξη του Θεώρηματος 3.2, θα είναι

\[
L[c_1 y_1 + y_*] = c_1 L[y_1] + L[y_*] = c_1 0 + g = g.
\]

Παράδειγμα 3.2. Αφού δειχθεί ότι οι συναρτήσεις

\[
y_1(t) = e^{2t} \cos t, \quad y_2(t) = e^{2t} \sin t
\]

είναι λύσεις της εξίσωσης \(y'' - 4y' + 5y = 0 \), να βρεθεί \(y_* \) λύση που υιοθετούμε τις αρχικές συνθήκες \(y(0) = 1 \) και \(y'(0) = -1 \).

Αρχικά υπολογίζουμε

\[
y_1' = 2e^{2t} \cos t - e^{2t} \sin t, \quad y_1'' = 3e^{2t} \cos t - 4e^{2t} \sin t,
\]

οπότε

\[
y_1'' - 4y_1' + 5y_1 = 3e^{2t} \cos t - 4e^{2t} \sin t - 8e^{2t} \cos t + 4e^{2t} \sin t + 5e^{2t} \cos t = 0,
\]

άρα \(y_1 \) είναι λύση της εξίσωσης. Παρόμοια δείχνεται ότι και \(y_2 \) υιοθετούμε την εξίσωση. Επειδή ο γραμμικός συνδυασμός λύσεων είναι λύση της εξίσωσης, δοκιμάζουμε τη λύση

\[
y = c_1 y_1(t) + c_2 y_2(t) = c_1 e^{2t} \cos t + c_2 e^{2t} \sin t,
\]

με το σκέπτικο ότι οι δύο σταθερές \(c_1 \) και \(c_2 \) θα προσδιοριστούν από τις δύο αρχικές συνθήκες. Πραγματικά βρίσκουμε

\[
y(0) = c_1 = 1, \quad y'(0) = 2c_1 + c_2 = -1,
\]

απ’ όπου προκύπτει ότι \(c_2 = -3 \). Έτσι η λύση του προβλήματος αρχικών τιμών είναι η

\[
y = e^{2t} \cos t - 3e^{2t} \sin t.
\]

όπου, σύμφωνα με το Θεώρημα 3.1, είναι και η μοναδική.
Ένας άλλος τύπος προβλήματος για δευτεροτάξιες γραμμικές εξισώσεις είναι αυτός όπου οι αρχικές συνθήκες (3.2) αντικαθίστανται από τις
\[y(a) = y_a, \quad y(b) = y_b, \]
όπου \(a \) και \(b \) είναι σημεία του διαστήματος \(I \), δηλαδή αντί για τις αρχικές συνθήκες έχουμε την περιγραφή της λύσης στα άκρα ενός διαστήματος \([a, b] \). Στις περιπτώσεις αυτές το πρόβλημα (3.1), (3.6) λέγεται πρόβλημα συνοριακών τιμών. Γενικότερα σε ένα πρόβλημα συνοριακών τιμών μπορούμε να έχουμε τις συνοριακές συνθήκες
\[\alpha_1 y(a) + \beta_1 y'(a) = y_a, \quad \alpha_2 y(b) + \beta_2 y'(b) = y_b, \]
όπου \(\alpha_i, \beta_i, \ i = 1, 2 \) είναι σταθερές τέτοιες ώστε τουλάχιστον μία από τις \(\alpha_1 \) και \(\beta_1 \) είναι διάφορη του μηδενού, και τουλάχιστον μία από τις \(\alpha_2 \) και \(\beta_2 \) είναι διάφορη του μηδενού, δηλαδή \((\alpha_1, \beta_1) \neq (0, 0)\), και \((\alpha_2, \beta_2) \neq (0, 0)\).

Άσκηση 3.1. Όλες οι λύσεις της εξίσωσης \(y'' + y = 0 \) δίνονται από τη σχέση
\[y = c_1 \cos t + c_2 \sin t, \]
όπου \(c_1 \) και \(c_2 \) είναι σταθερές. Να δείξετε ότι
1. Υπάρχει μοναδική λύση που ικανοποιεί τις συνοριακές συνθήκες \(y(0) = 1 \) και \(y(\pi/2) = 1 \).
2. Δεν υπάρχει λύση που ικανοποιεί τις συνοριακές συνθήκες \(y(0) = 1 \) και \(y(\pi) = 1 \).
3. Υπάρχουν άτειρες λύσεις που ικανοποιούν τις συνοριακές συνθήκες \(y(0) = 1 \) και \(y(\pi) = -1 \).

Άσκηση 3.2. Εάν \(y \) είναι λύση της εξίσωσης
\[y'' + p(t)y' + q(t)y = 0 \]
orίζουμε \(z = y'/y \). Να δείξετε ότι \(z \) ικανοποιεί την εξίσωση Riccati
\[z' + z^2 + p(t)z + q(t) = 0. \]

Να δείξετε επίσης ότι η αντικατάσταση \(y = \exp(\int z) \) μετασχηματίζει την \(z \)-εξίσωση πίσω στην \(y \)-εξίσωση.

Άσκηση 3.3. Θεωρούμε την ομοιογενή εξίσωση
\[y'' + p(t)y' + q(t)y = 0 \]
kαι orίζουμε
\[v(t) = \exp\left(-\frac{1}{2} \int p(t) \, dt \right). \]

Να δείξετε ότι η αντικατάσταση \(y = vu \) μετασχηματίζει την \(y \)-εξίσωση στην
\[u'' + f(t)u = 0, \]
όπου \(f \) είναι μία κατάλληλη συνάρτηση. Η τελευταία εξίσωση λέγεται κανονική μορφή της ομοιογενούς γραμμικής εξίσωσης δεύτερης τάξης.
3.2 Κατασκευάζοντας μία δεύτερη λύση από μία υπάρχουσα – Υποβιβασμός της τάξης

Θεωρούμε μία ομοιογενή γραμμική εξίσωση δεύτερης τάξης γραμμένη στη μορφή

\[y'' + p(t)y' + q(t)y = 0, \quad (3.7) \]

και ας υποθέσουμε ότι \(y_1 \) είναι μία λύση της. Αναζητούμε μία δεύτερη λύση της μορφής \(y = y_1u \), όπου \(u \) είναι μία συνάρτηση που πρέπει να προσδιοριστεί. Παραγωγίζοντας και αντικαθιστώντας στην εξίσωση θα έχουμε

\[
(y_1'' + p(t)y_1' + q(t)y_1)u + y_1u'' + (p(t)y_1 + 2y_1')u' = 0,
\]

και επειδή \(y_1 \) είναι λύση της αρχικής εξίσωσης (3.7), καταλήγουμε στην

\[
y_1u'' + (p(t)y_1 + 2y_1')u' = 0.
\]

Η τελευταία εξίσωση είναι στην πραγματικότητα μία (γραμμική) εξίσωση χωρίζομένων μεταβλητών πρώτης τάξης για την \(w = u' \). Έτσι για \(y_1 \neq 0 \), είναι

\[
\frac{u''}{u'} + 2 \frac{y_1'}{y_1} = -p(t),
\]

απ' όπου ολοκληρώνοντας βρίσκουμε

\[
\ln |u'| + 2 \ln |y_1| = - \int p(t) \, dt + c \quad \Rightarrow \ln |y'_1| = - \int p(t) \, dt + c \quad \Rightarrow \quad u' = c_1 \frac{1}{y_1} e^{-\int p(t) \, dt},
\]

και ολοκληρώνοντας ακόμη μία φορά

\[
u = c_1 \int \frac{1}{y_1^2(t)} e^{-\int p(t) \, dt} \, dt + c_2.
\]

Επιλέγοντας \(c_1 = 1 \) και \(c_2 = 0 \) έχουμε τελικά ότι \(n \)

\[
y_2(t) = y_1(t) \int \frac{1}{y_1^2(t)} e^{-\int p(t) \, dt} \, dt
\]

(3.8)

είναι μία δεύτερη λύση της (3.7) εκεί όπου \(y_1(t) \neq 0 \).

Παράδειγμα 3.3. Όπως εύκολα μπορεί να διαπιστωθεί η \(y_1(t) = t^2 \) είναι μία λύση της εξίσωσης

\[
2t^2y'' - ty' - 2y = 0, \quad t > 0.
\]

Να βρεθεί μία δεύτερη λύση της εξίσωσης.

Αφού πρώτα γράψουμε την εξίσωση στη μορφή (3.7), δηλαδή

\[
y'' - \frac{1}{2t}y' - \frac{1}{t^2}y = 0, \quad t > 0,
\]
εφαρμόζουμε τον τύπο (3.8). Έτσι βρίσκουμε
\[- \int p(t) \, dt = \int \frac{1}{2t} \, dt = \ln(\sqrt{t}) + c \Rightarrow e^{-\int p(t) \, dt} = e^{\ln(\sqrt{t}) + c} = c_1 \sqrt{t},\]
όταν \(c, c_1\) είναι σταθερές. Από την (3.8) υπολογίζουμε
\[y_2 = t^2 \int \frac{c_1 \sqrt{t}}{t^4} \, dt = c_1 t^2 \int t^{-7/2} \, dt = \frac{2c_1}{5} t^{-1/2} + c_2 t^2.\]
Έτσι μπορούμε να επιλέξουμε (γιατί) \(y_2(t) = t^{-1/2}\).

3.3 Γραμμική Εξάρτηση – Ανεξαρτησία

Στη συνέχεια θεωρούμε το πρόβλημα αρχικών τιμών
\[y'' + p(t)y' + q(t)y = 0, \quad y(t_0) = y_0, \quad y'(t_0) = y_{01}. \tag{3.9}\]
όπου οι συντελεστές \(p(t)\) και \(q(t)\) είναι συνεχείς συναρτήσεως σε κάποιο ανοικτό διάστημα \(I\) που περιέχει το \(t_0\). Έστω τώρα ότι οι \(y_1\) και \(y_2\) είναι λύσεις της ομοιογενούς εξίσωσης. Σκεφτόμενοι, ότι το Παράδειγμα 3.2, ότι οι δύο αρχικές συνθήκες προσδιορίζουν τις σταθερές, αναζητούμε τη λύση στη μορφή
\[y = c_1 y_1 + c_2 y_2, \tag{3.10}\]
όπου \(c_1\) και \(c_2\) είναι δύο σταθερές. Τότε θα πρέπει να ικανοποιούνται οι εξίσωσεις
\[c_1 y_1(t_0) + c_2 y_2(t_0) = y_0 \]
\[c_1 y'_1(t_0) + c_2 y'_2(t_0) = y_{01},\]
ή, ισοδύναμα, γράφοντας το σύστημα σαν εξίσωση πινάκων να ισχύει
\[\begin{bmatrix} y_1(t_0) & y_2(t_0) \\ y'_1(t_0) & y'_2(t_0) \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_{01} \end{bmatrix}. \tag{3.11}\]
Από γνωστό αποτέλεσμα της Γραμμικής Αλγεβράς γνωρίζουμε ότι το σύστημα (3.11) έχει μοναδική λύση τότε και μόνον τότε όταν η ορίζουσα του πίνακα των συντελεστών είναι διάφορη του μηδενός, δηλαδή
\[\det \begin{bmatrix} y_1(t_0) & y_2(t_0) \\ y'_1(t_0) & y'_2(t_0) \end{bmatrix} \neq 0. \tag{3.12}\]
Στη περίπτωση αυτή η λύση του προβλήματος αρχικών τιμών (3.9) δίνεται από την (3.10) όπου οι σταθερές \(c_1\) και \(c_2\) δίνονται από την
\[\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_{01} \end{bmatrix} \begin{bmatrix} y_1(t_0) & y_2(t_0) \\ y'_1(t_0) & y'_2(t_0) \end{bmatrix}^{-1}. \tag{3.13}\]
3.3 Γραμμική Εξάρτηση – Ανεξάρτητα

Από τη Γραμμική Άλγεβρα γνωρίζουμε ότι η (3.12) ισχύει όταν και μόνον όταν οι στίλες του πίνακα των συντελεστών είναι γραμμικά ανεξάρτητα διανύσματα. Θυμόμαστε ότι τα διανύσματα \(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n \) ενός διανυσματικού χώρου λέγονται γραμμικά εξαρτημένα εάν ισχύει οι σταθερές \(c_1, c_2, \ldots, c_n \) όχι όλες ίσες με μικρότερη, έτσι ώστε

\[
c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_n \mathbf{v}_n = 0,
\]

όπου \(0 \) είναι το μηδενικό διάνυσμα. Ανάλογα έχουμε

Ορισμός 3.1. Οι συναρτήσεις \(f_1, f_2, \ldots, f_n \) ορισμένες σε κάποιο διάστημα \(I \) λέγονται γραμμικά εξαρτημένες στο διάστημα \(I \), εάν ισχύει οι σταθερές \(c_1, c_2, \ldots, c_n \) όχι όλες ίσες με μικρότερη, έτσι ώστε

\[
c_1 f_1(t) + c_2 f_2(t) + \cdots + c_n f_n(t) = 0 \quad (3.14)
\]

gια όλα τα \(t \) στο \(I \). Οι συναρτήσεις \(f_1, f_2, \ldots, f_n \) λέγονται γραμμικά ανεξάρτητες στο διάστημα \(I \), εάν δεν είναι γραμμικά εξαρτημένες στο \(I \).

Εάν οι συναρτήσεις \(f_1, f_2, \ldots, f_n \) είναι γραμμικά εξαρτημένες και εάν \(c_k \neq 0 \), για κάποιο \(0 \leq k \leq m \), τότε από τη σχέση (3.14) προκύπτει ότι

\[
f_k(t) = \sum_{m \neq k} \left(-\frac{c_m}{c_k} \right) f_m(t)
\]

που μας λέει ότι τουλάχιστον μία από τις συναρτήσεις μπορεί να εκφράστει σαν γραμμικός συνδυασμός των υπολοίπων. Το αντίστροφο είναι επίσης αληθινό. Πραγματικά εάν

\[
f_k(t) = \sum_{m \neq k} c_m f_m(t),
\]

tότε θα είναι

\[
\sum_{m \neq k} c_m f_m(t) + (-1) f_k(t) = 0,
\]

dηλαδή η σχέση (3.14) κανονοποιείται με \(c_k = -1 \). Ισχύει λοιπόν ότι ένα σύνολο συναρτήσεων είναι γραμμικά εξαρτημένες τότε και μόνο τότε όταν μία (τουλάχιστον) από τις συναρτήσεις αυτές γράφεται σαν γραμμικός συνδυασμός των υπολοίπων.

Εάν τώρα οι συναρτήσεις \(f_1, f_2, \ldots, f_n \) είναι γραμμικά ανεξάρτητες, τότε η σχέση (3.14) ισχύει μόνο για \(c_1 = c_2 = \ldots = c_n = 0 \), και έτσι καμία από τις συναρτήσεις αυτές δεν μπορεί να εκφραστεί σαν γραμμικός συνδυασμός των υπολοίπων.

Παράδειγμα 3.4. Οι συναρτήσεις \(f_1(t) = |t| \) και \(f_2(t) = t \) είναι

1. Γραμμικά εξαρτημένες στο \((0, \infty)\).
2. Γραμμικά ανεξάρτητες στο \((-\infty, \infty)\).
Πραγματικά στο \((0, \infty)\) είναι \(f_1(t) = f_2(t)\), διπλάσιος η μία συνάρτηση είναι σταθερό πολλαπλάσιο της άλλης, ή ακόμη η σχέση (3.14) επαληθεύεται για μια μηδενικές σταθερές, για παράδειγμα \(f_1(t) - f_2(t) = 0\).

Η υπόθεση τώρα ότι οι \(f_1(t)\) και \(f_2(t)\) είναι γραμμικά εξαρτημένες στο \((-\infty, \infty)\) οδηγεί στο συμπέρασμα ότι \(|c| = ct\), όπου \(c\) είναι μία σταθερά. Αυτό όμως είναι άτοπο για \(t < 0\) προκύπτει ότι \(c = -1\), ενώ για \(t > 0\) έπειτα ότι \(c = 1\). Συμπεραίνουμε λοιπόν ότι οι \(f_1(t)\) και \(f_2(t)\) είναι γραμμικά ανεξάρτητες στο \(\mathbb{R}\).

Άσκηση 3.4.

Να δειχθεί ότι τα παρακάτω ζεύγη συναρτήσεων

1. \(\sin at, \cos at\), για \(t \in \mathbb{R}\)
2. \(\sin at, \sin bt\), με \(a \neq \pm b\), για \(t \in \mathbb{R}\)
3. \(e^{at}, e^{bt}\), με \(a \neq b\), για \(t \in \mathbb{R}\)
4. \(t^n, t^m\), με \(n \neq m\), για \(t \geq 0\)

αποτελούνται από γραμμικά ανεξάρτητες συναρτήσεις. Οι σταθερές \(a\) και \(b\) είναι πραγματικοί αριθμοί, ενώ τα \(n\) και \(m\) είναι φυσικοί αριθμοί.

Θεώρημα 3.3.

Έστω ότι οι \(y_1\) και \(y_2\) είναι λύσεις της ομοιογενούς εξίσωσης στην (3.9) σε κάποιο ανοικτό διάστημα \(I\). Οι \(y_1\) και \(y_2\) είναι γραμμικά ανεξάρτητες στο \(I\) όταν και μόνον όταν

\[
\begin{vmatrix}
 y_1(t) & y_2(t) \\
 y'_1(t) & y'_2(t)
\end{vmatrix} \neq 0,
\]

για κάθε \(t\) στο \(I\).

Απόδειξη. Ας συμβολίσουμε με \(W(y_1, y_2)(t)\) την ορίζουσα στην (3.15). Δείχνουμε πρώτα ότι εάν για κάποιο σημείο \(t_0\) του \(I\) ισχύει \(W(y_1, y_2)(t_0) \neq 0\) τότε οι \(y_1\), \(y_2\) είναι γραμμικά ανεξάρτητες. Δύναμαι την απόδειξη με την εις άτομο απαγωγή. Ας υποθέσουμε ότι οι \(y_1\), \(y_2\) είναι γραμμικά εξαρτημένες. Τότε θα υπάρχει μία σταθερά \(c\) τέτοια ώστε \(y_1(t) = cy_2(t)\) για όλα τα \(t\) στο \(I\). Τότε όμως για \(t = t_0\) θα είναι

\[
\begin{vmatrix}
 y_1(t_0) & y_2(t_0) \\
 y'_1(t_0) & y'_2(t_0)
\end{vmatrix} = c y_2(t_0) y'_2(t_0) - y_2(t_0) y'_2(t_0) = 0.
\]

Αυτό όμως έρχεται σε αντίθεση με την (3.15). Η υπόθεση λοιπόν ότι οι \(y_1\), \(y_2\) είναι γραμμικά εξαρτημένες οδηγεί σε άτοπο, επομένως είναι γραμμικά ανεξάρτητες.

Έστω τώρα ότι οι \(y_1\) και \(y_2\) είναι γραμμικά ανεξάρτητες στο \(I\) και ας υποθέσουμε ότι η ορίζουσα στην \(W(y_1, y_2)\) μιδωνίζεται για κάποιο \(t_0\) στο \(I\). Αυτό σημαίνει ότι οι στιλές του πίνακα

\[
\begin{vmatrix}
 y_1(t_0) & y_2(t_0) \\
 y'_1(t_0) & y'_2(t_0)
\end{vmatrix}
\]

είναι γραμμικά εξαρτημένες, υπάρχει διπλάσιο σταθερά \(c\) τέτοια ώστε

\[
\begin{vmatrix}
 y_1(t_0) & y_2(t_0) \\
 y'_1(t_0) & y'_2(t_0)
\end{vmatrix} = c \begin{vmatrix}
 y_2(t_0) \\
 y'_2(t_0)
\end{vmatrix}
\]

Συνήθεις Λαμπρόφων Εξειδίκευσης ΕΣ — 12 Μαρτίου 2021
3.3 Γραμμική Εξάρτηση – Ανεξάρτητες

Αρα θα είναι \(y_1(t_0) = cy_2(t_0) \) και \(y'_1(t_0) = cy'_2(t_0) \), συνεπάγεται λοιπόν ότι οι συναρτήσεις \(y_1 \) και \(y_2 \) ικανοποιούν τις ιδιότητες συνδιάστημα και διάστημα που ισχύουν από το θεώρημα 3.1. Επειδή ορίζονται τις συναρτήσεις \(y_1 \) και \(y_2 \) είναι γραμμικά ανεξάρτητες. Καταλήξαμε λοιπόν σε απότομο γιατί υποθέσαμε ότι \(W(y_1, y_2)(t_0) = 0 \) για κάποιο \(t_0 \) στο \(I \) και ότι \(W(y_1, y_2)(t) \) ή και για όλα τα \(t \) στο \(I \).

Ορισμός 3.2. Η ορίζουσα στην (3.15) λέγεται ορίζουσα Wronski των συναρτήσεων \(y_1, y_2 \) και συμβολίζεται με \(W(y_1, y_2)(t) \). Γενικότερα η ορίζουσα Wronski των συναρτήσεων \(f_1, f_2, \ldots, f_n \) ορίζεται από τη σχέση

\[
W(f_1, f_2, \ldots, f_n)(t) = \det \begin{bmatrix} f_1 & f_2 & \cdots & f_n \\ f'_1 & f'_2 & \cdots & f'_n \\ \vdots & \vdots & \ddots & \vdots \\ f^{(n-1)}_1 & f^{(n-1)}_2 & \cdots & f^{(n-1)}_n \end{bmatrix}.
\] (3.16)

Ασκση 3.5. Να δείξεις ότι οι λύσεις \(y_1 \) και \(y_2 \) της ομοιογενούς εξίσωσης (3.7), όπου \(y_2 \) και η διαστάση της εξίσωσης, τότε και μόνον τότε όταν η ορίζουσα Wronski \(W(y_1, y_2) \) είναι διάφορη του μικρού για ισχυρά, οι \(y_1 \) και \(y_2 \) είναι γραμμικά ανεξάρτητες.

3.3.1 Η ορίζουσα Wronski

Στην υποσεγιασμό αυτή συμπεριέλαμβανε κάποια αποτελέσματα σχετικά με την ορίζουσα Wronski.

Πρόταση 3.1. Εάν \(y_1 \) και \(y_2 \) είναι λύσεις της ομοιογενούς εξίσωσης στην (3.9) σε κάποιο ανωτέρο διάστημα \(I \), τότε η ορίζουσα Wronski \(W(y_1, y_2) \) των δύο λύσεων είναι διαφορικά της τιμής \(t \) στο \(I \), και ισόζει \(W(t) \).

Απόδειξη. Οι λύσεις \(y_1 \) και \(y_2 \) έχουν γραμμικά ανεξάρτητες, ή γραμμικά εξαρτημένες. Στη πρώτη περίπτωση, σύμφωνα με το θεώρημα 3.3 θα είναι \(W(y_1, y_2) \) αναιρετική για κάθε \(t \) στο \(I \), ενώ στη δεύτερη περίπτωση θα υπάρχει σταθερά \(c \) για \("2(t) = cy_2(t) \) για όλα \(t \) στο \(I \). Τότε άρα είναι

\[
W(y_1, y_2)(t) = \begin{vmatrix} cy_2(t) & y_2(t) \\ cy'_2(t) & y'_2(t) \end{vmatrix} = 0
\]

για κάθε \(t \) στο \(I \).

Ασκση 3.6. Ας είναι \(y_1 \neq y_2 \) δύο λύσεις της ομοιογενούς εξίσωσης \(y'' + p(t)y' + q(t)y = 0 \), όπου οι \(p(t) \) και \(q(t) \) είναι συνεχείς συναρτήσεις στο διάστημα \((a, b) \), και έστω \(t_0 \) ένα σημείο του \((a, b) \).

Να δείξεις ότι

1. Εάν \(y_1(t_0) = y_2(t_0) = 0 \), τότε οι \(y_1 \), \(y_2 \) είναι γραμμικά εξαρτημένες στο \((a, b) \).
(2) Εάν οι \(y_1 \) και \(y_2 \) έχουν τοπικό ακρότατο στο \(t_0 \), τότε είναι γραμμικά εξαρτημένες στο \((a, b)\).

Πρόταση 3.2 (Ταυτότητα του Abel). Εάν \(y_1 \) και \(y_2 \) είναι λύσεις της ομοιογενούς εξίσωσης στην (3.9) σε κάποιο ανοικτό διάστημα \(I \), τότε η ορίζουσα Wronski \(W(t) := W(y_1, y_2)(t) \) των δύο λύσεων δίνεται από τη σχέση

\[
W(t) = W(t_0) e^{-\int_{t_0}^{t} p(s)ds},
\]

(3.17)

όπου \(t_0 \) είναι κάποιο σημείο στο \(I \).

Απόδειξη. Οι συναρτήσεις \(y_1 \) και \(y_2 \) ικανοποιούν τις εξισώσεις

\[
y_1'' + p(t)y_1' + q(t)y_1 = 0
\]

\[
y_2'' + p(t)y_2' + q(t)y_2 = 0.
\]

Πολλαπλασιάζοντας τη πρώτη εξίσωση με \(y_2 \), τη δεύτερη με \(y_1 \) και αφαιρώντας κατά μέλη προκύπτει η εξίσωση

\[
y_1''y_2 - y_2''y_1 + p(t)(y_1'y_2 - y_2'y_1) = 0,
\]

ή ισοδύναμα (γιατί;) \(W' + p(t)W = 0 \).

(3.18)

Πολλαπλασιάζοντας πρώτα την (3.18) με τον ολοκληρωτικό παράγοντα \(\exp(\int_{t_0}^{t} b(s)ds) \), όπου \(t_0 \) είναι κάποιο σημείο στο \(I \), και κατόπιν ολοκληρώνοντας βρίσκουμε τη λύση (3.17). □

Παρατηρούμε ότι το αποτέλεσμα της Πρότασης 3.1 είναι απόδοση της σχέσης (3.17).

Ασκηση 3.7. Εξετάστε κατά πόσον κάθε μία από τις παρακάτω συναρτήσεις μπορεί να είναι η ορίζουσα Wronski στο διάστημα \((-1, 1)\) για κάποια ομοιογενή γραμμική εξίσωση δεύτερης τάξης με συνεχείς συντελεστές στο \((-1, 1)\).

(1) \(w(t) = 2e^{-t} \).

(2) \(w(t) = (t + 1)^{-1} \).

(3) \(w(t) = t^2 \).

(4) \(w(t) = 0 \).

Ασκηση 3.8. Να βρεθεί η ορίζουσα Wronski δύο λύσεων της εξίσωσης \(ty'' + (t - 1)y' + y = 0 \) στο διάστημα \((0, \infty)\).

Στο Θεώρημα 3.3 δείχθηκε ότι εάν οι \(y_1, y_2 \) είναι λύσεις της \(py' + qy = 0 \), σε κάποιο διάστημα \(I \), και εάν \(W(y_1, y_2)(t_0) \neq 0 \) για κάποιο \(t_0 \) στο \(I \), τότε οι \(y_1, y_2 \) είναι γραμμικά ανεξάρτητες. Στην απόδειξη δεν χρησιμοποιήθηκε το γεγονός ότι οι \(y_1, y_2 \) είναι λύσεις της εξίσωσης. Μία γενικευση του αποτελέσματος αυτού παρέχεται από το

Θεώρημα 3.4 (Κριτήριο Γραμμικής Ανεξαρτησίας). Έστω ότι οι συναρτήσεις \(f_1, f_2, \ldots, f_n \) έχουν τουλάχιστον \(n - 1 \) τάξης παραγώγους σε κάποιο ανοικτό διάστημα \(I \). Εάν η ορίζουσα

\[
\det \begin{bmatrix} f_1 & f_2 & \cdots & f_n \\ f_1' & f_2' & \cdots & f_n' \\ \vdots & \vdots & \cdots & \vdots \\ f_1^{(n-1)} & f_2^{(n-1)} & \cdots & f_n^{(n-1)} \end{bmatrix}
\]

(3.19)
3.4 Θεμελιώδεις Λύσεις και Γενικές Λύσεις

eίναι μη μηδενικά σε ένα τουλάχιστον σημείο του διαστήματος \(I \), τότε οι συναρτήσεις \(f_1, f_2, \ldots, f_n \) είναι γραμμικά ανεξάρτητες στο διάστημα.

Απόδειξη. Αφίνεται σαν άσκηση. □

Πρόταση 3.1. Εάν οι συναρτήσεις \(f_1, f_2, \ldots, f_n \) είναι τουλάχιστον \(n - 1 \) φορές παραγωγήσιμες και είναι γραμμικά εξαρτημένες στο \(I \), τότε

\[
W(f_1, f_2, \ldots, f_n)(t) = 0,
\]

για κάθε σημείο \(t \) στο διάστημα \(I \).

Απόδειξη. Αφίνεται σαν άσκηση. □

3.4 Θεμελιώδεις Λύσεις και Γενικές Λύσεις

Θεωρούμε την εξίσωση

\[
y'' + p(t)y + q(t)y = g(t)
\]

και την αντίστοιχη ομοιογενή

\[
y'' + p(t)y + q(t)y = 0
\]

όπου οι συντελεστές \(p(t) \) και \(q(t) \) καθώς και ο μη ομοιογενής όρος \(g(t) \) είναι συνεχείς σε κάποιο ανοικτό διάστημα \(I \).

Ορισμός 3.3. Θα λέμε ότι οι λύσεις \(y_1 \) και \(y_2 \) της ομοιογενούς εξίσωσης (3.21) αποτελούν ένα θεμελιώδες σύνολο λύσεων για την ομοιογενή εξίσωση στο ανοικτό διάστημα \(I \) εάν είναι γραμμικά ανεξάρτητες στο \(I \).

Θεώρημα 3.5 (Υπορέξι Θεμελιώδους Συνόλου). Για την ομοιογενή γραμμική εξίσωση δεύτερης τάξης (3.21), όπου οι συντελεστές \(p(t) \) και \(q(t) \) είναι συνεχείς συναρτήσεις σε κάποιο ανοικτό διάστημα \(I \), υπάρχει στάντα ένα θεμελιώδες σύνολο λύσεων στο \(I \).

Απόδειξη. Εάν, σύμφωνα με το Θεώρημα 3.1, \(y_1 \) είναι η λύση της (3.21) που ικανοποιεί τις αρχικές συνθήκες \(y(t_0) = 1 \) και \(y'(t_0) = 0 \), όπου \(t_0 \in I \), και \(y_2 \) είναι η λύση της ιδίας εξίσωσης που ικανοποιεί τις αρχικές συνθήκες \(y(t_0) = 0 \) και \(y'(t_0) = 1 \), τότε

\[
W(y_1, y_2)(t_0) = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1.
\]

Έτσι, σύμφωνα με το Θεώρημα 3.3 και την Πρόταση 3.1, οι \(y_1, y_2 \) αποτελούν ένα θεμελιώδες σύνολο λύσεων για την ομοιογενή εξίσωση. □

Θεώρημα 3.6. Εάν οι \(y_1 \) και \(y_2 \) αποτελούν ένα θεμελιώδες σύνολο λύσεων της (3.21) σε κάποιο ανοικτό διάστημα \(I \), και εάν \(Y \) είναι μία λύση της ιδίας εξίσωσης στο \(I \), τότε υπάρχουν σταθερές \(c_1 \) και \(c_2 \) έτσι ώστε

\[
Y = c_1 y_1 + c_2 y_2.
\]
Απόδειξη. Από τον ορισμό του θεμελιώδους συνόλου λύσεων και το Θεώρημα 3.3 έπεται ότι

\[W(y_1, y_2)(t) \neq 0, \]

για όλα τα \(t \) στο \(I \), ειδικότερα \(W(y_1, y_2)(t_0) \neq 0 \) για κάποιο \(t_0 \in I \). Θα αποδείξουμε ότι υπάρχουν σταθερές \(c_1 \) και \(c_2 \) τέτοιες ώστε

\[c_1 y_1(t_0) + c_2 y_2(t_0) = Y(t_0), \quad c_1 y_1'(t_0) + c_2 y_2'(t_0) = Y'(t_0), \quad \text{(3.22)} \]

ή ισοδύναμα ότι το σύστημα (3.22) έχει λύση ως προς \(c_1 \) και \(c_2 \), οπότε από το Θεώρημα 3.1, (μοναδικότητα) θα έχουμε ότι \(Y = c_1 y_1 + c_2 y_2 \). Το σύστημα (3.22) γράφεται σαν εξίσωση πινάκων στη μορφή

\[
\begin{bmatrix}
 y_1(t_0) & y_2(t_0) \\
 y_1'(t_0) & y_2'(t_0)
\end{bmatrix}
\begin{bmatrix}
 c_1 \\
 c_2
\end{bmatrix}
= \begin{bmatrix}
 Y(t_0) \\
 Y'(t_0)
\end{bmatrix}
\quad \text{(3.23)}
\]

Εάν \(M \) είναι ο τετραγωνικός πίνακας στο αριστερό μέλος της (3.23), τότε η ορίζουσα του είναι η \(W(y_1, y_2)(t_0) \) που είναι διάφορη του μπιδενός. Άρα ο πίνακας \(M \) αντιστρέφεται και έτσι η εξίσωση (3.23) έχει μοναδική λύση η οποία δίνεται από τη σχέση

\[
c_1 = \frac{Y(t_0) y_2(t_0) - y_1(t_0) y_2'(t_0)}{W(y_1, y_2)(t_0)}, \quad c_2 = \frac{y_1(t_0) Y(t_0) - Y'(t_0) y_2(t_0)}{W(y_1, y_2)(t_0)} \quad \text{(3.24)}
\]

(τύπος του Cramer).

To αποτέλεσμα του Θεωρήματος 3.6 μας λέει ότι κάθε λύση της ομοιογενούς εξίσωσης εκφράζεται σαν γραμμικός συνδυασμός θεμελιώδων λύσεων. Έτσι σε ανάλογα με το αντίστοιχο αποτέλεσμα των γραμμικών εξίσωσεων πρώτης τάξης έχουμε

Ορισμός 3.4. Εάν οι \(y_1 \) και \(y_2 \) αποτελούν ένα θεμελιώδες σύνολο λύσεων για την (3.21) τότε η λύση

\[c_1 y_1 + c_2 y_2, \]

όπου \(c_1 \) και \(c_2 \) είναι αυθαίρετες σταθερές θα λέγεται γενική λύση της ομοιογενούς εξίσωσης.

Άσκηση 3.9. Δίνεται η εξίσωση

\[y'' + 5y' - 6y = 0. \]

(1) Να δειχθεί ότι το σύνολο \(E_1 = \{ e', e - e^{-6t} \} \) είναι ένα θεμελιώδες σύνολο λύσεων για την εξίσωση.

(2) Να δειχθεί ότι το σύνολο \(E_2 = \{ e', 3e + e^{-6t} \} \) είναι επίσης ένα θεμελιώδες σύνολο λύσεων για την εξίσωση.

(3) Αφού δειχθεί ότι η \(\phi(t) = e^{-6t} \) είναι λύση της εξίσωσης, να εκφραστεί η \(\phi \) πρώτα σαν γραμμικός συνδυασμός των στοιχείων του \(E_1 \), και έπεται σαν συνδυασμός των στοιχείων του \(E_2 \).

Για τη μη ομοιογενή εξίσωση (3.20), έχουμε το
3.5 Ομοιογενείς Εξισώσεις με Σταθερούς Συντελεστές

Theorema 3.7. Εάν y_p είναι μία λύση της μη ομοιογενούς εξίσωσης (3.20) και οι y_1, y_2 αποτελούν ένα θεμελιώδες σύνολο λύσεων της ομοιογενούς εξίσωσης (3.21), και εάν Y είναι μία λύση της μη ομοιογενούς εξίσωσης, τότε υπάρχουν σταθερές c_1 και c_2 έτσι ώστε

$$Y = c_1 y_1 + c_2 y_2 + y_p.$$

Απόδειξη. Εάν L είναι ο γραμμικός, διαφορικός τελεστής που ορίζεται από το αριστερό μέλος της μη ομοιογενούς εξίσωσης (3.20), και Y, y_p είναι λύσεις της μη ομοιογενούς εξίσωσης τότε

Δηλαδή η $Y - y_p$ είναι λύση της αντίστοιχης ομοιογενούς εξίσωσης (3.21), επομένως, σύμφωνα με το Θεώρημα 3.6, υπάρχουν σταθερές c_1 και c_2 έτσι ώστε

$$Y - y_p = c_1 y_1 + c_2 y_2,$$

απ' όπου έπειτα το συμπέρασμα. □

Ωρισμός 3.5. Εάν y_p είναι μία λύση της μη ομοιογενούς εξίσωσης και οι y_1 και y_2 αποτελούν ένα θεμελιώδες σύνολο λύσεων της αντίστοιχης ομοιογενούς εξίσωσης τότε η λύση

$$c_1 y_1 + c_2 y_2 + y_p,$$

όπου c_1 και c_2 είναι αυθαίρετες σταθερές, θα λέγεται γενικά λύση της μη ομοιογενούς εξίσωσης. Στη λύση y_p συνήθως αναφερόμαστε σαν ειδική λύση.

3.5 Ομοιογενείς Εξισώσεις με Σταθερούς Συντελεστές

Στη παράγοντα αυτή θεωρούμε εξισώσεις της μορφής

$$ay'' + by' + cy = 0,$$ (3.25)

όπου $a \neq 0$, b, c είναι πραγματικές σταθερές. Επειδή οι σταθερές συναρτήσεις είναι συνεχείς σε όλη την ευθεία, η εξίσωση (3.25) έχει λύσεις για όλα τα t στο $(-\infty, \infty)$. Ενδιαφέρομας να βρούμε τη γενική λύση της εξίσωσης. Επειδή $d^m e^t / dt^m = r^m e^t$, δοκιμάζουμε λύσεις της μορφής $y = e^{rt}$, όπου r είναι μία σταθερά. Αντικαθιστώντας στην εξίσωση βρίσκουμε διαδικασία

$$ar^2 e^{rt} + bre^{rt} + ce^{rt} = 0 \Rightarrow (ar^2 + br + c)e^{rt} = 0.$$

Παρατηρούμε λοιπόν ότι η $y = e^{rt}$ είναι λύση της (3.25) εάν και μόνον εάν το r είναι ρίζα της εξίσωσης

$$ar^2 + br + c = 0.$$ (3.26)

Την εξίσωση (3.26) ονομάζουμε χαρακτηριστική εξίσωση της (3.25). Η χαρακτηριστική εξίσωση, ανάλογα με πρόσημο της διακρίνουσας $b^2 - 4ac$ μπορεί να έχει (i) δύο πραγματικές ρίζες διαφορετικές μεταξύ τους, ή (ii) διπλή ρίζα, δηλαδή δύο πραγματικές ρίζες ίσες μεταξύ τους, ή (iii) δύο σύμμορφες μικρούς ρίζες. Σε όλες τις περιπτώσεις οι ρίζες της (3.26) δίνονται απ' την έκφραση

$$r_{1,2} = \frac{1}{2a} \left(-b \pm \sqrt{b^2 - 4ac}\right).$$

Διακρίνουμε λοιπόν αυτές τις περιπτώσεις.
3.5.1 Διακριτές Πραγματικές Ρίζες

Στα περίπτώσια που η διακρίνουσα $b^2 - 4ac$ είναι θετική έχουμε διακριτές πραγματικές ρίζες. Εάν r_1 και r_2 είναι οι ρίζες αυτές με $r_1 \neq r_2$, τότε $\exp(r_1 t)$ και $\exp(r_2 t)$ είναι λύσεις της (3.25). Επιπλέον η οριζοντική Wronski των συναρτήσεων αυτών είναι

$$W(e^{r_1 t}, e^{r_2 t}) = \begin{vmatrix} e^{r_1 t} & e^{r_2 t} \\ r_1 e^{r_1 t} & r_2 e^{r_2 t} \end{vmatrix} = (r_2 - r_1)e^{(r_1 + r_2)t} \neq 0,$$

από την υπόθεση. Οι συναρτήσεις ηπομένως $\exp(r_1 t)$ και $\exp(r_2 t)$ αποτελούν, σύμφωνα με το Θεώρημα 3.3, ένα θεμελιώδες σύνολο λύσεων. Έτσι η γενική λύση της ομοιογενούς εξίσωσης (3.25) στα περίπτώσια αυτά (r_1 και r_2 πραγματικές με $r_1 \neq r_2$) θα δίνεται από τη σχέση

$$y_h(t) := c_1 e^{r_1 t} + c_2 e^{r_2 t}, \quad (3.27)$$

όπου c_1 και c_2 είναι αυθαίρετες πραγματικές σταθερές.

Παράδειγμα 3.5. Να βρεθεί η λύση του προβλήματος αρχικών τιμών

$$y'' + y' - 2y = 0, \quad y(0) = 0, \quad y'(0) = -1.$$

Η χαρακτηριστική εξίσωση $r^2 + r - 2 = 0$ έχει ρίζες $r_1 = 1$ και $r_2 = -2$. Έτσι η γενική λύση της εξίσωσης δίνεται από τη σχέση

$$y(t) = c_1 e^t + c_2 e^{-2t}.$$

Οι αρχικές συνθήκες ικανοποιούνται εάν

$$c_1 + c_2 = 0$$
$$c_1 - 2c_2 = -1,$$

απ’ όπου βρίσκουμε $c_1 = -1/3$ και $c_2 = 1/3$, επομένως η (μοναδική) λύση του προβλήματος αρχικών τιμών είναι η

$$y(t) = -\frac{1}{3}e^t + \frac{1}{3}e^{-2t}.$$

Παράδειγμα 3.6. Να βρεθεί η γενική λύση της εξίσωσης

$$y'' - y = 0.$$

Η χαρακτηριστική εξίσωση είναι $r^2 - 1 = 0$, άρα $r = \pm 1$. Από την (3.27) βρίσκουμε ότι η γενική λύση είναι

$$y_h = c_1 e^t + c_2 e^{-t}.$$
3.5 Ομοιογενείς Εξισώσεις με Σταθερούς Συντελεστές

Παρόμοια βρίσκουμε ότι η γενική λύση της εξίσωσης

\[y'' - ay = 0, \quad a > 0 \] \tag{3.28}

eίναι

\[y_h(t) = c_1 e^{\sqrt{a}t} + c_2 e^{-\sqrt{a}t}, \] \tag{3.29}

όπου \(c_1 \) και \(c_2 \) είναι σταθερές.

Ασκηση 3.10. Να δείξουμε ότι η γενική λύση της (3.28) μπορεί να γραφεί στη μορφή

\[y_h(t) = c_1 \cosh \sqrt{a}t + c_2 \sinh \sqrt{a}t. \] \tag{3.30}

3.5.2 Διπλά Ρίζα

Διπλά ρίζα έχουμε στην περίπτωση που η διακρίνουσα της χαρακτηριστικής εξίσωσης είναι ίση με μηδέν. Εάν \(r \) είναι αυτή η ρίζα, τότε \(r = -b/(2a) \) (γιατί, και η συνάρτηση \(\exp(rt) \) είναι μία λύση της ομοιογενούς εξίσωσης (3.25). Για τη γενική όμως λύση της εξίσωσης χρειάζεται μία δεύτερη λύση γραμμικά ανεξάρτητη από την \(\exp(rt) \). Σαν μία τέτοια παίρνουμε αυτή που κατασκευάζεται με το μέθοδο υποβάθμισης της τάξης, δηλαδή αυτή που δίνεται από τη σχέση (3.8), να οποία, σύμφωνα με την Ασκηση 3.5 μάζι με την \(\exp(rt) \) αποτελούν ένα θεμελιώδες σύνολο λύσεων. Έτσι, αφού γράψουμε πρώτα την εξίσωση στη μορφή \(y'' + (b/a)y' + (c/a)y = 0 \), υπολογίζουμε

\[y_2 = e^{rt} \int e^{-2r_0 t} e^{-(b/a)t} dt = e^{rt} \int 1 dt = te^{rt} + ce^{rt}, \]

απ' όπου, για \(c = 0 \), επιλέγουμε σαν δεύτερη λύση την \(t \exp(rt) \). Πραγματικά, βλέπουμε ότι

\[W(e^{rt}, te^{rt}) = \begin{vmatrix} e^{rt} & te^{rt} \\ re^{rt} & e^{rt} + rte^{rt} \end{vmatrix} = 2e^{rt}, \]

οπότε η γενική λύση, στην περίπτωση διπλάς ρίζας, δίνεται από τη σχέση

\[y_h(t) := c_1 e^{rt} + c_2 te^{rt}, \] \tag{3.31}

όπου \(c_1 \) και \(c_2 \) είναι αυθαίρετες πραγματικές σταθερές.

Ασκηση 3.11. 'Εστω \(L[y] = ay'' + by' + cy \), όπου \(b^2 - 4ac = 0 \). Αν \(r_0 = -b/(2a) \)

1. Να δείξετε ότι

\[L[e^{rt}] = a(r - r_0)^2 e^{rt} \]

2. Να δείξετε ότι \(L[(\partial/\partial r) \exp(rt)] = (\partial/\partial r)L[\exp(rt)] \), και έτσι

\[L[te^{rt}] = 2a(r - r_0)^2 e^{rt} + a(r - r_0)^2 te^{rt}. \]

3. Με χρήση των αποτελεσμάτων στα (i) και (ii) να δείξετε ότι οι \(\exp(r_0 t) \) και \(t \exp(r_0 t) \) είναι γραμμικά ανεξάρτητες λύσεις της (3.25).
3.5.3 Μηγαδικές Ρίζες

Εάν η διακρίνουσα της χαρακτηριστικής εξίσωσης είναι αρνητικά τότε έχουμε συζυγείς μηγαδικές ρίζες \(r_1 = \alpha + i\beta, \) και \(r_2 = \alpha - i\beta, \) όπου

\[
\alpha = -\frac{b}{2a}, \quad \beta = \frac{\sqrt{4ac - b^2}}{2a}, \quad (3.32)
\]

και \(i = \sqrt{-1}, \) είναι η φανταστική μονάδα. Όπως στη περίπτωση των πραγματικών ρίζων θέλουμε να πούμε ότι οι \(\exp((\alpha + i\beta)t) \) και \(\exp((\alpha - i\beta)t) \) είναι λύσεις της ομοιογενούς εξίσωσης. Από τη θεωρία των μηγαδικών αριθμών γνωρίζουμε ότι εάν \(\lambda \) και \(\mu \) είναι πραγματικοί αριθμοί τότε

\[
e^{\lambda + i\mu} = e^{\lambda} e^{i\mu} = e^{\lambda} (\cos \mu + i \sin \mu).
\]

Η ισότητα \(e^{i\mu} = \cos \mu + i \sin \mu \) είναι γνωστή σαν ταυτότητα του Euler. Έτσι θα είναι

\[
e^{(\alpha + i\beta)t} = e^{\alpha t} \cos \beta t + ie^{\alpha t} \sin \beta t.
\]

Για τη μηγαδική συνάρτηση τώρα \(y(t) = u(t) + iv(t), \) μπορεί εύκολα να αποδειχθεί ότι είναι \(n \)-φορές παραγωγής όταν και μόνον όταν οι \(u(t) \) και \(v(t) \) είναι \(n \)-φορές παραγωγής και ακόμη όταν

\[
\frac{d^n}{dt^n} y(t) = \frac{d^n}{dt^n} u(t) + i \frac{d^n}{dt^n} v(t).
\]

Αρα οι \(\exp((\alpha + i\beta)t) \) και \(\exp((\alpha - i\beta)t) \) είναι (μηγαδικές) λύσεις της ομοιογενούς εξίσωσης. Στη συνέχεια αποδεικνύουμε ότι υπάρχουν και πραγματικές λύσεις της ίδιας εξίσωσης.

Λήμμα 3.1. Εάν η μηγαδική συνάρτηση \(y(t) = u(t) + iv(t) \) είναι λύση της εξίσωσης (3.25) τότε το πραγματικό μέρος \(u(t) \) και το φανταστικό μέρος \(v(t) \) της \(y(t) \) είναι λύσεις της ίδιας εξίσωσης.

Απόδειξη. Εάν \(L \) είναι ο τελεστής που ορίζεται στην (3.25), τότε

\[
L[y(t)] = L[u(t) + iv(t)]
\]

\[
= a(u(t) + iv(t))'' + b(u(t) + iv(t))' + c(u(t) + iv(t))
\]

\[
= a(u''(t) + iv''(t)) + b(u'(t) + iv'(t)) + c(u(t) + iv(t))
\]

\[
= au''(t) + bu'(t) + cu(t) + i(au''(t) + bv'(t) + cv(t))
\]

\[
= L[u(t)] + iL[v(t)].
\]

Επειδή \(y(t) \) είναι λύση της εξίσωσης θα είναι \(L[y(t)] = 0. \) Ένας όμως μηγαδικός αριθμός είναι μικρός όταν και μόνον όταν το πραγματικό και το φανταστικό του μέρος είναι μικρός. Επομένως \(\lambda \) θα είναι \(L[u(t)] = L[v(t)] = 0. \)

Εάν λοιπόν \(\alpha \pm i\beta \) με \(\beta \neq 0 \) (διαφορετικά θα είχαμε πραγματικές ρίζες) είναι οι ρίζες της χαρακτηριστικής εξίσωσης, τότε από το Λήμμα 3.1 επιταχύνουμε ότι οι

\[
e^{\alpha t} \cos(\beta t), \quad e^{\alpha t} \sin(\beta t)
\]

είναι λύσεις της (3.25). Στη συνέχεια δείχνουμε ότι οι λύσεις αυτές είναι γραμμικά ανεξάρτητες.
3.5 Ομοιογενείς Εξίσωσεις με Σταθερούς Συντελεστές

Λήμμα 3.2. Οι λύσεις (3.33) της εξίσωσης (3.25) αποτελούν ένα θεμελιώδες σύνολο λύσεων.

Απόδειξη. Αρκεί να δειχθεί ότι η ορίζουσα Wronski των δύο συναρτήσεων είναι διαφορική του μηδενού. Πραγματικά

\[
W(e^{αt} \cos(βt), e^{αt} \sin(βt)) = \begin{vmatrix} e^{αt} \cos(βt) & e^{αt} \sin(βt) \\ αe^{αt} \cos(βt) - βe^{αt} \sin(βt) & αe^{αt} \sin(βt) + βe^{αt} \cos(βt) \end{vmatrix} = βe^{2αt}(\cos^2(βt) + \sin^2(βt)) = βe^{2αt},
\]

που είναι διαφορική του μηδενού γιατί \(β \neq 0\). □

Συμπέρασμα. Στη περίπτωση λοιπόν που η χαρακτηριστική εξίσωση έχει Ρίζες \(α ± iβ\) η γενική λύση της ομοιογενούς εξίσωσης είναι

\[
y_h(t) = c_1 e^{αt} \cos(βt) + c_2 e^{αt} \sin(βt), \tag{3.34}
\]

όπου \(c_1\) και \(c_2\) είναι αυθαίρετες πραγματικές σταθερές.

Παράδειγμα 3.7. Να βρεθεί η γενική λύση της εξίσωσης

\[
y'' + y = 0.\]

Η χαρακτηριστική εξίσωση είναι \(r^2 + 1 = 0\), άρα \(r = ±i\). Από την (3.32) βρίσκουμε ότι η γενική λύση είναι

\[
y_h = c_1 \cos t + c_2 \sin t.
\]

Παρόμοια βρίσκουμε ότι η γενική λύση της εξίσωσης

\[
y'' + ay = 0, \quad a > 0\tag{3.35}
\]

είναι η

\[
y_h(t) = c_1 \cos \sqrt{a}t + c_2 \sin \sqrt{a}t, \tag{3.36}
\]

όπου \(c_1\) και \(c_2\) είναι σταθερές.

Ασκηση 3.12. Να δειχθεί ότι η γενική λύση της (3.35) μπορεί να γραφεί στη μορφή

\[
y_h = c \sin(ω + \sqrt{a}t), \tag{3.37}
\]

όπου \(c\) και \(ω\) είναι σταθερές.
3.6 Μη Ομοιογενείς Εξίσωσεις με Σταθερούς Συντελεστές

Στη παράγραφο αυτή θεωρούμε εξίσωσεις της μορφής

\[ay'' + by' + cy = g(t), \]

(3.38)

όπου \(a \neq 0, b, c \) είναι πραγματικές σταθερές και \(g(t) \) είναι μία γνωστή συνάρτηση. Σύμφωνα με το Θεώρημα 3.7 η γενική λύση της (3.38) δίνεται από τη σχέση

\[y_h(t) + y_p(t), \]

όπου \(y_h(t) \) είναι η γενική λύση του αντίστοιχου ομοιογενούς προβλήματος, και δίνεται από την (3.27) ή (3.31), ή (3.34), ανάλογα την περίπτωση, και \(y_p(t) \) είναι μία ειδική λύση του μη ομοιογενούς προβλήματος (3.38). Η επίλυση λοιπόν του μη ομοιογενούς προβλήματος αναγίζεται στον εύρεση μίας ειδικής λύσης \(y_p \) της (3.38). Το παρακάτω αποτέλεσμα, που είναι κατά κάποιο τρόπο γενικεύει του Θεωρήματος 3.2, μας επιτρέπει να “σπάμε” ένα μη ομοιογενές πρόβλημα σε απλούστερα προβλήματα. Η απόδειξή του αφίνεται σαν άσκηση.

Λήμμα 3.3. Εάν \(L \) είναι ο διαφορικός τελεστής που ορίζεται από τη σχέση

\[L[y] := y'' + p(t)y' + q(t)y \]

και \(y_1, y_2 \) είναι αντίστοιχα λύσεις των εξισώσεων \(L[y] = g_1 \) και \(L[y] = g_2 \) τότε η συνάρτηση \(c_1 y_1 + c_2 y_2 \), \(c_1 \) και \(c_2 \) είναι δύο σταθερές, είναι λύση της εξίσωσης

\[L[y] = c_1 g_1 + c_2 g_2. \]

Στη συνέχεια παρουσιάζουμε δύο τρόπους εύρεσης μίας ειδικής λύσης \(y_p \).

3.6.1 Η Μέθοδος των Προσδιοριστών Συντελεστών

Η μορφή του μη ομοιογενούς όρου \(g(t) \) στην (3.38), επιτρέπει να μαντέψουμε πώς θα μοιάζει μία ειδική λύση \(y_p \) και αυτό που μένει είναι να προσδιορίσουμε κάποιες σταθερές προκειμένου να ικανοποιείται η εξίσωση.

Παράδειγμα 3.8. Να βρεθεί μία λύση της εξίσωσης

\[y'' - 4y' + 4y = 4t. \]

Ο μη ομοιογενής όρος της εξίσωσης είναι πολυώνυμο και επειδή οι παράγωγοι, όλων των τάξεων, πολυώνυμοι είναι πολυώνυμα δοκιμάζουμε σαν λύση μία πολυώνυμη συνάρτηση. Εάν διαλέξουμε σαν υπομήκην λύση ένα πολυώνυμο βαθμού \(n \) και αντικαταστήσουμε στην εξίσωση παρατηρούμε ότι το αριστερό μέλος θα είναι ένα πολυώνυμο βαθμού \(n \), ενώ το δεξιό μέλος είναι
πρώτου βαθμού. Θα πρέπει λοιπόν να είναι \(n = 1 \), άρα δοκιμάζουμε σαν λύση την \(y = at + b \), όπου \(a \) και \(b \) είναι σταθερές που πρέπει να προσδιοριστούν. Αντικαθιστώντας στην εξίσωση παίρνουμε

\[
-4a + 4(at + b) = 4t \Leftrightarrow 4(a - 1)t + 4(b - a) = 0.
\]

Η τελευταία ισότητα ισχύει για όλα τα \(t \), επομένως θα πρέπει να είναι \(a - 1 = 0 \) και \(b - a = 0 \) απ’ όπου βρίσκουμε ότι \(a = b = 1 \). Μία λύση λοιπόν της εξίσωσης είναι \(n \)

\[
y_p(t) = t + 1.
\]

Παράδειγμα 3.9. Να βρεθεί μία λύση της εξίσωσης

\[
y'' + y' - 2y = e^{3t}.
\]

Είναι λογικό να δοκιμάσουμε λύσεις της μορφής \(y = c \exp(3t) \) (γιατί), όπου \(c \) είναι μία σταθερά που πρέπει να υπολογισθεί. Έτσι παραγωγίζοντας και αντικαθιστώντας στην εξίσωση βρίσκουμε

\[
9ce^{3t} + 3ce^{3t} - 2ce^{3t} = e^{3t} \Leftrightarrow 10ce^{3t} = e^{3t}.
\]

Έτσι μία λύση της εξίσωσης είναι \(n \)

\[
y_p(t) = \frac{1}{10} e^{3t}.
\]

Παράδειγμα 3.10. Να βρεθεί μία λύση της εξίσωσης

\[
y'' + y' - 2y = e^{at},
\]

όπου \(a \) είναι μία σταθερά.

Παρατηρούμε ότι για \(a = 3 \) (3.40) ανάγεται στην (3.39). Και εδώ, λογικά, δοκιμάζουμε λύσεις της μορφής \(y = c \exp(at) \). Παραγωγίζοντας και αντικαθιστώντας στην εξίσωση βρίσκουμε

\[
c(a^2 + a - 2)e^{at} = e^{at} \Leftrightarrow c(a^2 + a - 2) = 1,
\]

ή ισοδύναμα

\[
c(a - 1)(a + 2) = 1.
\]

Παρατηρούμε ότι εάν \(a = 1 \) ή \(a = -2 \) εξίσωση (3.41) δεν έχει λύση ως προς \(c \), που ισοδύναμε με το ότι δεν υπάρχει λύση της (3.40) της μορφής \(y = c \exp(at) \). Μία προσεκτικότερη μεταβλ. αναδεικνύει ότι η έκφραση \(a^2 + a - 2 \) είναι το χαρακτηριστικό πολυώνυμο της αντίστοιχης ομοιογενούς της (3.40). Πραγματικά οι \(\exp(t) \) και \(\exp(-2t) \), αποτελούν ένα θεμελιώδες σύνολο λύσεων της ομοιογενούς
εξίσωσης \(y'' + y' - 2y = 0 \), βλέπε Παράδειγμα 3.5. Αν υποθέσουμε ότι υπάρχει ειδική λύση \(y_p \) της (3.40), για \(a = 1 \), της μορφής \(c \exp(t) \), θα είχαμε ότι η γενική λύση της (3.40), για \(a = 1 \), θα ήταν

\[
y = c_1e^t + c_2e^{-2t} + ce^t = (c_1 + c)e^t + c_2e^{-2t} = c'_1e^t + c_2e^{-2t}.
\]

Η \(y \) όμως αυτή είναι η γενική λύση της ομοιογενούς εξίσωσης \(y'' + y' - 2y = 0 \), και σαν τέτοια δεν μπορεί να ικανοποιεί την (3.40). Παρατηρούμε ότι αυτό δεν θα συνέβαινε εάν η ειδική λύση \(y_p \) ήταν γραμμικά ανεξάρτητη των θεμελιωδών λύσεών της ομοιογενούς εξίσωσης.

Στη συνέχεια δοκιμάζουμε λύσεις της μορφής \(y = ct^k \exp(at) \), όπου \(k \) είναι ένας θετικός ακέραιος αριθμός. Πραγματικά η αντικατάσταση μίας τέτοιας \(y \) στην (3.40) θα δώσει μία εξίσωση της μορφής

\[
P_k(t)e^{at} = e^{at}
\]

όπου \(P_k(t) \) θα είναι ένα πολυώνυμο βαθμού το πολυ \(k \) (γιατί), ή ισοδύναμα

\[
P_k(t) = 1.
\]

απ’ όπου θεωρητικά θα μπορέσουμε να προσδιορίσουμε τα \(c \) και \(k \). Αντικαθιστώντας λοιπόν την \(y = ct^k \exp(at) \) στην (3.40) θα έχουμε

\[
(c(k - 1)t^{k-2} + c(2a + 1)kt^{k-1})e^{at} + c(a^2 + a - 2)t^k e^{at} = e^{at},
\]

ή ισοδύναμα

\[
c(k - 1)t^{k-2} + c(2a + 1)kt^{k-1} + c(a - 1)(a + 2)t^k = 1.
\]

Παρατηρούμε ότι ουσιαστικά, όταν \(a = 1 \) ή \(a = -2 \) η εξίσωση ανάγεται στην

\[
k(k - 1)t^{k-2} + c(2a + 1)kt^{k-1} = 1,
\]

απ’ όπου επιλέγοντας \(k = 1 \) και, κατά συνέπεια, \(c = 1/(2a + 1) \) έχουμε ότι η

\[
y_p(t) = \frac{1}{2a + 1}te^{at}
\]

(3.42)

είναι μία ειδική λύση της (3.40) η οποία είναι γραμμικά ανεξάρτητη των θεμελιωδών λύσεων \(\exp(t) \) και \(\exp(-2t) \) της ομοιογενούς εξίσωσης. Για παράδειγμα, δείξαμε ότι η γενική λύση της

\[
y'' + y' - 2y = e^t
\]

dίνεται, δια μέσου της (3.42) για \(a = 1 \), από τη σχέση

\[
c_1e^t + c_2e^{-2t} + \frac{1}{3}te^t
\]

όπου \(c_1 \) και \(c_2 \) είναι σταθερές.

Παρατήρηση 3.3. Από τη σχέση (3.41) βλέπουμε ότι το πολυώνυμο \(P_k(t) \) είναι στη πραγματικό-
3.6 Μη Ομοιογενείς Εξίσωσεις με Σταθερούς Συντελεστές

τιτα βαθμού το πολυ k - 1. Επιπλέον παρατηρούμε ότι k ≤ 2 είναι αρκετό για την κατασκευή της ευθυγ. λύσης e^{at}.

Παράδειγμα 3.11. Να βρεθεί μία λύση της εξίσωσης

$$y'' - 4y' + 4y = \sin t.$$

Εάν L είναι ο τελεστής που ορίζεται στο αριστερό μέλος της εξίσωσης παρατηρούμε ότι

$$L[\sin t] = -\sin t - 4 \cos t + 4 \sin t = 3 \sin t - 4 \cos t,$$
(3.43)

οπότε $c \sin t$ δεν μπορεί να είναι λύση της εξίσωσης. Επειδή

$$L[\cos t] = -\cos t + 4 \sin t + 4 \cos t = 3 \cos t + 4 \sin t$$
(3.44)

dοκιμάζουμε λύσεις της μορφής $A \cos t + B \sin t$, όπου A και B είναι σταθερές. Από την εξίσωση και με χρήση των (3.43) και (3.44) έχουμε

$$(3A - 4B) \cos t + (3B + 4A) \sin t = \sin t,$$

από την οποία προκύπτει ότι

$$3A - 4B = 0, \quad 3B + 4A = 1.$$

Λύνοντας το σύστημα βρίσκουμε $A = 4/25$ και $B = 3/25$. Μία λύση λοιπόν της εξίσωσης είναι η

$$y_p(t) = \frac{4}{25} \cos t + \frac{3}{25} \sin t.$$

Παράδειγμα 3.12. Να βρεθεί η γενική λύση της εξίσωσης

$$y'' - 4y' + 4y = 2t + 3 \sin t.$$
(3.45)

Βίβλοι 1. Βρίσκουμε τη λύση της ομοιογενούς εξίσωσης. Η χαρακτηριστική εξίσωση είναι

$$r^2 - 4r + 4 = 0,$$

επομένως έχουμε διπλή Ρίζα $r = 2$, και κατά συνέπευξη η λύση της ομοιογενούς εξίσωσης είναι

$$y_h(t) = (a + bt)e^{2t},$$

όπου a και b είναι σταθερές.

Βίβλοι 2. Εάν L είναι ο τελεστής που ορίζεται στο αριστερό μέλος της εξίσωσης (3.45), τότε στο μεν Παράδειγμα 3.8 βρίσκαμε ότι

$$L[t + 1] = 4t,$$
στο δε Παράδειγμα 3.11 ότι

\[L\left[\frac{4}{25} \cos t + \frac{3}{25} \sin t\right] = \sin t, \]

Από τις παραπάνω σχέσεις βρίσκουμε ότι

\[\frac{1}{2} L[t + 1] + 3L\left[\frac{4}{25} \cos t + \frac{3}{25} \sin t\right] = 2t + 3 \sin t, \]

επομένως μία λύση της (3.45) είναι

\[y_p(t) = \frac{1}{2} t + \frac{1}{2} + \frac{12}{25} \cos t + \frac{9}{25} \sin t, \]

και η γενική λοιπον λύση είναι η

\[(a + bt)e^{2t} + \frac{1}{2} t + \frac{1}{2} + \frac{12}{25} \cos t + \frac{9}{25} \sin t, \]

όπου \(a \) και \(b \) είναι αυθαίρετες σταθερές.

Άσκηση 3.13. Εάν \(L \) είναι ένας γραμμικός, διαφορικός τελεστής δεύτερης τάξης με σταθερούς συντελεστές να δειχθεί ότι:

\[L[e^{at} \sin bt] = e^{at} (A \sin bt + B \cos bt), \]

όπου \(A \), και \(B \) είναι σταθερές. Να διατυπωθεί και να δειχθεί το ανάλογο αποτέλεσμα στη περίπτωση του \(\cos bt \).

Άσκηση 3.14. Εάν \(L \) είναι ένας γραμμικός, διαφορικός τελεστής δεύτερης τάξης με σταθερούς συντελεστές και \(P_n(t) \) είναι ένα πολυώνυμο βαθμού \(n \), να δειχθεί ότι:

\[L[P_n(t) \sin bt] = Q_n(t) \sin bt + R_n(t) \cos bt, \]

όπου \(Q_n(t) \), και \(R_n(t) \) είναι πολυώνυμα βαθμού \(n \). Να διατυπωθεί και να δειχθεί το ανάλογο αποτέλεσμα στην περίπτωση του \(\cos bt \).

Συνοψίζουμε τα αποτελέσματα των παραδειγμάτων και των ασκήσεων στον παρακάτω πίνακα:

| \(L[y] = ay'' + by' + cy = g \) |
|---|---|
| \(g(t) \) | \(y_p(t) \) |
| \(P_n(t) \) | \(t^k Q_n(t) \) |
| \(P_n(t)e^{at} \) | \(t^k Q_n(t)e^{at} \) |
| \(P_n(t)e^{at} \sin bt \) | \(t^k (Q_n(t) \sin bt + R_n(t) \cos bt) \) |
| \(P_n(t)e^{at} \cos bt \) | |
3.6 Μη Ομοιογενείς Εξίσωσεις με Σταθερούς Συντελεστές

όπου $P_n(t)$, $Q_n(t)$, και $R_n(t)$ είναι πολυώνυμα βαθμού n, και $k \in \{0, 1, 2\}$ είναι ο μικρότερος μη αρνητικός ακέραιος που εξασφαλίζει ότι η $y_p(t)$ δεν είναι λύση της ομοιογενούς εξίσωσης.

Παράδειγμα 3.13. Να βρεθεί η λύση του προβλήματος αρχικών τιμών

$$y'' + 4y = e^{3t} \cos 2t, \quad y(0) = 0, \quad y'(0) = 0.$$

Η γενική λύση της ομοιογενούς εξίσωσης δίνεται από την (3.36) και είναι

$$y_h(t) = c_1 \cos 2t + c_2 \sin 2t,$$

όπου c_1 και c_2 είναι σταθερές. Επειδή ο μη ομοιογενής όρος δεν είναι λύση της ομοιογενούς εξίσωσης δοκιμάζουμε σαν λύση την

$$e^{3t} (a \cos 2t + b \sin 2t),$$

όπου a και b είναι σταθερές. Παραγωγίζοντας και αντικαθιστώντας στην εξίσωση βρίσκουμε, μετά από περάξεις

$$e^{3t} (9a + 12b) \cos 2t + e^{3t} (9b - 12a) \sin 2t = e^{3t} \cos 2t,$$

η οποία είναι ισοδύναμη με το σύστημα

$$9a + 12b = 1, \quad 9b - 12a = 0.$$

Λύνοντας βρίσκουμε $a = 1/25$ και $b = 4/75$, άρα μία λύση της μη ομοιογενούς εξίσωσης είναι

$$y_p(t) = e^{3t} \left(\frac{1}{25} \cos 2t + \frac{4}{75} \sin 2t \right).$$

Η γενική τώρα λύση της μη ομοιογενούς εξίσωσης είναι

$$y(t) = y_h(t) + y_p(t) = c_1 \cos 2t + c_2 \sin 2t + e^{3t} \left(\frac{1}{25} \cos 2t + \frac{4}{75} \sin 2t \right)$$

$$= \left(c_1 + \frac{1}{25} e^{3t} \right) \cos 2t + \left(c_2 + \frac{4}{75} e^{3t} \right) \sin 2t.$$

Στη συνέχεια υπολογίζουμε τις σταθερές c_1 και c_2 ώστε να ικανοποιούνται οι αρχικές συνθήκες. Πρώτα υπολογίζουμε

$$y'(t) = \left(2c_2 + \frac{17}{75} e^{3t} \right) \cos 2t + \left(-2c_1 + \frac{6}{75} e^{3t} \right) \sin 2t.$$

Από τις εκφράσεις των $y(t)$, $y'(t)$ βλέπουμε ότι οι αρχικές συνθήκες ικανοποιούνται εάν

$$c_1 + \frac{1}{25} = 0, \quad 2c_2 + \frac{17}{75} = 0,$$

απ' όπου βρίσκουμε $c_1 = -1/25$ και $c_2 = -17/150$ όπως η λύση του προβλήματος αρχικών τιμών είναι η

$$y(t) = \frac{1}{25} (e^{3t} - 1) \cos 2t + \frac{1}{150} (8e^{3t} - 17) \sin 2t.$$
3.6.2 Η Μέθοδος της Μεταβολής των Παραμέτρων

Η δεύτερη μέθοδος αποτελεί κατά κάποιο τρόπο γενικέςεις του τύπου της μεταβολής των παραμέτρων, βλέπε Ασκιασι 1 της παραγράφου 2.3, και μπορεί να εφαρμοστεί και σε εξισώσεις με μη σταθερούς συντελεστές. Προσποθέτει όμως τη γνώση ενός θεμελιώδους συνόλου λύσεων της αντίστοιχης ομοιογενούς εξίσωσης. Αν λοιπόν \(y_1 \) και \(y_2 \) είναι θεμελιώδεις λύσεις της

\[
y'' + p(t)y' + q(t)y = 0,
\]

αναζητούμε λύσεις της μη ομοιογενούς εξίσωσης

\[
y'' + p(t)y' + q(t)y = g(t),
\]

στη μορφή

\[
y = v_1 y_1 + v_2 y_2, \quad (3.46)
\]

όπου \(v_1 \) και \(v_2 \) είναι συναρτήσεις που πρέπει να προσδιοριστούν. Παραγωγίζοντας την (3.46) έχουμε

\[
y' = v_1' y_1 + v_2' y_2 + v_1 y_1' + v_2 y_2', \quad (3.47)
\]

Σκοπός μας είναι να διαμορφώσουμε ένα σύστημα δύο εξισώσεων με αγνώστους τις συναρτήσεις \(v_1 \) και \(v_2 \). Θέλοντας να αποφύγουμε δεύτερης τάξης παραγώγους των συναρτήσεων \(v_1 \) και \(v_2 \) επιλέγουμε, από την (3.47)

\[
v_1' y_1 + v_2' y_2 = 0,
\]

οπότε παραγωγίζοντας την \(y' = v_1' y_1' + v_2' y_2' \) θα είναι

\[
y'' = v_1'' y_1' + v_2'' y_2' + v_1 y_1'' + v_2 y_2''.
\]

Στη συνέχεια αντικαθιστώντας στην εξίσωση έχουμε

\[
g(t) = y'' + p(t)y' + q(t)y
\]

\[
= v_1'' y_1' + v_2'' y_2' + v_1 y_1'' + v_2 y_2'' + p(t) \left(v_1 y_1' + v_2 y_2' \right) + q(t) \left(v_1 y_1 + v_2 y_2 \right)
\]

\[
= v_1'' y_1' + v_2'' y_2' + v_1 \left(y_1'' + p(t) y_1' + q(t) y_1 \right) + v_2 \left(y_2'' + p(t) y_2' + q(t) y_2 \right)
\]

\[
= v_1'' y_1' + v_2'' y_2',
\]

καθ’ όσον \(v_1 \) και \(v_2 \) είναι λύσεις της ομοιογενούς εξίσωσης. Καταλήγουμε λοιπόν στο σύστημα των εξισώσεων

\[
v_1' y_1 + v_2' y_2 = 0
\]

\[
v_1' y_1 + v_2' y_2 = g
\]

to oπoίο έχει λύση εάν η ορίζουσα των συντελεστών είναι μη μπεδενική. Στη περίπτωση όμως αυτή είναι

\[
\begin{vmatrix}
 y_1 & y_2 \\
 y_1' & y_2'
\end{vmatrix} = W(y_1, y_2) \neq 0,
\]
καθ’ όσον οι \(y_1 \) και \(y_2 \) αποτελούν ένα θεμελιώδες σύνολο λύσεων της ομοιογενούς εξίσωσης. Από τον τύπο του Cramer βρίσκουμε

\[
v_1' = -\frac{gy_2}{W(y_1, y_2)}, \quad v_2' = \frac{gy_1}{W(y_1, y_2)},
\]

και ολοκληρώνοντας

\[
v_1(t) = \int -\frac{g(t)y_2(t)}{W(y_1, y_2(t))} dt, \quad v_2(t) = \int \frac{g(t)y_1(t)}{W(y_1, y_2(t))} dt.
\] (3.48)

Συνοψίζουμε λοιπόν τα αποτελέσματα αυτά στο

Θεώρημα 3.8. Εάν για την μη ομοιογενή εξίσωση

\[
y'' + p(t)y' + q(t)y = g(t),
\]

οι συναρτήσεις \(p(t), q(t), \) και \(g(t) \) είναι συνεχείς σε κάποιο ανοικτό διάστημα \(I, \) και οι \(y_1, y_2 \) αποτελούν ένα θεμελιώδες σύνολο λύσεων για την αντίστοιχη ομοιογενή εξίσωση, τότε μία ειδική λύση της μη ομοιογενούς εξίσωσης δίνεται από τη σχέση

\[
y_p(t) = y_1(t) \int -\frac{g(t)y_2(t)}{W(y_1, y_2(t))} dt + y_2(t) \int \frac{g(t)y_1(t)}{W(y_1, y_2(t))} dt
\] (3.49)

και έτσι η ειδική λύση είναι

\[
y(t) = c_1y_1(t) + c_2y_2(t) + y_p(t)
\]

όπου \(c_1, c_2 \) είναι σταθερές και \(y_p \) δίνεται από την (3.49).

Παρατήρηση 3.4. Εάν \(t_0 \) είναι ένα σημείο του \(I, \) τότε οι συναρτήσεις \(v_1(t) \) και \(v_2(t) \) μπορούν να επιλεγούν έτσι ώστε \(v_1(t_0) = v_2(t_0) = 0, \) δηλαδή

\[
v_1(t) = \int_{t_0}^t -\frac{g(s)y_2(s)}{W(y_1, y_2(s))} ds, \quad v_2(t) = \int_{t_0}^t \frac{g(s)y_1(s)}{W(y_1, y_2(s))} ds.
\]

Στη περίπτωση αυτή η (3.49) γράφεται

\[
y_p(t) = y_1(t) \int_{t_0}^t -\frac{g(s)y_2(s)}{W(y_1, y_2(s))} ds + y_2(t) \int_{t_0}^t \frac{g(s)y_1(s)}{W(y_1, y_2(s))} ds
\]

\[
eq \int_{t_0}^t y_1(s)y_2(t) - y_1(t)y_2(s) \frac{g(s)}{W(y_1, y_2(s))} ds.
\]

Παρατηρούμε λοιπόν ότι η

\[
y_p(t) = \int_{t_0}^t \frac{y_1(s)y_2(t) - y_1(t)y_2(s)}{y_1(s)y_2'(s) - y_1'(s)y_2(s)} g(s) ds
\] (3.50)

eίναι η λύση του προβλήματος αρχικών τιμών

\[
y'' + p(t)y' + q(t)y = g(t), \quad y(t_0) = 0, \quad y'(t_0) = 0
\]

(γενίτ.).
Παράδειγμα 3.14. Να βρεθεί μία λύση της εξίσωσης

\[y'' + y = \tan t. \]

Δύο γραμμικά ανεξάρτητες λύσεις της ομοιογενούς εξίσωσης είναι οι \(y_1(t) = \cos t \) και \(y_2(t) = \sin t \), έτσι είναι \(W(y_1, y_2)(t) = 1 \), οπότε από την (3.48) βρίσκουμε

\[
\begin{align*}
 v_1(t) &= \int \tan t \sin t \, dt = \int \frac{1 - \cos^2 t}{\cos t} \, dt = \int (\cos t - \sec t) \, dt = \sin t - \ln |\sec t + \tan t| + c_1 \\
 v_2(t) &= \int \sin t \, dt = -\cos t + c_2,
\end{align*}
\]

όπου \(c_1 \) και \(c_2 \) είναι σταθερές. Επιλέγοντας \(c_1 = c_2 = 0 \) βρίσκουμε από την (3.49) ότι \(y_p(t) = \cos t (\sin t - \ln |\sec t + \tan t|) - \sin t \cos t \)

\[
= -\cos t \ln |\sec t + \tan t|
\]

είναι μία λύση της \(y'' + y = \tan t \).

Άσκηση 3.15. Να δειχθεί ότι η λύση του προβλήματος αρχικών τιμών

\[y'' + y = g(t), \quad y(t_0) = 0, \quad y'(t_0) = 0 \]

dίνεται από τη σχέση

\[y(t) = \int_{t_0}^{t} \sin(t - s)g(s) \, ds. \]

Άσκηση 3.16. Να δειχθεί ότι η λύση του προβλήματος αρχικών τιμών

\[y'' + p(t)y' + q(t)y = g(t), \quad y(t_0) = y_0, \quad y'(t_0) = y_{01}. \]

eίναι ίση με \(y_1 + y_2 \), όπου \(y_1 \) και \(y_2 \) είναι αντίστοιχα οι λύσεις των προβλημάτων

\[y'' + p(t)y' + q(t)y = g(t), \quad y(t_0) = 0, \quad y'(t_0) = 0 \]

και

\[y'' + p(t)y' + q(t)y = 0, \quad y(t_0) = y_0, \quad y'(t_0) = y_{01}. \]

Άσκηση 3.17. Να βρεθεί η λύση του προβλήματος αρχικών τιμών

\[y'' + y = g(t), \quad y(t_0) = y_0, \quad y'(t_0) = y_{01}. \]

3.7 Εξισώσεις Euler

Μία εξίσωση της μορφής

\[a t^2 y'' + b t y' + c y = g(t), \quad t > 0, \tag{3.51} \]
3.7 Εξισώσεις Euler

όπου \(y = y(t) \) και \(a, b, c \) είναι σταθερές, λέγεται εξίσωση του Euler. Ισχυρίζομαστε ότι ο μετασχηματισμός \(t = e^x \) μετατρέπει την εξίσωση (3.51) σε μία γραμμική εξίσωση με σταθερούς συντελεστές. Πραγματικά εάν ορίσουμε \(\psi(x) = y(e^x) = y(t) \), από τον κανόνα της αλιείδας έχουμε

\[
\frac{dy}{dt} = \frac{dy}{dx} = f(x) = e^x
\]

οπότε

\[
t'y' = \frac{dy}{dx}. \tag{3.52}
\]

Παραγωγίζοντας στη συνέχεια την (3.52) ως προς \(x \) έχουμε

\[
\frac{d^2\psi}{dx^2} = \frac{d}{dx}\left(\frac{d\psi}{dx} \right) = \frac{dt}{dx}\frac{d}{dt}\left(\frac{dy}{dx} \right) = \frac{dt}{dx}\left(\frac{dy}{dt} + t\frac{d^2y}{dt^2} \right) = \frac{dy}{dt} + t^2\frac{d^2y}{dt^2},
\]

οπότε από την (3.52) προκύπτει ότι

\[
t^2y'' = \frac{d^2\psi}{dx^2} - \frac{dy}{dx}. \tag{3.53}
\]

Διά μέσο των (3.52) και (3.53) η εξίσωσή (3.51) γράφεται

\[
a\frac{d^2\psi}{dx^2} + (b - a)\frac{dy}{dx} + cy = g(e^x), \quad x \in \mathbb{R}. \tag{3.54}
\]

Η επίλυση λοιπόν της εξίσωσης (3.51) ανάγεται σε αυτήν της (3.54), και οι δύο λύσεις συνδέονται με σχέση \(y(t) = \psi(\ln t) \).

Παράδειγμα 3.15. Να βρεθεί η γενική λύση της εξίσωσης

\[
t^2y'' + ty' + y = 0, \quad t > 0.
\]

Αν ορίσουμε \(t = e^x \) και \(\psi(x) = y(e^x) = y(t) \), η εξίσωση μετασχηματίζεται στην

\[
\psi'' + \psi = 0,
\]

η γενική λύση της οποίας είναι \(\psi(x) = c_1 \cos x + c_2 \sin x \),

με \(c_1 \) και \(c_2 \) να είναι αυθαίρετες σταθερές. Επειδή \(x = \ln t \), και \(y(t) = \psi(\ln t) \) η γενική λύση της αρχικής \(y \)-εξίσωσης δίνεται από τη σχέση

\[
y(t) = c_1 \cos(\ln t) + c_2 \sin(\ln t).
\]
Παράδειγμα 3.16. Να βρεθεί η γενική λύση της εξίσωσης

\[t^2 y'' + 4ty' + 2y = 0, \quad t > 0. \]

Από την (3.54) βλέπουμε ότι η αντίστοιχη ψ-εξίσωση είναι η

\[\psi'' + 3\psi' + 2\psi = 0, \]

με χαρακτηριστική εξίσωση την

\[r^2 + 3r + 2 = 0. \]

Οι ρίζες της χαρακτηριστικής εξίσωσης είναι \(r_1 = -1 \) και \(r_2 = -2 \), επομένως η λύση της ψ-εξίσωσης είναι

\[\psi(x) = c_1 e^{-x} + c_2 e^{-2x}, \]

κατά συνέπεια η λύση της ψ-εξίσωσης είναι

\[y(t) = c_1 e^{-\ln t} + c_2 e^{-2\ln t} = c_1 t^{-1} + c_2 t^{-2}, \]

όπου \(c_1 \) και \(c_2 \) είναι αυθαίρετες σταθερές.

Άσκηση 3.18. Να δείξετε ότι η ομοιογενής εξίσωση του Euler

\[ar^2 y'' + bty' + cy = 0, \quad t > 0 \]

έχει μία λύση της μορφής \(y = t^r \), τότε και μόνον τότε όταν το \(r \) ικανοποιεί την εξίσωση

\[ar^2 + (b - a)r + c = 0. \]

Παρατήρηση 3.5. Η χαρακτηριστική εξίσωση της αντίστοιχης ομοιογενούς της (3.54) είναι η

\[ar^2 + (b - a)r + c = 0, \quad (3.55) \]

tον οποία μπορούμε να σκεφτόμαστε σαν την χαρακτηριστική εξίσωση της αντίστοιχης ομοιογενούς της (3.51). Εάν λοιπόν \(r_1 \) και \(r_2 \) είναι οι ρίζες της εξίσωσης (3.55) τότε η γενική λύση της

\[ar^2 y'' + bty' + cy = 0, \quad t > 0 \]

θα δίνεται από

1) Εάν \(r_1 \neq r_2 \) και πραγματικές

\[y(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t} = c_1 t^{r_1} + c_2 t^{r_2}. \]

2) Εάν \(r_1 = r_2 = r \),

\[y(t) = (c_1 + c_2 x)e^{rt} = (c_1 + c_2 \ln t)t^r. \]
3.8 Γραμμικοί Διαφορικοί Τελεστές

3) Εάν \(r = \lambda \pm i\mu \)

\[
y(t) = e^{\lambda t}(c_1 \cos \mu t + c_2 \sin \mu t) = r^t (c_1 \cos(\mu \ln r) + c_2 \sin(\mu \ln r)).
\]

όπου \(c_1 \) και \(c_2 \) είναι αυθαίρετες σταθερές.

Ασκηση 3.19. Να βρεθεί η λύση της εξίσωσης του Euler

\[
ar^2 y'' + bty' + cy = 0, \quad t < 0.
\]

Υπολειπόμενο: Εάν \(s = -t \) και \(z(s) = y(-s) = y(t) \), να βρεθεί η εξίσωση που ικανοποιεί \(n \) και να λυθεί.

3.8 Γραμμικοί Διαφορικοί Τελεστές

Εάν με \(D \) συμβολίσουμε τον τελεστή \(d/dt \), με \(D^2 \) τον \(d^2/dt^2 \), και γενικά με \(D^n \) τον \(d^n/dt^n \), τότε ο γραμμικός διαφορικός τελεστής που ορίζεται με

\[
L[y] = y'' + py' + qy
\]

μπορεί να παρασταθεί από τη σχέση

\[
L[y] = D^2y + pDy + qy
\]

ή ακόμη από την

\[
L[y] = (D^2 + pD + q)y.
\]

Γενικότερα εάν για τον γραμμικό διαφορικό τελεστή τάξης \(n \) που ορίζεται από τη σχέση

\[
L[y] := a_n \frac{d^ny}{dt^n} + a_{n-1} \frac{d^{n-1}y}{dt^{n-1}} + \cdots + a_1 \frac{dy}{dt} + a_0 y
\]

όπου οι συντελεστές \(a_n, a_{n-1}, \ldots a_1, a_0 \) μπορεί να είναι συναρτήσεις, ορίζουμε το πολυώνυμο

\[
P(\theta) = a_n \theta^n + a_{n-1} \theta^{n-1} + \cdots + a_1 \theta + a_0
\]

τότε μπορούμε να γράψουμε

\[
L[y] = P(D)y.
\]

Έτσι για παράδειγμα ο τελεστής

\[
L[y] = y'' + r^2 y' + 4y
\]

μπορεί να γραφεί σαν

\[
L[y] = D^2y + r^2Dy + 4y = (D^2 + r^2D + 4)y.
\]

Επειδή

\[
\frac{d^2y}{dt^2} = \frac{d}{dt}\left(\frac{dy}{dt}\right), \quad \ldots, \quad \frac{d^ny}{dt^n} = \frac{d}{dt}\left(\frac{d^{n-1}y}{dt^{n-1}}\right)
\]
όπου \(n = 1, 2, \ldots \) είναι λογικά, κατ’ αναλογία, να ορίσουμε το γνώμενο \(DD = D^2 \) και γενικότερα \(DD^{n-1} = D^n \). Επιπλέον εάν \(a \) είναι μία σταθερά και \(n, k \) είναι μπ αρνητικοί ακέραιοι, από τις ιδιότητες των παραγώγων έχουμε

\[
D^n(aD^k) = aD^{n+k}.
\]

Γενικά αν \(L_1 \) και \(L_2 \) είναι γραμμικοί διαφορικοί τελεστές με σταθερούς συντελεστές ορίζουμε το άθροισμα \(L_1 + L_2 \) και το γνώμενο \(L_1L_2 \), αντίστοιχα, από τις σχέσεις

\[
(L_1 + L_2)[y] = L_1[y] + L_2[y]
\]

\[
(L_1L_2)[y] = L_1[L_2[y]].
\]

Θα λέμε ότι οι τελεστές \(L_1 \) και \(L_2 \) είναι ίσοι εάν \(L_1[y] = L_2[y] \), για κάθε συνάρτηση \(y \) στο πεδίο ορισμού τους. Για τελεστές με σταθερούς συντελεστές ισχύουν οι ιδιότητες

(1) \(L_1 + L_2 = L_2 + L_1 \)
(2) \((L_1 + L_2) + L_3 = L_1 + (L_2 + L_3) \)
(3) \(L_1(L_2 + L_3) = L_1(L_2L_3) \)

Με χρήση του επιμεριστικού νόμου μπορεί να δειχθεί ότι εάν \(L_1, L_2, L_3 \) είναι τελεστές και \(a, b \) είναι σταθερές τότε

\[
L_1(aL_2 + bL_3) = aL_1L_2 + bL_1L_3.
\]

(3.56)

Ας θεωρήσουμε τον τελεστή με σταθερούς συντελεστές

\[
L = D^2 - D - 6 = P(D),
\]

όπου \(P \) είναι το πολυώνυμο

\[
P(\theta) = \theta^2 - \theta - 6 = (\theta - 3)(\theta + 2).
\]

Η τελευταία σχέση υπό το πρίσμα της (3.56) μας λέει ότι ο τελεστής \(L \) παραγοντοποιείται, πράγματι για τον \((D - 3)(D + 2)\) έχουμε

\[
(D - 3)(D + 2) = D(D + 2) - 3(D + 2)
\]

\[
= D(D) + 2D - 3D - 6
\]

\[
= D^2 - D - 6,
\]

και επιπλέον σαν αποτέλεσμα του μεταβεντικού νόμου είναι \(D^2 - D - 6 = (D - 3)(D + 2) = (D + 2)(D - 3) \). Αν όμως οι τελεστές \(L_1 \) και \(L_2 \) δεν έχουν σταθερούς συντελεστές δεν είναι αλήθεια ότι \(L_1L_2 = L_2L_1 \). Πραγματικά αν \(L_1 = tD + 1 \) και \(L_2 = 2D - 1 \), τότε για \(y = t \) θα είναι

\[
(L_1L_2)[t] = (tD + 1)(2D - 1)t = (tD + 1)(2t - t) = -t + 2 - t = 2 - 2t,
\]

ενώ

\[
(L_2L_1)[t] = (2D - 1)(tD + 1)t = (2D-1)(t + t) = (2D - 1)2t = 4 - 2t.
\]
3.8 Γραμμικοί Διαφορικοί Τελεστές

Παρατήρηση 3.6. Εάν \(L = P(D) \) είναι ένας διαφορικός τελεστής με σταθερούς συντελεστές, τότε ισχύει
\[
D^k e^{rt} = r^k e^{rt}, \quad k = 0, 1, \ldots \Rightarrow P(D)e^{rt} = P(r)e^{rt}.
\]
Κατά συνέπεια η χαρακτηριστική εξίσωση της \(L[y] = 0 \) είναι \(P(r) = 0 \). Ειδικότερα εάν \(r_1, r_2 \) είναι οι ρίζες της χαρακτηριστικής εξίσωσης της \(y'' + ay' + by = 0 \) και εάν \(L[y] = y'' + ay' + by \) τότε
\[
L[y] = (D - r_1)(D - r_2)y.
\]

Παράδειγμα 3.17. Να βρεθούν όλες τις λύσεις της μορφής \(y = e^{rt} \) της εξίσωσης
\[
(D - 4)(D^2 - 1)(D^2 + 1)y = 0.
\]
Η εξίσωση είναι γραμμική πέμπτης τάξης με σταθερούς συντελεστές οπότε δοκιμάζουμε λύσεις της μορφής \(y = e^{rt} \). Η χαρακτηριστική εξίσωση της διαφορικής εξίσωσης είναι
\[
(r - 4)(r^2 - 1)(r^2 + 1) = 0,
\]
επομένως οι λύσεις είναι \(r = 4, r = \pm 1, r = \pm i \). Έτσι λύσεις της εξίσωσης είναι \(e^{4t}, e^t, e^{-t}, e^{it}, e^{-it} \), και \(e^{-it} \), ή σε δεύτερη προσέγγιση \(e^{4t}, e^t, e^{-t}, \cos t \), και \(\sin t \). Έτσι η γενική λύση της εξίσωσης είναι
\[
y = c_1 e^{4t} + c_2 e^t + c_3 e^{-t} + c_4 \cos t + c_5 \sin t
\]
(γιατί, όπου \(c_1, c_2, c_3, c_4 \), και \(c_5 \) είναι αυθαίρετες σταθερές).

Άσκηση 3.20. Με χρήση του αποτελέσματος της Παρατήρησης 3.6 να παραγωγοποιηθούν οι τελεστές
(1) \(D^2 + 3D - 4 \)
(2) \(D^2 + D - 6 \)
(3) \(D^2 - 4 \)
(4) \(2D^2 + 3D + 1 \)

Άσκηση 3.21. Έστω \(u = (D - r_2)y \). Να δειχθεί ότι η λύση της εξίσωσης δεύτερης τάξης
\[
(D - r_1)(D - r_2)y = g(t)
\]
μπορεί να βρεθεί επιλύοντας διαδοχικά τις εξίσωσεις πρώτης τάξης
\[
(D - r_1)u = g(t), \quad (D - r_2)y = u
\]

Άσκηση 3.22. Με χρήση της μεθόδου της Άσκησης 3.20 να λυθούν οι εξίσωσεις
(1) \((D^2 + 3D - 4)y = e^{2t} \)
(2) \(2y''' + 3y' + y = t + \sin t \)
Ασκήση 3.23. Εάν η χαρακτηριστική εξίσωση της \(y'' + ay' + by = 0 \), έχει διπλή ρίζα \(r \) τότε η εξίσωση (βλέπε Παρατήρηση 3.6) γράφεται

\[
L[y] = (D - r)^2y = 0.
\]

1. Να δειχθεί ότι εάν \(u \) είναι δύο φορές παραγωγισμένο τότε

\[
(D - r)^2[e^ru] = e^rD^2u,
\]

και έτσι το πρόβλημα επίλυσης της \((D - r)^2y = 0\) ανάγεται σε αυτό της επίλυσης της \(D^2u = 0\), με \(y = e^ru\).

2. Με χρήση του παραπάνω αποτελέσματος να δειχθεί ότι οι \(e^ru \) και \(te^ru \) είναι γραμμικά ανεξάρτητες λύσεις της \((D - r)^2y = 0\).

3.9 Ασκήσεις

1. Με τη μέθοδο του υποβιβασμού της τάξης να βρεθεί μία δεύτερη λύση για κάθε μία από τις εξισώσεις

 (a') \(t^2y'' - 4ty' + 6y = 0, \quad t > 0, \quad y_1 = t^2 \).

 (b') \(ty'' - y' + 4t^2y = 0, \quad t > 0, \quad y_1 = \sin t^2 \).

2. Αν οι \(y_1 \) και \(y_2 \) είναι γραμμικά ανεξάρτητες λύσεις της \(y'' + p(t)y' + q(t)y = 0 \), να αποδειχθεί ότι οι \(y_3 = y_1 + y_2 \) και \(y_4 = y_1 - y_2 \) είναι επίσης γραμμικά ανεξάρτητες λύσεις της ίδιας εξίσωσης.

3. Να βρεθεί η ορίζουσα Wronski δύο λύσεων για κάθε μία από τις εξισώσεις

 (a') \(t^2y'' - t(t + 2)y' + (t + 2)y = 0 \).

 (b') \(\cos ty'' + \sin ty' - ty = 0 \).

4. Να βρεθεί η γενική λύση για κάθε μία από τις εξισώσεις

 (a') \(y'' + 3y' + 2y = 0 \).

 (b') \(y'' - 2y' + y = 0 \).

 (c') \(y'' - 2y' + 2y = 0 \).

 (d') \(4y'' - 9y = 0 \).

 (e') \(y'' - 6y' + 9y = 0 \).

 (f') \(y'' + 6y' + 13y = 0 \).

 (g') \(y'' - 9y' + 9y = 0 \).

5. Να βρεθεί η λύση για κάθε κάθε ένα από τα προβλήματα αρχικών τιμών

 (a) \(y'' - 2y = 0 \), \(y(0) = 1 \), \(y'(0) = -1 \).

 (b') \(4y'' + 12y' + 9y = 0 \), \(y(0) = 1 \), \(y'(0) = -4 \).
3.9 Ασκήσεις

(γ') \(y'' + 2y = 0 \), \(y(0) = 1 \), \(y'(0) = -1 \).
(δ') \(y'' + 4y' + 4y = 0 \), \(y(-1) = 2 \), \(y'(-1) = 1 \).
(ε') \(2y'' - 3y' + y = 0 \), \(y(0) = 2 \), \(y'(0) = 1 \).

6. Να βρεθεί η εξίσωση της οποίας η γενική λύση είναι

(α') \(y = c_1 e^{2t} + c_2 e^{-t} \).
(β') \(y = c_1 \cos 3t + c_2 \sin 3t \).
(γ') \(y = c_1 \cos 3t + c_2 \sin (-3t) \).
(δ') \(y = (c_1 + c_2) e^{t/2} \).

7. Να βρεθεί η λύση για το πρόβλημα αρχικών τιμών \(y'' - y' - 2y = 0 \), \(y(0) = b \), \(y'(0) = 2 \), και στη συνέχεια να προσδιοριστεί η τιμή της παραμέτρου \(b \) για την οποία λύση προσεγγίζει το μηδέν καθώς \(t \to \infty \).

8. Να βρεθεί η λύση για το πρόβλημα αρχικών τιμών \(4y'' + 12y' + 9y = 0 \), \(y(0) = 1 \), \(y'(0) = b \), και στη συνέχεια να προσδιοριστεί η τιμή της παραμέτρου \(b \) η οποία διαχωρίζει τις λύσεις σε ικείνες που παραμένουν πάντα θετικές και σε ικείνες που τελικά γίνονται αρνητικές.

9. Έστω ότι \(\phi \) είναι η λύση του προβλήματος αρχικών τιμών

\[y'' + ay' + by = 0, \quad y(0) = A, \quad y'(0) = B, \]

όπου \(a, b, A, \) και \(B \) είναι σταθερές με \(a > 0 \) και \(b > 0 \). Να δειχθεί ότι

\[\lim_{t \to \infty} \phi(t) = 0. \]

10. Το πρόβλημα αυτό δείχνει πως μικρές αλλαγές στους συντελεστές μιάς εξίσωσης προξενούν σημαντικές αλλαγές στις λύσεις.

(α') Να βρεθεί η γενική λύση \(\phi \) της εξίσωσης \(y'' - 2ay' + a^2y = 0 \), όπου \(a \) είναι μία μη μηδενικά σταθερά.
(β') Να βρεθεί η γενική λύση \(\phi_\epsilon \) της εξίσωσης \(y'' - 2ay' + (a^2 - \epsilon^2)y = 0 \), όπου \(\epsilon \) είναι μία θετικά σταθερά.
(γ') Να δειχθεί ότι καθώς \(\epsilon \to 0 \) η λύση \(\phi_\epsilon \) δεν προσεγγίζει την \(\phi \), έστω και αν η εξίσωση στο (β') φαινόταν να προσεγγίζει αυτήν του (α'), καθώς \(\epsilon \to 0 \).

11. Θεωρούμε τα προβλήματα αρχικών τιμών

\[y'' - 2ay' + a^2y = 0, \quad y(0) = B, \quad y'(0) = C, \]
\[y'' - 2ay' + (a^2 - \epsilon^2)y = 0, \quad y(0) = B, \quad y'(0) = C, \]

όπου \(a, B, C, \) και \(\epsilon \) είναι σταθερές με \(a \neq 0 \) και \(\epsilon > 0 \).

(α') Να βρεθούν οι αντίστοιχες λύσεις \(\psi \) και \(\psi_\epsilon \) των προβλημάτων αυτών.
(β’) Να εξετασθεί εάν
\[
\lim_{\epsilon \to 0} \psi_{\epsilon}(t) = \psi(t).
\]
Πώς η απάντηση αυτή διαφέρει από το συμπέρασμα στο (γ’) της προηγούμενης άσκησης;

ΥΠΟΔΕΙΞΗ: Η λύση \(\psi_{\epsilon} \) μπορεί να γραφεί στη μορφή
\[
\psi_{\epsilon}(t) = Be^{at} \cosh \epsilon t + \frac{C - aB}{\epsilon} \sinh \epsilon t.
\]

12. Να βρεθεί η γενική λύση για κάθε μία από τις εξισώσεις και η λύση για κάθε ένα από τα προβλήματα αρχικών τιμών

(α’) \(y'' + y = 3\sin 2t + \cos 2t \).
(β’) \(y'' + 4y = t^2 + 3e^t \), \(y(0) = 0 \), \(y'(0) = 2 \).
(γ’) \(y'' + y' + 4y = 2 \sinh t \).
(δ’) \(y'' + 2y' + 5y = 4e^{-t} \cos 2t \), \(y(0) = 1 \), \(y'(0) = 0 \).
(ε’) \(y'' + 9y = 9 \sec^2 3t \), \(0 < t < \pi/6 \).
(ζ’) \(y'' + 4y = 3 \csc 2t \), \(0 < t < \pi/2 \).
(η’) \(y'' - 2y' + y = \frac{e^t}{1+t^2} \).

13. Να λυθούν οι εξισώσεις

(α’) \(2t^2y'' + 3ty' - y = 0 \), \(t > 0 \)
(β’) \(t^2y'' + 5ty' + 4y = 0 \), \(t > 0 \)
(γ’) \(t^2y'' + ty' + y = 0 \), \(t > 0 \)

14. Να βρεθούν όλες οι τιμές του \(a \) για τις οποίες όλες οι λύσεις της
\[
i^2y'' + ayt' + \frac{9}{4}y = 0, \quad t > 0
\]

(α’) προσεγγίζουν το 0 καθώς \(t \to 0 \).
(β’) προσεγγίζουν το 0 καθώς \(t \to \infty \).
ΚΕΦΑΛΑΙΟ 4

Συστήματα Γραμμικών Διαφορικών Εξισώσεων

4.1 Εισαγωγή

Στην παράγραφο 2.9 είδαμε ότι ένα μοντέλο που περιγράφει την αλληλεπίδραση δύο πληθυσμών, θηραμάτων \(x(t) \) και θητών \(y(t) \) είναι το σύστημα Lotka–Volterra

\[
\begin{align*}
\frac{dx}{dt} &= x(a - by) \\
\frac{dy}{dt} &= y(-c + dx),
\end{align*}
\]

όπου \(a, b, c \) και \(d \) είναι κατάλληλες θετικές σταθερές. Ένα άλλο παράδειγμα συστήματος διαφορικών εξισώσεων μας παρέχει ένα μοντέλο για την κούρσα εξοπλισμόν μεταξύ δύο κρατών. Εάν \(x(t) \) και \(y(t) \) διπλώνουν αντίστοιχα το μέγεθος των αμυντικών δαπανών των δύο κρατών τότε

\[
\begin{align*}
\frac{dx}{dt} &= 2y - x + a \\
\frac{dy}{dt} &= 4x - 3y + b,
\end{align*}
\]

όπου \(a \) και \(b \) είναι κατάλληλες σταθερές που αποτυπώνουν το βαθμό εμπιστοσύνης/μη εμπιστοσύνης που έχει η μία χώρα για την άλλη.

Παρατηρούμε ότι το πρώτο σύστημα δεν είναι γραμμικό ενώ το δεύτερο είναι. Ας δούμε στη συνέχεια πως αλλιώς μπορεί να προκύψει ένα γραμμικό σύστημα.

Παράδειγμα 4.1. Ας θεωρήσουμε τη γραμμική διαφορική εξίσωση δεύτερης τάξης

\[
y'' + p(t)y' + q(t)y = g(t). \tag{4.1}
\]

Ορίζουμε \(x_1 = y \) και \(x_2 = x_1' = y' \) οπότε η εξίσωσι μπορεί να γραφεί στη μορφή

\[
x_2' + p(t)x_2 + q(t)x_1 = g(t),
\]

όπου \(x_1 \) και \(x_2 \) είναι η αλληλεπίδραση στην άλλη κρατική μορφή.
και έτσι η δευτεροτάξια εξίσωση (4.1) μπορεί να παρασταθεί με το σύστημα εξισώσεων πρώτης τάξης

\[
x'_1 = x_2
\]
\[
x'_2 = -q(t)x_1 - p(t)x_2 + g(t)
\]

ί ακόμη σαν εξίσωση πινάκων

\[
\begin{bmatrix}
 x'_1 \\
 x'_2
\end{bmatrix}
=
\begin{bmatrix}
 0 & 1 \\
 -q(t) & -p(t)
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2
\end{bmatrix}
+
\begin{bmatrix}
 0 \\
 g(t)
\end{bmatrix}
\]

(4.2)

Στη συνέχεια θυμίζουμε κάποια στοιχεία από το λογισμό των πινάκων.

- ΛΟΓΙΣΜΟΣ ΠΙΝΑΚΩΝ Εάν \(A(t) = [a_{ij}(t)]\) είναι ένας πίνακας συναρτήσεων θα λέμε ότι ο \(A\) είναι συνεχής στο \(t_0\) εάν κάθε \(a_{ij}\) είναι συνεχής στο \(t_0\). Θα λέμε επίσης ότι ο \(A\) είναι διαφορισμός στο \(t_0\) εάν κάθε \(a_{ij}\) είναι διαφορική στο \(t_0\). Γράφουμε

\[
\frac{dA}{dt}(t_0) = A'(t_0) = [a'_{ij}(t_0)].
\]

Ορίζουμε ακόμη

\[
\int_a^b A(t)\, dt = \left[\int_a^b a_{ij}(t)\, dt \right].
\]

Μπορεί να δειχθεί ότι εάν \(A = A(t)\) και \(B = B(t)\) είναι πίνακες συμβατών διαστάσεων, τότε

\[
\frac{d}{dt}(A + B) = \frac{dA}{dt} + \frac{dB}{dt},
\]
\[
\frac{d}{dt}(AB) = \frac{dA}{dt}B + A\frac{dB}{dt}.
\]

Έτσι, εάν \(C\) είναι ένας πίνακας με σταθερός όρος, τότε

\[
\frac{d}{dt}(CA) = C\frac{dA}{dt}.
\]

Εάν \(M\) είναι ένας πίνακας ως συνίθος, με \(M^{-1}\) θα συμβολίζουμε τον αντίστροφο του \(M\), εφ' όσον αυτός υπάρχει και με \(M^T\) τον ανάστροφο του \(M\).

Παράδειγμα 4.2 (Συνέχεια του Παραδείγματος 4.1). Εάν ορίσουμε, αντίστοιχα

\[
X(t) = \begin{bmatrix}
 x_1 \\
 x_2
\end{bmatrix}, \quad A(t) = \begin{bmatrix}
 0 & 1 \\
 -q(t) & -p(t)
\end{bmatrix}, \quad G(t) = \begin{bmatrix}
 0 \\
 g(t)
\end{bmatrix},
\]

τότε, σύμφωνα με τα αποτελέσματα του λογισμού των πινάκων που αναφέραμε, θα είναι

\[
X'(t) = \begin{bmatrix}
 x'_1 \\
 x'_2
\end{bmatrix} = \begin{bmatrix}
 x'_1 \\
 x'_2
\end{bmatrix},
\]
4.1 Εισαγωγή

οπότε η εξίσωση (4.2) γράφεται σαν

\[X'(t) = A(t)X(t) + G(t), \quad (4.3) \]

που έχει τη μορφή μίας εξίσωσης πρώτης τάξης. Εάν τώρα θεωρήσουμε το πρόβλημα αρχικών τιμών

\[y'' + p(t)y' + q(t)y = g(t), \quad y(t_0) = y_0, \quad y'(t_0) = y_{01}, \quad (4.4) \]

tότε προκύπτει το πρόβλημα αρχικών τιμών

\[X'(t) = A(t)X(t) + G(t), \quad X(t_0) = X_0, \quad (4.5) \]

όπου

\[X_0 = \begin{bmatrix} y_0 \\ y_{01} \end{bmatrix}. \]

Εάν οι συντελεστές της εξίσωσης (4.1) \(p(t) \) και \(q(t) \), καθώς και η συνάρτηση \(g(t) \) είναι συνεχείς συναρτήσεις σε κάποιο διάστημα \(J \) τότε η εξίσωση έχει συνεχή λύση στο διάστημα \(J \). Το δε πρόβλημα (4.4), κάτω από τις ίδιες προϋποθέσεις, έχει μοναδική συνεχή λύση στο \(J \). Θα πρέπει επομένως και η εξίσωση/σύστημα (4.3) να έχει λύση, καθώς και το πρόβλημα αρχικών τιμών (4.5) να έχει μοναδική συνεχή λύση στο \(J \). Πριν συζητήσουμε αυτά τα θέματα, όμως, ας δούμε ένα ακόμη

Παράδειγμα 4.3. Παρόμοια εάν για το σύστημα των διαφορικών εξισώσεων

\[y_1'' + y_2' + 2y_1 = e' \]
\[y_1' + y_2' - 3y_2 = \sin t \]

ορίσουμε \(x_1 = y_1, \ x_2 = y_2 \) και \(x_3 = x_1' = y_1' \), τότε θα είναι

\[x_1' = y_1' = x_3 \]
\[x_2' = y_2' = -y_2' + 3y_2 + \sin t = -x_3 + 3x_2 + \sin t \]
\[x_3' = y_1'' = -y_1' - 2y_1 + \epsilon' = -(x_3 + 3x_2 + \sin t) - 2x_1 + \epsilon' = x_3 - 3x_2 - 2x_1 - \sin t + \epsilon' \]

οπότε το αρχικό \(2 \times 2 \) σύστημα διαφορικών εξισώσεων γράφεται σαν ένα \(3 \times 3 \) σύστημα

\[x_1' = x_3 \]
\[x_2' = 3x_2 - x_3 + \sin t \]
\[x_3' = -2x_1 - 3x_2 + x_3 + \epsilon' - \sin t. \]

Η διαφορά είναι ότι το μεν αρχικό σύστημα είναι δευτέρης τάξης, καθ' όσον η μεγαλύτερης τάξης παράγωγος που εμφανίζεται είναι η δευτέρη, ενώ το νέο σύστημα είναι πρώτης τάξης.
Βλέπουμε λοιπόν ότι, όπως και στο προηγούμενο παράδειγμα μπορούμε να παραστήσουμε το αρχικό σύστημα με μία εξίσωση πινάκων

\[
\begin{bmatrix}
 x_1' \\
 x_2' \\
 x_3'
\end{bmatrix} =
\begin{bmatrix}
 0 & 0 & 1 \\
 0 & 3 & -1 \\
 -2 & -3 & 1
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3
\end{bmatrix} +
\begin{bmatrix}
 0 \\
 \sin t \\
 e' - \sin t
\end{bmatrix}
\]

Ποια είναι η τάξη του πίνακα \(A \)?

Σχετικά με την ύπαρξη λύσης ενός προβλήματος αρχικών τιμών έχουμε το ακόλουθο ανάλογο του Θεωρήματος Ύπαρξης και Μοναδικότητας 2.1

Θεώρημα 4.1. Εάν \(A(t) = \begin{bmatrix} a_{ij}(t) \end{bmatrix} \) και \(G(t) = \begin{bmatrix} g_i(t) \end{bmatrix}, i, j = 1, 2, \ldots, n \), και εάν οι \(a_{ij} \) και \(g_i \) είναι συνεχείς συναρτήσεις σε κάποιο ανοικτό διάστημα \(J \) και \(t_0 \) είναι σημείο του \(J \) τότε το πρόβλημα αρχικών τιμών

\[
X' = A(t)X + G(t), \quad X(t_0) = X_0
\]

(4.6)

όπου \(X_0 \) είναι ένα αυθαίρετο σταθερό διάνυσμα, έχει μοναδική λύση στο \(J \).

Απόδειξη. Σε αναλογία με την απόδειξη του Θεωρήματος 2.1, για το πρόβλημα

\[
\begin{align*}
 y' &= f(t, y) \\
 y(t_0) &= y_0
\end{align*}
\]

⇔ \(y = y_0 + \int_{t_0}^{t} f(s, y) \, ds \),

μία διανυσματική συνάρτηση \(X(t) \) είναι λύση του προβλήματος αρχικών τιμών (4.6) αν και μόνον αν είναι λύση της ολοκληρωτικής εξίσωσης

\[
X(t) = X_0 + \int_{t_0}^{t} (A(s)X(s) + G(s)) \, ds.
\]

(4.7)

Άσκηση 4.1. Να δείξετε ότι η γραμμική εξίσωση τάξης \(n \)

\[
a_n(t)y^{(n)} + a_{n-1}(t)y^{(n-1)} + \cdots + a_0(t)y = g(t)
\]

μπορεί να παρασταθεί με μία εξίσωση όπως στην (4.3). Ποια είναι η τάξη του πίνακα \(A \)?

Άσκηση 4.2. Σε αναλογία με την απόδειξη του Θεωρήματος 2.1 για το πρόβλημα

\[
\begin{align*}
 y' &= f(t, y) \\
 y(t_0) &= y_0
\end{align*}
\]

κάθε διανυσματική συνάρτηση \(X(t) \) είναι λύση του προβλήματος αρχικών τιμών (4.6) αν και μόνον αν είναι λύση της ολοκληρωτικής εξίσωσης

\[
X(t) = X_0 + \int_{t_0}^{t} (A(s)X(s) + G(s)) \, ds.
\]

(4.7)

Άσκηση 4.3. Κατασκευάζουμε την αναδρομική ακολουθία διανυσματικών συναρτήσεων

\[
X_n(t) = X_0 + \int_{t_0}^{t} (A(s)X_{n-1}(s) + G(s)) \, ds, \quad n = 1, 2, \ldots
\]

με \(X_0(t) = X_0 \). Αποδεικνύουμε ότι εάν οι υποθέσεις του Θεωρήματος ισχύουν τότε η αναδρομική αυτή ακολουθία συγκλίνει στη μοναδική λύση του (4.6). Έστω \(| \cdot | \) μία νόμιμη πινάκων και διανυσ-
σμάτων τέτοια ώστε για πίνακες συμβατών μεγεθών να υιοθετεί η σχέση $|AY| \leq |A||Y|^1$. Τότε η υπό ολοκλήρωση συνάρτηση, η αντίστοιχη $f(t, X)$, υιοθετεί την σχέση

$$
|A(s)X_1(s) + G(s)| - |A(s)X_2(s) + G(s)| \leq |A||X_1 - X_2|,
$$

ομοιόμορφα στο $J \times \mathbb{R}^n$, κατά συνέπεια σε κάθε κλειστό διάστημα $[a, b] \subset J$ το οποίο περιέχει το σημείο t_0 υιοθετείται μία συνθήκη Lipschitz

$$
|A(s)X_1(s) + G(s)| - |A(s)X_2(s) + G(s)| \leq C_{a,b}|X_1 - X_2|,
$$

όπου $C_{a,b}$ είναι μία θετική σταθερά. Έστω

$$
\max_{a \leq s \leq b} |A(s)X_0(s) + G(s)| = M,
\tag{4.8}
$$

tότε θα είναι

$$
|X_1(t) - X_0| \leq \left| \int_{t_0}^{t} |A(s)(X_1(s) - X_0)| ds \right| \leq M|t - t_0|
$$

eπομένως

$$
|X_2(t) - X_1(t)| \leq |X_1(t)| \leq C_{a,b} \int_{t_0}^{t} |X_1(s) - X_0| ds \leq C_{a,b} \int_{t_0}^{t} M|s - t_0| ds = C_{a,b}M|t - t_0|^2/2
$$

και έτσι επαρχομακριά για $n > 1$, $n!$

$$
|X_n(t) - X_{n-1}(t)| \leq C_{a,b}^{-1}M\frac{|t - t_0|^n}{n!}.
$$

Επομένως για κάθε $n > 1$ έχουμε

$$
|X_n(t) - X_{n-1}| \leq \frac{M}{C_{a,b}} \left(\frac{C_{a,b}|b - t_0|}{n!} \right)^n \leq \frac{M}{C_{a,b}} \left(\frac{(C_{a,b}(b - a))^n}{n!} \right)^n.
$$

1Ως τέτοια μπορούμε να θεωρήσουμε:

1. την Ευκλείδεια νόμιμα στο \mathbb{R}^n και στο $\mathbb{R}^{m \times n}$, όπου αντίστοιχα για το διάνυσμα $X = [x_1, x_2 \cdots x_n]^T$ και τον τετραγωνικό πίνακα $A = [a_{ij}]$ είναι

$$
|X| = \left(\sum_{i=1}^{n} x_i^2 \right)^{1/2}, \quad |A| = \left(\sum_{i,j=1}^{n} a_{ij}^2 \right)^{1/2}.
$$

2. την Ευκλείδεια νόμιμα στο \mathbb{R}^n για το διάνυσμα $X = [x_1, x_2 \cdots x_n]^T$ και την νόμιμα τελεστή για τον τετραγωνικό πίνακα $A = [a_{ij}]$ η οποία ορίζεται με τη σχέση

$$
|A| = \sup_{|X| \neq 0} \frac{|AX|}{|X|}.
$$

Η ιδιότητα $|AX| \leq |A||X|$ για την νόμιμα τελεστή είναι απόρροια του ορισμού της. Σε όλες τις περιπτώσεις ισχύει η ιδιότητα

$$
\left| \int_{t_0}^{t} A(s) ds \right| \leq \int_{t_0}^{t} |A(s)| ds.
$$
οπότε για $n > m$ προκύπτει ότι
\[
|X_n(t) - X_m(t)| \leq |X_n(t) - X_{n-1}(t)| + |X_{n-1}(t) - X_{n-2}(t)| + \cdots + |X_{m+1}(t) - X_m(t)|
\leq \frac{M}{C_{a,b}} \sum_{k=m+1}^{n} \frac{(C_{a,b}(b-a))^k}{k!}.
\]
Η σειρά $\sum_{k=0}^{\infty} (C_{a,b}(b-a))^k/k!$ συγκλίνει, κατά συνέπεια η ακολούθια των διαδοχικών προσεγγίσεων X_1, X_2, \ldots είναι μία ακολούθια Cauchy και σαν τέτοια συγκλίνει ομοιόμορφα στο $[a, b]$ σε μία συνεχή συνάρτηση X, η οποία, όπως και στο Θεώρημα 2.1 ικανοποιεί τη σχέση (4.7) κατά συνέπεια είναι λύση του προβλήματος αρχικών τιμών (4.6).

Μοναδικότητα της λύσης. Αν X_* είναι μία άλλη λύση του προβλήματος αρχικών τιμών στο διάστημα $[a, b]$ τότε θα ικανοποιεί την ολοκληρωτική εξίσωση (4.7). Έστω
\[
M_1 = \max_{a \leq t \leq b} |X(t) - X_*(t)|,
\]
tότε από τη σχέση
\[
|X(t) - X_*(t)| = \left| \int_{t_0}^{t} A(s)[X(s) - X_*(s)] \, ds \right| \leq C_{a,b} \left| \int_{t_0}^{t} |X(s) - X_*(s)| \, ds \right|
\]
έτσι, μετά από n συνολικά επαναλήψεις, επαργονικά, προκύπτει ότι
\[
|X(t) - X_*(t)| \leq C_{a,b} M_1 |t - t_0|
\]
την οποία αντικαθιστώντας πίσω στο ολοκλήρωμα βρίσκουμε
\[
|X(t) - X_*(t)| \leq C_{a,b} \left| \int_{t_0}^{t} C_{a,b} M_1 |s - t_0| \, ds \right| = M_1 C_{a,b}^2 \frac{|t - t_0|^2}{2!}
\]
και έτσι μετά από n συνολικά επαναλήψεις, επαργονικά, προκύπτει ότι
\[
|X(t) - X_*(t)| \leq M_1 C_{a,b}^n \frac{|t - t_0|^n}{n!} \leq M_1 \frac{(C_{a,b}(b-a))^n}{n!}
\]
για κάθε $n = 1, 2, \ldots$. Επειδή $(C_{a,b}(b-a))^n/n! \to 0$, καθώς $n \to \infty$, σαν n-οστός όρος συγκλίνουσας σειράς, ύποπτο είναι, τελικά, ότι $X(t) = X_*(t)$ για κάθε $t \in [a, b]$.

Δείξτε ότι κάθε λύση του προβλήματος αρχικών τιμών υπάρχει και είναι μοναδική σε κάθε κλειστό υποδιάστημα του J, γεγονός που συνεπάγεται ότι το αυτό συμβαίνει σε ολόκληρο το J.

Παρατήρηση 4.1. Στο Παράδειγμα 4.2 δείχνετε ότι το πρόβλημα αρχικών τιμών (4.4) είναι ισοδύναμο με το (4.3) κατά συνέπεια το Θεώρημα 3.1 είναι ειδικά περίπτωση του Θεωρήματος 4.1.

Παρατήρηση 4.2. Το γενικό διανυσματικό πρόβλημα αρχικών τιμών πρώτης τάξης γράφεται στη μορφή
\[
X' = f(t, X), \quad X(t_0) = X_0.
\]
4.1 Εισαγωγή

όπου το \(X \) είναι ένα \(n \)-διάνυσμα και \(f : \mathbb{R}^{1+n} \rightarrow \mathbb{R}^n \). Σχετικά με την ύπαρξη και μοναδικότητα λύσης για το πρόβλημα έχουμε το

Θεώρημα. Εάν \(n \) \(f \) είναι συνεχής σε κάποια περιοχή \(V \) του \((i_0, X_0)\) και ικανοποιεί μία συνθήκη Lipschitz στο \(V \), τότε το πρόβλημα αρχικών τιμών έχει μοναδική λύση σε μία περιοχή \(|t - i_0| \leq T\) του \(i_0 \).

Η απόδειξη ακολουθεί τις γραμμές αυτής του Θεώρηματος 2.1 με τις προφανείς αντιστοιχίες, στη διανυσματική περίπτωση, και παραλείπεται.

Ένα ακόμη παράδειγμα με γραμμικούς συστήματος είναι ένα επιδημικό μοντέλο, ένα μοντέλο διπλάτο που περιγράφει τη διάδοση μίας ασθένειας σε κάποιο πληθυσμό

\[
\frac{dS}{dt} = -aSI \\
\frac{dI}{dt} = aSI - bI.
\]

Εδώ \(S(t) \) διπλώνει τον πληθυσμό και \(I(t) \) διπλώνει τον πληθυσμό που έχει προσβληθεί από την ασθένεια, ενώ \(a \) και \(b \) είναι κατάλληλες θετικές σταθερές. Το σύστημα γράφεται στη μορφή (4.9) ορίζοντας αντίστοιχα το διάνυσμα \(X \) και τη διανυσματική συνάρτηση \(f(t, X) \) με τις σχέσεις

\[
X(t) = \begin{bmatrix} S(t) \\ I(t) \end{bmatrix}, \quad f(t, X) = f(t, S, I) = \begin{bmatrix} f_1(t, X) \\ f_2(t, X) \end{bmatrix} = \begin{bmatrix} -aSI \\ aSI - bI \end{bmatrix}.
\]

Κλείνουμε την παράγραφο με ένα παράδειγμα από την Διαφορική Γεωμετρία.

Παράδειγμα 4.4. Εάν \(r \) είναι μία καμπύλη μοναδιαίας ταχύτητας, διπλάτη \(||r'|| = 1 \), όπου \(||a|| \)

είναι το μέτρο του διανύσματος \(a \), και \(T \) είναι το εφαρμοσμένο διάνυσμα, \(N \) είναι το πρώτο κάθετο διάνυσμα, και \(B \) είναι το δεύτερο κάθετο διάνυσμα, τότε οι τύποι του Frenet είναι

\[
\frac{dT}{ds} = kN \\
\frac{dN}{ds} = -kT + \tau B \\
\frac{dB}{ds} = -\tau N
\]

όπου \(k \) και \(\tau \) είναι αντίστοιχα η καμπυλιότητα και η στρέψη της καμπύλης. Σε μορφή πίνακα το σύστημα γράφεται

\[
\frac{d}{ds} \begin{bmatrix} T \\ N \\ B \end{bmatrix} = \begin{bmatrix} 0 & k & 0 \\ -k & 0 & \tau \\ 0 & -\tau & 0 \end{bmatrix} \begin{bmatrix} T \\ N \\ B \end{bmatrix}.
\]

Ασκηση 4.2. Τι πληροφορία παίρνει κάποιος εφαρμόζοντας το Θεώρημα 4.1 στο Παράδειγμα 4.4;
4.2 Θεμελιώδεις Πίνακες

Γενικευόντας το Παράδειγμα 4.3, βλέπουμε ότι ένα σύστημα γραμμικών διαφορικών εξισώσεων μπορεί να παρασταθεί σαν ένα σύστημα διαφορικών εξισώσεων πρώτης τάξης και στη συνέχεια να γραφεί στη μορφή

\[X' = A(t)X + G(t), \]

όπου \(X \) και \(G \) είναι \(n \)-διανύσματα, διπλάδι \(n \times 1 \) πίνακες, και \(A \) ένας \(n \times n \) πίνακας. Το σύστημα (4.10) θα λέγεται ομοιογενές εάν \(G(t) = 0 \), διαφορετικά θα λέγεται μη ομοιογενές. Εάν τα στοιχεία του \(A \) είναι σταθερές, θα λέμε ότι το σύστημα είναι σταθερών συντελεστών.

Ορισμός 4.1. Οι \(n \)-διανυσματικές συναρτήσεις \(X_1, X_2, \ldots, X_n \) ορισμένες σε κάποιο διάστημα θα λέγονται γραμμικά εξαρτημένες στο διάστημα \(J \), εάν υπάρχουν σταθερές \(c_1, c_2, \ldots, c_n \) όχι όλες ίσες με μηδέν, έτσι ώστε να ισχύει

\[
\begin{align*}
 c_1X_1(t) + c_2X_2(t) + \cdots + c_nX_n(t) &= 0
\end{align*}
\]

(4.11)

για όλα τα \(t \) στο \(J \). Με \(0 \) συμβολίζουμε το μηδενικό \(n \)-διάνυσμα. Εάν οι διανυσματικές συναρτήσεις δεν είναι γραμμικά εξαρτημένες στο \(J \) θα λέγονται γραμμικά ανεξάρτητες στο διάστημα \(J \).

Εάν, με \([X_1(t) X_2(t) \cdots X_n(t)]\) συμβολίσουμε τον \(n \times n \) πίνακα με στήλες των \(n \)-διανυσματικές συναρτήσεων \(X_1, X_2, \ldots, X_n \), τότε η εξίσωση (4.11) γράφεται

\[
[X_1(t) X_2(t) \cdots X_n(t)]\xi = 0, \tag{4.12}
\]

όπου \(\xi \) είναι το διάνυσμα

\[
\xi = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}.
\]

Υπενθυμίζουμε ότι στη συνέχεια το βασικό αποτέλεσμα της θεωρίας των γραμμικών συστημάτων το οποίο περιγράφεται στο

Θεώρημα 4.2. Εάν \(A \) είναι \(n \times n \) πίνακας, τότε οι παρακάτω ισχυρισμοί είναι ισοδύναμοι:

1. Το σύστημα \(Ax = 0 \) έχει μη μηδενικές λύσεις (\(x \neq 0 \)).
2. \(O \) \(A \) είναι ιδιόμορφος.
3. \(H \) ορίζουσα του \(A \) είναι ίση με μηδέν.
4. Οι στήλες (γραμμές) του \(A \) είναι γραμμικά εξαρτημένες.

Για την απόδειξη του Θεωρήματος 4.2 παραπέμπουμε σε οποιοδήποτε βιβλίο Γραμμικών Αλγε- βρας. Ας επανέλθουμε όμως στο σύστημα (4.12). Σύμφωνα με το Θεώρημα 4.2, τα διανύσματα \(X_i \), \(i = 1, \ldots, n \) είναι γραμμικά ανεξάρτητα στο διάστημα \(J \) εάν το σύστημα (4.12) έχει μηδενική λύση, που σημαίνει ότι για κάθε \(t \in J \) ο πίνακας \([X_1(t) X_2(t) \cdots X_n(t)]\) είναι αντιστρέφιμος, ή ισοδύναμα ότι η ορίζουσα του πίνακα αυτού είναι διάφορη του μηδενός. Ισχύει λοιπόν το ανάλογο του Θεωρήματος 3.3.1.
4.2 Θεμελιώδεις Πίνακες

Θεώρημα 4.3 (Κριτήριο Γραμμικής Ανεξαρτησίας). Εστώ ότι οι \(n \)-διανυσματικές συναρτήσεις \(X_1, X_2, \ldots, X_n \) είναι ορισμένες σε κάποιο ανοικτό διάστημα \(J \). Εάν η ορίζουσα

\[
\det[X_1, X_2, \ldots, X_n]
\]

είναι μη μικαικη σε ένα τουλάχιστον σημείο του διαστήματος \(J \), τότε οι διανυσματικές συναρτήσεις \(X_1, X_2, \ldots, X_n \) είναι γραμμικά ανεξάρτητες στο διάστημα.

Η απόδειξη του θεώρημα αφινίται σαν άσκηση. Σε αναλογία με την περίπτωση των βαθμωτών συναρτήσεων έχουμε

Ορισμός 4.2. Η ορίζουσα στην (4.13) λέγεται ορίζουσα Wronski των διανυσματικών συναρτήσεων \(X_1, X_2, \ldots, X_n \) και συμβολίζεται με \(W(X_1, X_2, \ldots, X_n)(t) \).

Ασκηση 4.3 (Ταυτότητα του Abel). Εάν \(X_1, X_2, \ldots, X_n \) είναι λύσεις, όχι κατ’ ανάγκα γραμμικά ανεξάρτητες, του \(n \times n \) συστήματος \(X' = A(t)X \) με \(A(t) = [a_{ij}(t)] \) σε κάποιο διάστημα \(J \), και εάν \(W(t) \) είναι η ορίζουσα Wronski των \(X_1, X_2, \ldots, X_n \), να δεχθεί ότι

\[
W(t) = W(t_0) \exp\left(\int_{t_0}^t (a_{11}(s) + a_{22}(s) + \cdots a_{nn}(s)) \, ds\right),
\]

όπου \(t_0 \) είναι κάποιο σημείο του \(J \). Να δοθεί η απόδειξη για \(n = 3 \). Βλέπε Πρόταση 3.2.

Ας επανέλθουμε τώρα στο σύστημα (4.10) και ως ξεκινώσουμε να συζητούμε πρώτα

• TO ΟΜΟΙΟΓΕΝΕΣ ΣΥΣΤΗΜΑ \(X' = AX \)

Για \(A(t) = [a_{ij}(t)] \) είναι ένας \(n \times n \) πίνακας συναρτήσεων.

Θεώρημα 4.4. Εάν οι διανυσματικές συναρτήσεις \(X_1, X_2, \ldots, X_n \) είναι λύσεις της ομοιογενούς εξίσωσης \(X' = AX \) τότε είναι γραμμικά ανεξάρτητες σε κάποιο ανοικτό διάστημα \(J \) όταν και μόνον όταν

\[W(X_1, X_2, \ldots, X_n)(t_0) \neq 0 \]

για κάποιο σημείο \(t_0 \) στο διάστημα \(J \).

Ορισμός 4.3. Εάν οι \(X_1, X_2, \ldots, X_n \) είναι γραμμικά ανεξάρτητες λύσεις του ομοιογενούς συστήματος \(X' = AX \) τότε ο πίνακας

\[
\Phi(t) := [X_1(t) \mid X_2(t) \mid \cdots \mid X_n(t)],
\]

με στίλες διπλαίς τις \(X_1, X_2, \ldots, X_n \), θα λέγεται δεσμοί \(\theta \) πίνακες για το \(X' = AX \).

Παρατήρηση 4.3. Εάν \(\Phi(t) = [X_1(t) \mid X_2(t) \mid \cdots \mid X_n(t)] \) είναι ένας θεμελιώδης πίνακας για το σύστημα \(X' = AX \) και \(\xi = [c_1 \mid c_2 \mid \cdots \mid c_n]^T \) είναι ένα σταθερό διάνυσμα, τότε το διάνυσμα \(\Phi(t)\xi \) είναι μία λύση του ιδίου συστήματος με τον ιδιό συστήματος με την

\[
\Phi(t)\xi = c_1X_1(t) + c_2X_2(t) + \cdots + c_nX_n(t).
\]

Θεώρημα 4.5 (Υποθέση Θεμελιώδους Πίνακα). Για το ομοιογενές σύστημα \(X' = AX \) όπου ο \(A \) είναι συνεχής σε κάποιο ανοικτό διάστημα \(J \), υπάρχει πάντα ένας θεμελιώδης πίνακας.
Απόδειξη. Έστω ότι ο A είναι $n \times n$ και ως ορίσουμε τα n-διανύσματα E_i, $i = 1, 2, \ldots, n$ να έχουν 1 στην i-η γραμμή και 0 στις υπόλοιπες. Τότε για κάθε i το πρόβλημα αρχικών τιμών

$$X' = AX, \quad X(t_0) = E_i,$$

όπου το t_0 είναι κάποιο σημείο του J, έχει, σύμφωνα με το Θεώρημα 4.1, μοναδική λύση X_i στο διάστημα J. Επιπλέον

$$W(X_1, X_2, \ldots, X_n)(t_0) = \det[E_1, E_2, \ldots, E_n] = |I_n| = 1,$$

όπου I_n είναι ο μοναδιαίος $n \times n$ πίνακας. Επομένως τα X_i είναι γραμμικά ανεξάρτητα και ο $[X_1(t) X_2(t) \cdots X_n(t)]$ είναι ένας θεμελιώδης πίνακας για το σύστημα.

Θεώρημα 4.6. Εάν ο $Φ$ είναι ένας θεμελιώδης πίνακας για το $X' = AX$ σε κάποιο διάστημα J, και εάν Y είναι μία λύση του συστήματος στο J, τότε υπάρχει σταθερό διάνυσμα $ξ_i$ τέτοιο ώστε

$$Y = Φξ_i.$$

Απόδειξη. Από τον ορισμό του θεμελιώδους πίνακα και το Θεώρημα 4.2 έπειτα ότι ο αντίστροφος πίνακας $Φ^{-1}$ υπάρχει πάντα. Έστω $t_0 \in J$, και έστω $Y(t_0) = Y_0$. Για κάθε σταθερό διάνυσμα $ξ_i$ το $Φξ_i$ είναι μία λύση για το $X' = AX$. Για δε το

$$ξ_i = Φ^{-1}(t_0)Y_0$$

η αντίστοιχη λύση $X(t) = Φ(t)Φ^{-1}(t_0)Y_0$ του συστήματος ικανοποιεί επί πλέον τη συνθήκη

$$X(t_0) = Φ(t_0)Φ^{-1}(t_0)Y_0 = Y_0.$$

Σαν συνέπεια επομένως της μοναδικότητας της λύσης του προβλήματος αρχικών τιμών (Θεώρημα 4.1) θα είναι $Y = Φξ_i$.

Παρατήρηση 4.4. Από το Θεώρημα 4.6 προκύπτουν τα ακόλουθα συμπεράσματα:

1. Εάν $Φ$ είναι όπως στο θεώρημα, τότε η γενική λύση του συστήματος $X' = AX$ είναι η $Φξ$, όπου $ξ$ είναι ένα σταθερό διάνυσμα, κατά συνέπεια αν Y είναι μία λύση του συστήματος και $Φ(t) = [X_1(t) X_2(t) \cdots X_n(t)]$, τότε υπάρχουν σταθερές c_1, c_2, \ldots, c_n έτσι ώστε

$$Y = c_1X_1 + c_2X_2 + \cdots + c_nX_n,$$

κάθε λύση δηλαδή του συστήματος εκφράζεται σαν γραμμικός συνδυασμός των στηλών του θεμελιώδους πίνακα.

2. Η λύση του προβλήματος αρχικών τιμών

$$X' = AX, \quad X(t_0) = X_0,$$

δίνεται από τη σχέση

$$X = Φ(t)Φ^{-1}(t_0)X_0,$$

όπου $Φ^{-1}$ είναι ο αντίστροφος πίνακας του $Φ$.

Συνήθεις Διαφορικές Εξισώσεις ΕΣ – 12 Μαρτίου 2021
4.3 Ομοιογενή Γραμμικά Συστήματα με Σταθερούς Συντελεστές

• ΤΟ ΜΗ ΟΜΟΙΟΓΕΝΕΣ ΣΥΣΤΗΜΑ

$X' = AX + G$

Έδω $A(t) = [a_{ij}](t)$ είναι ένας $n \times n$ πίνακας συναρτήσεων, και G είναι μία διανυσματική συνάρτηση.

Θεώρημα 4.7. Εάν Y_p είναι μία λύση του $X' = AX + G$ και $Φ$ είναι ένας θεμελιώδης πίνακας για το αντίστοιχο ομοιογενές σύστημα $X' = AX$, και εάν Y είναι λύση του μη ομοιογενούς συστήματος, τότε θα υπάρχει σταθερό διάνυσμα $ξ_y$ τέτοιο $ώστε$

$Y = Φξ_y + Y_p$.

Απόδειξη. Η $Y - Y_p$ είναι λύση του ομοιογενούς συστήματος (γιατί) οπότε, σύμφωνα με το Θεώρημα 4.6, υπάρχει σταθερό διάνυσμα $ξ_y$ $ώστε$ να επιλεγεί $Y - Y_p = Φξ_y$, απ’ όποιον έπεται το συμπέρασμα. □

Παρατήρηση 4.5. Από το Θεώρημα 4.7 προκύπτουν τα ακόλουθα συμπεράσματα:

1. Εάν $Φ$ και Y_p, είναι οποιες στο θεώρημα, τότε η γενική λύση του συστήματος $X' = AX + G$ είναι $Φξ + Y_p$, όπου $ξ$ είναι ένα σταθερό διάνυσμα, κατά συνέπεια αλλά Y είναι μία λύση του μη ομοιογενούς συστήματος και $Φ(τ) = [X_1(t) \ X_2(t) \ ⋯ \ X_n(t)]$ τότε υπάρχουν σταθερές c_1, c_2, \ldots, c_n $έτσι$ $ώστε$

$Y = c_1X_1 + c_2X_2 + \cdots + c_nX_n + Y_p$.

2. Η λύση του προβλήματος αρχικών τιμών

$X' = AX + G, \quad X(0) = X_0, \quad (4.16)$

δίνεται από τη σχέση

$X = Φ(t)Φ^{-1}(0)(X_0 - X_p(0)) + X_p, \quad (4.17)$

όπου $Φ$ είναι ένας θεμελιώδης πίνακας για το ομοιογενές σύστημα και X_p είναι μία ειδική λύση του μη ομοιογενούς συστήματος.

4.3 Ομοιογενή Γραμμικά Συστήματα με Σταθερούς Συντελεστές

Θεωρούμε το γραμμικό σύστημα

$X' = AX, \quad (4.18)$

όπου A είναι ένας σταθερός $n \times n$ πίνακας. Θυμίζουμε ότι μία ομοιογενής γραμμική εξίσωση τάξης n με σταθερούς συντελεστές μπορεί να παρασταθεί με μία εξίσωση της μορφής (4.18), όρα είναι λογικό να αναζητούμε λύσεις του συστήματος αυτού στη μορφή

$X(t) = e^{rt}Z,$

όπου το r και το Z είναι αντίστοιχα μία σταθερά και ένα σταθερό διάνυσμα που πρέπει να προσδιοριστούν. Παραγωγίζοντας την έκφραση αυτή του X και αντικαθιστώντας στην εξίσωση (4.18) έχουμε

$re^{rt}Z = Ae^{rt}Z.$
διαφόρες στη συνέχεια και τα δύο μέλη με \(e^{it} \) προκύπτει η εξίσωση
\[
AZ = rZ,
\]
η ισοδύναμα \(n \)
\[
(A - rI_n) Z = 0, \quad (4.19)
\]
όταν \(I_n \) είναι ο μοναδιαίος \(n \times n \) πίνακας. Εάν \(Z = 0 \) τότε θα είναι \(X = 0 \). Η εξίσωση (4.19) έχει μια μηδενικής λύσεις \(Z \) όταν και μόνον όταν ο πίνακας \(A - rI_n \) δεν έχει αντίστροφο, ή ισοδύναμα όταν \(\det(A - rI_n) = 0 \). Υποθέσουμε ότι οι αριθμοί \(r \) (πραγματικοί ή φανταστικοί) για τους οποίους η εξίσωση (4.19) έχει μια μηδενικής λύσεις είναι οι ιδιοτιμές του πίνακα \(A \) και οι αντίστοιχες μη μηδενικές λύσεις \(Z \) είναι τα ιδιοδιανύσματα του \(A \). Δείξαμε λοιπόν το

Θεώρημα 4.8. Εάν \(A \) είναι ένας σταθερός πίνακας, τότε το \(e^{it}Z \) είναι μία μηδενική λύση του \(X' = AX \) τότε και μόνον τότε όταν \(r \) είναι ιδιοτιμή του \(A \) με αντίστοιχο ιδιοδιάνυσμα το \(Z \).

Θυμίζουμε από τη Γραμμική Άλγεβρα ότι οι ιδιοτιμές \(\lambda \) του πίνακα \(A \) είναι οι ρίζες της χαρακτηριστικής εξίσωσης του πίνακα \(A \)
\[
\det(A - \lambda I_n) = 0. \quad (4.20)
\]
Ο πίνακας \(A \) είναι πραγματικός μπορεί ωστόσο να έχει μηγαδικές ιδιοτιμές. Εάν \(\lambda = \alpha + i\beta \) είναι ιδιοτιμή του \(A \) με αντίστοιχο ιδιοδιάνυσμα το \(Z = V + iW \), τότε \(\theta \) είναι \(AZ = \lambda Z \). Παίρνοντας σύμφωνα με τις ιδιότητες των μηγαδικών αριθμών
\[
\overline{AZ} = \overline{\lambda Z},
\]
η σύμφωνα με τις ιδιότητες των μηγαδικών αριθμών
\[
\overline{AZ} = \overline{\lambda Z}.
\]
Επειδή \(\lambda \) είναι πραγματικός πίνακας θα έχουμε τελικά
\[
\overline{AZ} = \overline{\lambda Z},
\]
απ’ όπου βλέπουμε ότι το \(\overline{\lambda} \) είναι ιδιοτιμή του \(A \) με αντίστοιχο ιδιοδιάνυσμα το \(\overline{Z} \). Σύμφωνα λοιπόν με το Θεώρημα 4.8 εάν το διάνυσμα
\[
e^{(\alpha+\beta)t} (V + iW)
\]
eίναι λύση του \(X' = AX \), τότε και το
\[
e^{(\alpha-\beta)t} (V - iW)
\]
eίναι λύση. Σαν αποτέλεσμα λοιπόν της γραμμικότητας, όπως στην περίπτωση των γραμμικών εξισώσεων, μπορεί να δειχθεί ότι το πραγματικό και το φανταστικό μέρος της μηγαδικής λύσης είναι γραμμικά ανεξάρτητες λύσεις. Συνοψίζοντας λοιπόν έχουμε ότι εάν το \(\alpha + i\beta \) είναι ιδιοτιμή του \(A \) με αντίστοιχο ιδιοδιάνυσμα το \(V + iW \) τότε δύο πραγματικές, γραμμικά ανεξάρτητες λύσεις του \(X' = AX \) είναι οι
\[
X_1 = e^{it} \left(\cos \beta t V - \sin \beta t W \right), \quad X_2 = e^{it} \left(\cos \beta t W + \sin \beta t V \right). \quad (4.21)
\]
4.3 Ομοιογενή Γραμμικά Συστήματα με Σταθερούς Συντελεστές

Ασκηση 4.4. Να δείξητε ότι εάν το $α + iβ$ είναι ιδιοτιμή του A με αντίστοιχο ιδιοδιάνυσμα το $V + iW$, τότε τα διανύσματα στιν (4.21) είναι γραμμικά ανεξάρτητες λύσεις του $X' = AX$.

Θεώρημα 4.9. Εστώ A ένας σταθερός $n \times n$ πίνακας. Εάν Z_1, Z_2, \ldots, Z_n είναι γραμμικά ανεξάρτητα ιδιοδιάνυσμα του A τα οποία αντιστοιχούν στις ιδιοτιμές $λ_1, λ_2, \ldots, λ_n$, τότε τα διανύσματα $e^{λ_1}Z_1, e^{λ_2}Z_2, \ldots, e^{λ_n}Z_n$, είναι γραμμικά ανεξάρτητες λύσεις του $X' = AX$.

Απόδειξη. Από μεν το Θεώρημα 4.8 έχουμε ότι τα διανύσματα $X_i = e^{λ_i}Z_i$, $i = 1, 2, \ldots, n$ είναι λύσεις του συστήματος, από δέ το Θεώρημα 4.4 ότι αυτά είναι γραμμικά ανεξάρτητα όταν n ορίζουσα Wronski των X_i είναι διάφορη του μηδένος. Από τις ιδιότητες των ορίζουσών προκύπτει

$$W(X_1, X_2, \ldots, X_n) = \det \begin{bmatrix} e^{λ_1}Z_1 & e^{λ_2}Z_2 & \cdots & e^{λ_n}Z_n \end{bmatrix}$$
$$= e^{(λ_1+λ_2++λ_n)} \det [Z_1 \ Z_2 \ \cdots \ Z_n]$$
$$= e^{(λ_1+λ_2++λ_n)} W(Z_1, Z_2, \ldots, Z_n)$$

Επειδή τα διανύσματα Z_1, Z_2, \ldots, Z_n είναι γραμμικά ανεξάρτητα θα είναι $W(Z_1, Z_2, \ldots, Z_n) \neq 0$, οπότε και $W(X_1, X_2, \ldots, X_n) \neq 0$ και η απόδειξη είναι πλήρης.

Από τη Γραμμική Αλγεβρα θυμίζουμε το

Θεώρημα 4.10. Εάν ο σταθερός $n \times n$ πίνακας A έχει n διαφορετικές μεταξύ τους ιδιοτιμές τότε τα αντίστοιχα ιδιοδιάνυσμα είναι γραμμικά ανεξάρτητα.

Συνδιάζοντας τα Θεώρημα 4.9 και 4.10 προκύπτει το

Πρότυπο 4.1. Εάν ο σταθερός $n \times n$ πίνακας A έχει n διαφορετικές ιδιοτιμές $λ_1, λ_2, \ldots, λ_n$ με αντίστοιχα ιδιοδιάνυσμα Z_1, Z_2, \ldots, Z_n, τότε ο $[e^{λ_1}Z_1 \ e^{λ_2}Z_2 \ \cdots \ e^{λ_n}Z_n]$ είναι ένας θεμελιώδης πίνακας για το $X' = AX$.

Παράδειγμα 4.5. Να λυθεί το σύστημα

$$X' = \begin{bmatrix} 4 & 2 \\ 0 & 2 \end{bmatrix} X.$$

Εάν A είναι ο πίνακας των συντελεστών του συστήματος η χαρακτηριστική του εξίσωση είναι

$$\det(A - λI_2) = \det \begin{bmatrix} 4 - λ & 2 \\ 0 & 2 - λ \end{bmatrix} = (4 - λ)(2 - λ) = 0,$$

επομένως οι ιδιοτιμές του A είναι $λ = 4$ και $λ = 2$. Στη συνέχεια βρίσκουμε τα ιδιοδιάνυσμα του A. Για $λ_1 = 4$ λύνουμε το σύστημα

$$\begin{bmatrix} 0 & 2 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = 0 \Leftrightarrow \begin{bmatrix} 2z_2 \\ -2z_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$
απ’ όπου βρίσκουμε \(z_2 = 0 \). Έτσι ένα ιδιοδιάνυσμα που αντιστοιχεί στο \(\lambda_1 = 4 \) είναι το

\[
Z_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.
\]

Τώρα για \(\lambda_2 = 2 \) το αντίστοιχο σύστημα είναι

\[
\begin{bmatrix} 2 & 2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = 0 \iff \begin{bmatrix} 2z_1 + 2z_2 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix},
\]

οπότε \(z_1 = -z_2 \). Ένα ιδιοδιάνυσμα λοιπόν που αντιστοιχεί στο \(\lambda_2 = 2 \) είναι το

\[
Z_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}.
\]

Έτσι η γενική λύση του συστήματος είναι

\[
X(t) = c_1 e^{4t} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + c_2 e^{2t} \begin{bmatrix} 1 \\ -1 \end{bmatrix}.
\]

Σημειώνουμε ότι ένας θεμελιώδης πίνακας για το σύστημα είναι

\[
\Phi(t) = \begin{bmatrix} e^{4t} & e^{2t} \\ 0 & -e^{2t} \end{bmatrix}.
\]

Παράδειγμα 4.6. Να λυθεί το σύστημα

\[
X' = \begin{bmatrix} -1 & 2 \\ -1 & -3 \end{bmatrix} X.
\]

Εάν \(A \) είναι ο πίνακας των συντελεστών, τότε η χαρακτηριστική εξίσωση του \(A \) είναι

\[
\det(A - \lambda I_2) = \det \begin{bmatrix} -1 - \lambda & 2 \\ -1 & -3 - \lambda \end{bmatrix} = \lambda^2 + 4\lambda + 5 = 0
\]

eπομένως οι ιδιωτιμές του \(A \) είναι \(\lambda = -2 \pm i \). Για \(\lambda = -2 + i \) λύνουμε το σύστημα

\[
\begin{bmatrix} 1 - i & 2 \\ -1 & -1 - i \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = 0 \iff \begin{bmatrix} (1 - i)z_1 + 2z_2 \\ -z_1 - (1 + i)z_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix},
\]

απ’ όπου βρίσκουμε \(z_1 = 2 \) και \(z_2 = -1 + i \). Το ιδιοδιάνυσμα

\[
Z = \begin{bmatrix} 2 \\ -1 \end{bmatrix} + i \begin{bmatrix} 0 \\ 1 \end{bmatrix}.
\]
είναι μία λύση του συστήματος. Η γενική επομένως λύση του συστήματος, σύμφωνα με την (4.21) είναι

\[X(t) = c_1 e^{-2t} \begin{pmatrix} 2 \\ -1 \end{pmatrix} \cos t + c_2 e^{-2t} \begin{pmatrix} 2 \\ -1 \end{pmatrix} \sin t \]

όπου \(c_1 \) και \(c_2 \) είναι δύο πραγματικές σταθερές. Σημειώνουμε και εδώ ότι ένας θεμελιώδης πίνακας για το σύστημα είναι

\[\Phi(t) = \begin{pmatrix} e^{-2t}2 \cos t & e^{-2t} \sin t \\ -e^{-2t}(\cos t + \sin t) & e^{-2t}(\cos t - \sin t) \end{pmatrix}. \]

Παράδειγμα 4.7. Να λυθεί το σύστημα

\[X' = \begin{bmatrix} 2 & -1 \\ 1 & 4 \end{bmatrix} X. \]

Εάν \(A \) είναι ο πίνακας των συντελεστών, τότε

\[\det(A - \lambda I_2) = (2 - \lambda)(4 - \lambda) + 1 = \lambda^2 - 6\lambda + 9 = (\lambda - 3)^2 \]

eπομένως ο \(A \) έχει μία μόνο ιδιοτιμή \(\lambda = 3 \). Για να βρούμε τα ιδιοδιανύσματα λύνουμε το σύστημα

\[(A - 3I_2)Z = 0\]

και βρίσκουμε

\[\begin{bmatrix} -1 & -1 & z_1 \\ 1 & 1 & z_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \]

όπου \(z_1 = -z_2 \). Αυτό σημαίνει ότι όλα τα ιδιοδιανύσματα του \(A \) είναι της μορφής

\[s \begin{bmatrix} 1 \\ -1 \end{bmatrix} \]

όπου \(s \) είναι μία πραγματική παράμετρος. Μία λύση λοιπόν του συστήματος είναι

\[X_1 = e^{3t} \begin{bmatrix} 1 \\ -1 \end{bmatrix}. \]

Προκειμένου να βρούμε μία δεύτερη λύση δοκιμάζουμε, όπως στην περίπτωση διπλής ρίζας στις δευτεροτάξιες γραμμικές εξισώσεις, μία στη μορφή

\[X_2 = te^{3t}V_1 + e^{3t}V_2 \]

όπου \(V_1 \) και \(V_2 \) είναι σταθερά διανύσματα. Αντικαθιστώντας στην εξίσωση έχουμε

\[te^{3t}V_1 + 3te^{3t}V_1 + 3e^{3t}V_2 = te^{3t}AV_1 + e^{3t}AV_2, \]
οπότε διαφορώνται με e^{3t} και συνιστούνται όρους βρίσκουμε

$$(V_1 + 3V_2 - AV_2) + t(3V_1 - AV_1) = 0.$$

Έτσι θα πρέπει

$$AV_1 = 3V_1$$

$$(A - 3I_2)V_2 = V_1.$$

Από την πρώτη εξίσωση βλέπουμε ότι το V_1 είναι ιδιοδιάνυσμα του A και επειδή κάθε τέτοιο είναι στη μορφή

$$s \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

eπιλέγουμε

$$V_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix},$$

και λύνουμε το σύστημα $(A - 3I_2)V_2 = V_1$. Έτσι έχουμε

$$\begin{bmatrix} -1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

οπότε είναι $z_1 + z_2 = -1$, ή $z_1 = -1 - z_2$. Μπορούμε έτσι να επιλέξουμε

$$V_2 = \begin{bmatrix} 0 \\ -1 \end{bmatrix},$$

και έτσι μία δεύτερη λύση του συστήματος είναι η

$$X_2 = te^{3t} \begin{bmatrix} 1 \\ -1 \end{bmatrix} + e^{3t} \begin{bmatrix} 0 \\ -1 \end{bmatrix}.$$

Οι X_1 και X_2 είναι γραμμικά ανεξάρτητες, επομένως η γενική λύση του συστήματος είναι

$$X(t) = c_1e^{3t} \begin{bmatrix} 1 \\ -1 \end{bmatrix} + c_2t3t \begin{bmatrix} 1 \\ -1 \end{bmatrix} + c_3t \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$

$$= c_1e^{3t} \begin{bmatrix} 1 \\ -1 \end{bmatrix} + c_3t3t \begin{bmatrix} t \\ -1 - t \end{bmatrix}.$$

Ασκηση 4.5. Να βρεθεί ένας 2×2 σταθερός πίνακας A έτσι ώστε μία λύση του $X' = AX$ είναι η

$$X(t) = \begin{bmatrix} e^{2t} - e^{-t} \\ e^{2t} + 2e^{-t} \end{bmatrix}.$$
4.4 Μη Ομοιογενή Γραμμικά Συστήματα

Σύμφωνα με το Θεώρημα 4.7 για την επιλύση του μη ομοιογενούς συστήματος

\[X'(t) = AX(t) + G(t) \] (4.22)

πρέπει να γνωρίζουμε ένα θεμελιώδη πίνακα για το ομοιογενές σύστημα

\[X'(t) = AX(t), \] (4.23)

καθός και μία ειδική λύση του (4.22). Στις προηγούμενες παράγραφοι μελετήσαμε το πως να βρίσκουμε ένα θεμελιώδη πίνακα, και εδώ θα δούμε το πώς να βρίσκουμε μία ειδική λύση του μη ομοιογενούς συστήματος. Έχουμε οπως και στις γραμμικές εξισώσεις, το μέθοδο των προσδιοριστών συντελεστών και αυτή της μεταβολής των παραμέτρων.

4.4.1 Η μέθοδος των Προσδιοριστών Συντελεστών

Η μέθοδος αυτή εφαρμόζεται όταν ο πίνακας \(A \) στη (4.22) είναι σταθερός και ο μη ομοιογενής όρος \(G \) έχει συγκεκριμένη μορφή, δηλαδή τα στοιχεία του διανύσματος \(G \) είναι όπως αυτά του πίνακα της παραγράφου 3.6.1. Ας δούμε ένα

Παράδειγμα 4.8. Να λυθεί το σύστημα

\[
X' = \begin{bmatrix} 6 & 1 \\ 4 & 3 \end{bmatrix} X + \begin{bmatrix} 6 \\ -10 \end{bmatrix} t + \begin{bmatrix} 0 \\ 4 \end{bmatrix}.
\]

Βρίσκουμε πρώτα ένα θεμελιώδη πίνακα για το ομοιογενές σύστημα \(X' = AX \). Έτσι

\[
\text{det}(A - \lambda I_2) = \text{det} \begin{bmatrix} 6 - \lambda & 1 \\ 4 & 3 - \lambda \end{bmatrix} = \lambda^2 - 9\lambda + 14 = (\lambda - 2)(\lambda - 7),
\]

επομένως οι ιδιοτιμές του \(A \) είναι \(\lambda_1 = 2 \) και \(\lambda_2 = 7 \). Στη συνέχεια βρίσκουμε, όπως στα παραδείγματα στην προηγούμενη παράγραφο, τα αντίστοιχα ιδιοδιανύσματα

\[Z_1 = \begin{bmatrix} 1 \\ -4 \end{bmatrix}, \quad Z_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}. \]

Έτσι η γενική λύση του ομοιογενούς συστήματος είναι

\[X_h = c_1 e^{2t} \begin{bmatrix} 1 \\ -4 \end{bmatrix} + c_2 e^{7t} \begin{bmatrix} 1 \\ 1 \end{bmatrix}. \]

Αναζητώντας μία ειδική λύση του μη ομοιογενούς συστήματος στη μορφή

\[X_p = \begin{bmatrix} a \\ b \end{bmatrix} t + \begin{bmatrix} c \\ d \end{bmatrix}, \]
αντικαθιστούμε στην εξίσωση και έχουμε \[X' \rho = AX_\rho + G(t) \], ή
\[
\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 6 & 1 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} at + c \\ bt + d \end{bmatrix} + \begin{bmatrix} 6t \\ -10t + 4 \end{bmatrix} = \begin{bmatrix} 6at + 6c + bt + d + 6t \\ 4at + 4c + 3bt + 3d - 10t + 4 \end{bmatrix}.
\]

Εξισώνοντας προκύπτει το σύστημα
\[
\begin{align*}
6a + b &= -6 \\
4a + 3b &= 10 \\
6c + d &= a \\
4c + 3d &= b
\end{align*}
\]
του οποίου η λύση είναι
\[
a = -2, \quad b = 6, \quad c = -\frac{4}{7}, \quad d = \frac{10}{7}.
\]

Επομένως η γενική λύση του συστήματος είναι
\[
X = c_1 e^{2t} \begin{bmatrix} 1 \\ -4 \end{bmatrix} + c_2 e^{7t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} -2 \\ 6 \end{bmatrix} t + \begin{bmatrix} 1 \\ 7 \end{bmatrix} \begin{bmatrix} -4 \\ 10 \end{bmatrix}.
\]

4.4.2 Η μέθοδος της Μεταβολής των Παραμέτρων

Σε αντίθεση με τη μέθοδο των προσθετικών συντελεστών η μέθοδος της μεταβολής των παραμέτρων εφαρμόζεται και στην περίπτωση που ο \(A \) είναι μη σταθερός, και το \(G \) έχει οποιαδήποτε μορφή, αφού να μπορεί να υπολογισθεί ένας θεμελιώδης πίνακας. Σε οποιαδήποτε περίπτωση, η μέθοδος αυτή, δίνει μία αναπαράσταση της λύσης του συστήματος.

Εάν \(\Phi(t) \) είναι ένας θεμελιώδης πίνακας για το \(X'(t) = AX(t) \), τότε η γενική λύση του ομοιογενούς συστήματος είναι \(\Phi(t) \xi \), όπου \(\xi \) είναι ένα σταθερό διάνυσμα. Αναζητούμε στη συνέχεια μία λύση του \(X'(t) = AX(t) + G(t) \) στη μορφή
\[
X_\rho(t) = \Phi(t)Z(t),
\]
όπου \(Z \) είναι ένα διάνυσμα. Παραγωγιζόμενες και αντικαθιστώντας στην εξίσωση (4.22) έχουμε
\[
\Phi'(t)Z(t) + \Phi(t)Z'(t) = A\Phi(t)Z(t) + G(t) \Leftrightarrow (\Phi'(t) - A\Phi(t))Z(t) + \Phi(t)Z'(t) = G(t).
\]

Επειδή οι στήλες του \(\Phi \) είναι λύσεις του ομοιογενούς συστήματος θα είναι \(\Phi' = A\Phi \), οπότε καταλήγουμε στην
\[
\Phi(t)Z'(t) = G(t).
\]

Ο \(\Phi \) είναι θεμελιώδης πίνακας, οπότε ο αντίστροφος του υπάρχει, έτσι από την τελευταία εξίσωση παίρνουμε
\[
Z'(t) = \Phi^{-1}(t)G(t)
\]
και ολοκληρώνοντας βρίσκουμε

\[Z(t) = \int \Phi^{-1}(t)G(t) \, dt. \]

Αντικαθιστώντας στην (4.24) βρίσκουμε την ειδική λύση

\[X_p(t) = \Phi(t) \int \Phi^{-1}(t)G(t) \, dt \]

και, σύμφωνα με το Θεώρημα 4.7 η γενική λύση του μη ομοιογενούς προβλήματος δίνεται από

\[X(t) = \Phi(t)\xi + \Phi(t) \int \Phi^{-1}(t)G(t) \, dt. \]

(4.25)

Για το πρόβλημα αρχικών τιμών

\[X'(t) = AX(t) + G(t), \quad X(t_0) = X_0 \]

(4.26)

βρίσκουμε τη λύση

\[X(t) = \Phi(t)\Phi^{-1}(t_0)X_0 + \Phi(t) \int_{t_0}^{t} \Phi^{-1}(s)G(s) \, ds. \]

(4.27)

Ασκήση 4.6. Να δείξετε ότι η λύση του προβλήματος αρχικών τιμών (4.26) δίνεται από την (4.26).

Υπολειπώντας: Υπολειπώντας ότι η \(X(t) = \Phi(t)\xi + \Phi(t) \int_{t_0}^{t} \Phi^{-1}(s)G(s) \, ds \) είναι λύση του συστήματος και ικανοποιεί την \(X(t_0) = \Phi(t_0)\xi \).

Ασκήση 4.7. Εστω ότι ο \(\Phi \) είναι ένας θεμελιώδης πίνακας για την εξίσωση \(X' = AX \), τότε \(\Phi' = A\Phi \). Να δείξετε ότι

1. \((\Phi^{-1})' = -\Phi^{-1}A \).
2. \([(\Phi^{-1})^T]' = -A^T(\Phi^{-1})^T \), όπου \(M^T \) είναι ο ανάστροφος του πίνακα \(M \).

Ασκήση 4.8. Εάν \(\Phi \) είναι ένας θεμελιώδης πίνακας για την εξίσωση \(X' = AX \), να δείξετε ότι η λύση του προβλήματος αρχικών τιμών

\[X'(t) = -A^T X(t) + G(t), \quad X(t_0) = X_0 \]

δίνεται από τη σχέση

\[X(t) = (\Phi^{-1})^T(t)\Phi^T(t_0)X_0 + (\Phi^{-1})^T(t) \int_{t_0}^{t} \Phi^T(s)G(s) \, ds. \]

Παράδειγμα 4.9. Να λυθεί το σύστημα

\[X' = \begin{bmatrix} 4 & 2 \\ 0 & 2 \end{bmatrix} X + \begin{bmatrix} e^t \\ e^{-t} \end{bmatrix} \]

Στο Παράδειγμα 4.5 δείχθηκε ότι ένας θεμελιώδης πίνακας για το ομοιογενές σύστημα είναι

\[\Phi(t) = \begin{bmatrix} e^{4t} & e^{2t} \\ 0 & -e^{2t} \end{bmatrix}. \]
4.5 Ο Εκθετικός Πίνακας

Η γενική λύση της γραμμικής εξίσωσης $x'(t) = ax(t)$, όπου $a=σταθερά, είναι x = ce^{at}$. Στη περίπτωση τώρα του συστήματος $X'(t) = AX(t)$, όπου ο A είναι ένας σταθερός πίνακας, πολύ θα θέλαμε να πούμε ότι η γενική λύση του συστήματος δίνεται από μία σχέση της μορφής

$$X(t) = e^{At}ξ,$$

όπου e^{At} συμβολίζει κάποιο κατάλληλο πίνακα και το $ξ$ είναι ένα σταθερό διάνυσμα. Ας δούμε αν έχει έννοια η σχέση (4.28) και ας αρχίσουμε με το σύμβολο e^{At}. Για την εκθετική συνάρτηση γνωρίζουμε ότι

$$e^t = 1 + t + \frac{1}{2}t^2 + \cdots + \frac{1}{n!}t^n + \cdots,$$

και η σειρά συγκλίνει για κάθε t. Αν M τώρα είναι ένας τετραγωνικός πίνακας μπορούμε να αναλογίσουμε M παραπάνω να οφέλουμε

$$e^M = I + M + \frac{1}{2!}M^2 + \cdots + \frac{1}{n!}M^n + \cdots,$$

όπου I είναι ο μοναδιαίος πίνακας. Παρατηρούμε ότι κάθε όρος του αναπτύγματος έχει έννοια, αλλά και το ίδιο το ανάπτυγμα μίας και οι πράξεις μεταφέρονται στα στοιχεία των πινάκων. Η
4.5 Ο Εκθετικός Πίνακας

σχέση λοιπόν (4.29) ορίζει ένα νέο πίνακα που λέγεται **εκθετικός πίνακας**. Επομένως ο πίνακας e^{At} ορίζεται από τη σχέση

$$e^{At} = I + At + \frac{1}{2!}A^2t^2 + \cdots + \frac{1}{n!}A^n t^n + \cdots. \quad (4.30)$$

Μερικές από τις ιδιότητες του εκθετικού πίνακα, που αποφεύγουν από τον ορισμό του, περιγράφονται στο

Θεώρημα 4.11. Εάν A είναι ένας $n \times n$ σταθερός πίνακας, O είναι ο μηδενικός πίνακας, και t, s είναι πραγματικοί ή μικαδικοί αριθμοί τότε

1. $e^{A0} = e^O = I$.
2. $e^{A(t+s)} = e^{At}e^{As}$.
3. $(e^{At})^{-1} = e^{-At}$.

Απόδειξη. Η απόδειξη του (1) έτετας από την (4.29) για $M = O$, τον μηδενικό πίνακα. Για την απόδειξη του (2), παρατηρούμε ότι κανένα $A = O$ τότε το αποτέλεσμα ισχύει από το (1). Για $A \neq O$, τώρα δεχόμαστε σαν συμβολισμό ότι $A^0 = I$, τότε η σχέση στην (4.30) γράφεται

$$e^{At} = \sum_{n=0}^{\infty} \frac{1}{n!}A^n t^n.$$

'Ετσι θα έχουμε

$$e^{At}e^{As} = \sum_{n=0}^{\infty} \frac{1}{n!}A^n t^n \sum_{m=0}^{\infty} \frac{1}{m!}A^m s^m$$

$$= \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{1}{n!m!}A^{n+m} t^n s^m$$

$$= \sum_{k=0}^{\infty} \frac{1}{k!}A^k \sum_{n=0}^{k} \frac{k!}{n!(k-n)!} t^n s^{k-n}$$

$$= \sum_{k=0}^{\infty} \frac{1}{k!}A^k \sum_{n=0}^{k} \binom{k}{n} t^n s^{k-n}$$

$$= \sum_{k=0}^{\infty} \frac{1}{k!}A^k (t+s)^k$$

$$= e^{At+s},$$

όπου χρησιμοποιούσαμε το διωνυσικό θεώρημα, δηλαδή

$$(a + b)^k = \sum_{n=0}^{k} \binom{k}{n} a^n b^{k-n}, \quad \binom{k}{n} = \frac{k!}{n!(k-n)!}.$$

Με χρήση τώρα των (1) και (2) έχουμε

$$e^{At}e^{-At} = e^{At(1)} = e^{A0} = I,$$

που αποδεικνύει την (3).
Στη συνέχεια υπολογίζουμε την παράγωγο του e^{At}. Η σειρά με όρους της παραγώγου του δεξιού μέλους της (4.30) είναι

$$A + A^2 t + \cdots + \frac{1}{(n-1)!} A^n t^{n-1} + \cdots = A \left(I + At + \cdots + \frac{1}{(n-1)!} A^{n-1} t^{n-1} + \cdots \right) = A e^{At},$$

άρα συγκλίνει, και μάλιστα ομοιόμορφα σε διαστήματα $a \leq t \leq b$, και επομένως θα είναι

$$\frac{d}{dt} e^{At} = A + A^2 t + \cdots + \frac{1}{(n-1)!} A^n t^{n-1} + \cdots$$

ή ισοδύναμα

$$\frac{d}{dt} e^{At} = A e^{At}. \quad (4.31)$$

Από την (4.31) προκύπτει ότι οι στιλές του e^{At} ικανοποιούν την εξίσωση $X' = AX$, ενώ από την (iii) του Θεωρήματος 4.11 προκύπτει ότι είναι γραμμικά ανεξάρτητες, γιατί ο e^{At} είναι πάντα αντιστρέψιμος. Λείξαμε λοιπόν το

Θεώρημα 4.12. Εάν A είναι ένας πχ. σταθερός πίνακας, τότε ο e^{At} είναι ένας θεμελιώδης πίνακας για την $X' = AX$ και έτσι η γενική λύση του συστήματος δίνεται από την $X(t) = e^{At} \xi$, όπου το ξ είναι ένα σταθερό διάνυσμα.

Στο σημείο αυτό να παρατηρήσουμε ότι ο τύπος (4.29) που ορίζει τον εκθετικό πίνακα παρουσίαζε κάποια δυσχέρεια μιας και για τον υπολογισμό του απαιτείται γνώση όλων των δυνάμεων M^n. Να σημειώσουμε όμως ότι εάν ο πίνακας M είναι μηδενοπώλημας, υπάρχει δηλαδή n_0 τέτοιο όστε για $n \geq n_0$ είναι $M^n = O$, τότε το άθροισμα στην (4.29) είναι πεπερασμένο. Ας δούμε τι γίνεται σε κάποιες άλλες περιπτώσεις.

Παράδειγμα 4.10.

Να υπολογισθεί ο e^{Dt}, όπου

$$D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}. $$

Από τον ορισμό του e^{Dt} θα είναι

$$e^{Dt} = I + \begin{bmatrix} t & 0 \\ 0 & 2t \end{bmatrix} + \frac{1}{2!} \begin{bmatrix} t & 0 \\ 0 & 2t \end{bmatrix}^2 + \cdots = \begin{bmatrix} 1 + t + \frac{t^2}{2!} + \cdots & 0 \\ 0 & 1 + 2t + \frac{(2t)^2}{2!} + \cdots \end{bmatrix} = \begin{bmatrix} e^t & 0 \\ 0 & e^{2t} \end{bmatrix}.$$

2 Θυμόμασαι το ακόλουθο αποτέλεσμα της Ανάλυσης: Εάν $\sum_i f_i(t)$ συγκλίνει σημειακά στην $f(t)$ στο $[a, b]$, και $\sum_i f'_i(t)$ συγκλίνει ομοιόμορφα στο $a \leq t \leq b$ σε κάποια συνεχή συνάρτηση τότε $f'(t) = \sum_i f'_i(t)$, για κάθε t στο $[a, b]$. Για την αποδείξη παρατήρησουμε ότι στην ολοκληρωτή πολλαπλασιασμό πολλαπλασιών M. Spivak, Διαφορικά και Ολοκληρωτικά Λογισμός, Πανεπιστημιακές Εκδόσεις Κρήτης, μετάφραση.
4.5 Ο Εκθετικός Πίνακας

Παρατήρηση 4.6. Βλέπουμε ότι εάν ο πίνακας είναι διαγώνιος τότε ο υπολογισμός του εκθετικού πίνακα είναι εύκολος. Ας υποθέσουμε ότι συνέχεια ότι ο πίνακας \(A \) είναι διαγωνοποιισμος, υπάρχουν δηλαδή αντιστρέψιμος πίνακας \(P \) και διαγώνιος πίνακας \(D \) τέτοιο ώστε

\[
A = PDP^{-1}.
\]

Στην περίπτωση αυτή θα είναι

\[
A^2 = PDP^{-1}PDP^{-1} = PDIDP^{-1} = PD^2P^{-1}
\]

και γενικότερα

\[
A^n = PD^nP^{-1}
\]

για \(n = 1, 2, \ldots \). Επομένως είναι σχετικά εύκολο να υπολογισθεί ο εκθετικός πίνακας ενός διαγωνοποιισμού πίνακα.

Σχετικά τώρα με τη διαγωνοποιισμότιτα πινάκων θημίζουμε το

Θεώρημα 4.13. Εάν \(A \) είναι ένας \(n \times n \) πίνακας, τότε οι παρακάτω ισχυρισμοί είναι ισοδύναμοι:

(1) \(O A \) είναι διαγωνοποιισμός.
(2) \(O A \) έχει \(n \) γραμμικά ανεξάρτητα ιδιοδιανύσματα.

Αποδεικνύεται ότι εάν \(Z_1, Z_2, \ldots, Z_n \) είναι γραμμικά ανεξάρτητα ιδιοδιανύσματα του \(A \) που αντιστοιχούν στις ιδιωτιμές \(\lambda_1, \lambda_1, \ldots, \lambda_n \) και εάν \(P = [Z_1 Z_2 \ldots Z_n] \) είναι ο πίνακας με στήλες τα παραπάνω ιδιοδιανύσματα, τότε \(A = PDP^{-1} \), όπου \(D \) είναι ο διαγώνιος πίνακας με στοιχεία τις ιδιωτιμές \(\lambda \) με τις σειρά \(\lambda_1, \lambda_1, \ldots, \lambda_n \). Από τα Θεωρήματα 4.13 και 4.10 προκύπτει ότι εάν ο \(n \times n \) πίνακας \(A \) έχει \(n \) διαφορετικές ιδιωτιμές τότε είναι διαγωνοποιισμός. Για την απόδειξη του Θεωρήματος 4.13 παρατέθηκε σε οποιοδήποτε βιβλίο Γραμμικής Άλγεβρας.

Παράδειγμα 4.11. Να υπολογισθεί ο \(e^A \), όπου

\[
A = \begin{bmatrix} 0 & -1 \\ 2 & 3 \end{bmatrix}.
\]

Βρίσκουμε τις ιδιωτιμές του \(A \)

\[
\det(\lambda I - A) = \begin{vmatrix} \lambda & 1 \\ -2 & \lambda - 3 \end{vmatrix} = \lambda^2 - 3\lambda + 2 = (\lambda - 1)(\lambda - 2).
\]

Οι ιδιωτιμές είναι \(\lambda_1 = 1 \) και \(\lambda_2 = 2 \), επομένως ο \(A \) διαγωνοποιείται. Δύο ιδιοδιανύσματα αντίστοιχα των \(\lambda_1 = 1 \) και \(\lambda_2 = 2 \) είναι τα

\[
Z_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \quad Z_2 = \begin{bmatrix} -1 \\ 2 \end{bmatrix}.
\]
Εάν \(P = [Z_1 \ Z_2] \) είναι ο πίνακας με στήλες τα παραπάνω ιδιοδιανύσματα, τότε θα είναι \(A = PDP^{-1} \), όπου

\[
D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}
\]

eίναι ο διαγώνιος πίνακας με στοιχεία τις ιδιοτιμές. Θα έχουμε διπλαά

\[
A = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}
\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix},
\]

οπότε θα είναι

\[A^n = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2^n \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}. \]

Άρα

\[
e^{At} = e^{PDP^{-1}t} = e^{PD(t)P^{-1}}
\]

\[
= I + PD(t)P^{-1} + \frac{1}{2!} (PD(t)P^{-1})^2 + \cdots
\]

\[
= PP^{-1} + PD(t)P^{-1} + \frac{1}{2!} P(Dt)^2 P^{-1} + \cdots
\]

\[
= P(I + Dt + \frac{1}{2!} (Dt)^2 + \cdots)P^{-1}
\]

\[
= Pe^{Dt}P^{-1}
\]

όπου κάνοντας χρήση του αποτελέσματος στο Παράδειγμα 4.10 βρίσκουμε

\[
e^{At} = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} e^t & 0 \\ 0 & e^{2t} \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix},
\]

και τελικά μετά από πράξεις υπολογίζουμε

\[
e^{At} = \begin{bmatrix} 2e^t - e^{2t} \\ 2e^t - 2e^{2t} \end{bmatrix} \begin{bmatrix} e^t - e^{2t} \\ -e^t + e^{2t} \end{bmatrix}.
\]

Σημειώνουμε ότι για το πρόβλημα αρχικών τιμών

\[X'(t) = AX(t) + G(t), \quad X(t_0) = X_0 \]

από την (4.27) βρίσκουμε

\[X(t) = e^{A(t-t_0)}X_0 + \int_{t_0}^{t} e^{A(t-s)}G(s) \, ds. \]

Συγκρίνετε με την (2.34)\(^3\).

\(^3\)Η διαφορά στο πρόσημο στον εκθέτη έχει να κάνει με τον τρόπο γραφής της εξίσωσης. Το μεν σύστημα το γράφουμε σαν \(X' = AX + G \) τι δε εξίσωση σαν \(y' + ay = g \).
4.6 Συστήματα ειδικής μορφής

Κλείνουμε την παράγραφο αυτή με μία εφαρμογή της σχέσης (4.30), βλέπε Άσκηση 4.5.

Παράδειγμα 4.12. Να βρεθεί ένας 2×2 σταθερός πίνακας A έτσι ώστε μία λύση του $X' = AX$ είναι $x = \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix}$. Η λύση $X(t)$ γράφεται

$$X(t) = \begin{bmatrix} e^{2t} - e^{-t} \\ e^{2t} + 2e^{-t} \end{bmatrix}.$$

Επομένως ο A είναι ένας πίνακας με ιδιωτιμές 2 και -1 και με αντίστοιχα ιδιωτιμοθύριμα

$$\begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix}.$$

Έτσι θα είναι

$$A = \begin{bmatrix} 1 & -1 & 2 & 0 & 1 & -1 \\ 1 & 2 & 0 & -1 & 1 & 2 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & -1 & 2 & 0 \\ 1 & 2 & 0 & -1 \end{bmatrix} = \cdots = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}.$$

4.6 Συστήματα ειδικής μορφής

Στη παράγραφο αυτή βρίσκουμε τη λύση κάποιων γραμμικών συστημάτων ειδικής μορφής σχετικών με το πρόβλημα αρχικών τιμών

$$X' = A(t)X, \quad X(\tau) = I$$ (4.32)

όπου X και A είναι τετραγωνικοί $n \times n$ πίνακες και I είναι ο μοναδιαίος πίνακας. Το πρόβλημα (4.32) γράφεται σαν

$$[X_1 X_2 \cdots X_n]' = [A(t)X_1 A(t)X_2 \cdots A(t)X_n], \quad [X_1(\tau) X_2(\tau) \cdots X_n(\tau)] = I,$$

έτσι στην περίπτωση αυτή ο $\Phi = [X_1 X_2 \cdots X_n]$ είναι λύση του (4.32) αν και μόνο αν $X_1' = A(t)X_1$ και $X_i(\tau) = E_i$ για κάθε $i = 1, 2, \ldots, n$, όπου το διάνυσμα E_i έχει 1 στην i-η γραμμή και 0 στις υπόλοιπες. Κατά συνέπεια ο Φ είναι ένας θεμελιώδης πίνακας για κάθε σύνθετος σύστημα $Y' = A(t)Y$, όπου το Y είναι n-διάνυσμα.

Άσκηση 4.9. Έστω $\Phi(t)$ να είναι λύση για το πρόβλημα αρχικών τιμών (4.32). Να δειχθεί ότι ο $\Phi^{-1}(t)$ είναι λύση του προβλήματος

$$X' = -XA(t), \quad X(\tau) = I.$$

Λύση. Παραγωγίζοντας την $\Phi^{-1} = I$ έχουμε $\Phi'\Phi^{-1} + \Phi(\Phi^{-1})' = O$ η ισοδύναμα

$$A\Phi\Phi^{-1} + \Phi(\Phi^{-1})' = O \Rightarrow \Phi(\Phi^{-1})' = -A.$$
απ’ όπου προκύπτει

\[(Φ^{-1})' = -Φ^{-1}A.\]

Επίσης \(ΦΦ^{-1} = I\) για κάθε \(t\), έτσι \(Φ^{-1}(τ) = I.\)

Ασκηση 4.10. Έστω \(Φ(τ)\) να είναι λύσι για το πρόβλημα αρχικών τιμών (4.32). Να βρεθεί η λύσι του προβλήματος

\[X' = XA^T(τ), \quad X(τ) = I.\]

Λύση. Από την \(Φ' = AΦ\) έχουμε

\[(Φ')^T = (AΦ)^T \Rightarrow (Φ')^T = Φ^T A^T\]

απ’ όπου προκύπτει ότι η \((Φ^T)\) ικανοποιεί την εξίσωση. Επίσης \(Φ^T(τ) = I^T = I.\) Άρα \(X = Φ^T\) είναι η λύσι του προβλήματος.

Ασκηση 4.11. Έστω \(Φ(τ)\) να είναι λύσι για το πρόβλημα αρχικών τιμών (4.32). Να βρεθεί η λύσι του προβλήματος

\[X' = -A^T(τ)X, \quad X(τ) = I.\]

Λύση. Από την \((Φ^{-1})' = -Φ^{-1}A\) έχουμε

\[([Φ^{-1}]')^T = -(Φ^{-1}A)^T \Rightarrow [(Φ^{-1})']^T = -A^T(Φ^{-1})^T\]

απ’ όπου προκύπτει ότι ο \((Φ^{-1})^T\) ικανοποιεί την εξίσωση. Επίσης \((Φ^{-1})^T(τ) = I^T = I.\) Άρα \(X = (Φ^{-1})^T = (Φ^T)^{-1}\) είναι η λύσι του προβλήματος.

Ασκηση 4.12. Έστω \(Φ(τ)\) να είναι λύσι για το πρόβλημα αρχικών τιμών (4.32). Να βρεθεί η λύσι σε κάθε ένα από τα προβλήματα

1. \(X' = A(t)X, \quad X(τ) = C\)
2. \(X' = A(t)X - XA(t), \quad X(τ) = C\)
3. \(X' = -A^T(τ)X, \quad X(τ) = C\)
4. \(X' = XA^T(t) - A^T(τ)X, \quad X(τ) = C\)

όπου \(C\) είναι ένας σταθερός πίνακας.

Λύση.

1. Έστω \(D\) να είναι ένας σταθερός πίνακας. Τότε \((ΦD)' = Φ'D = AΦD\), οπότε ο πίνακας \(ΦD\) ικανοποιεί την εξίσωση. Επειδή \(Φ(τ)D = D,\) η λύσι του προβλήματος είναι \(X = ΦC\).

Σημείωση. Ο πίνακας \(CΦ\) δεν είναι λύσι, εν γένει. Πραγματικά \((CΦ)' = CΦ' = CΑΦ ≠ ΑCΦ, εκτός αν \(AC = CA\).

2. Από την \(X' = AX -XA\) έχουμε

\[X' + XA = AX \Rightarrow X'Φ + XΑΦ = ΑΧΦ\]

έτσι από την υπόθεση έπεται

\[X'Φ + XΦ' = ΑΧΦ \Rightarrow (ΧΦ)' = ΑΧΦ,\]
4.6 Συστήματα ειδικής μορφής

άρα από το προηγούμενο αποτέλεσμα θα είναι $X\Phi = \Phi C$. Έτσι τελικά $X = \Phi C\Phi^{-1}$.

(3) Από την Άσκηση 4.11 έπεται ότι η λύση του προβλήματος είναι $X = (\Phi^T)^{-1}C$.

(4) Από την $X' = XA^T - A^TX$ έχουμε

$$X' + A^TX = XA^T \Rightarrow \Phi^T X' + \Phi^TA^TX = \Phi^TXA^T$$

έτσι από την Άσκηση 4.10

$$\Phi^T X' + (\Phi^TY) = \Phi^TXA^T \Rightarrow (\Phi^TY)' = \Phi^TXA^T,$$

άρα $\Phi^TY = D\Phi^T$ (γιατί, όπου D είναι ένας σταθερός πίνακας). Έτσι $X = (\Phi^T)^{-1}D\Phi^T$. Η αρχική συνθήκη ικανοποιείται εάν $D = C$, οπότε η λύση τελικά είναι $X = (\Phi^T)^{-1}C\Phi^T$.

Άσκηση 4.13. Έστω $\Phi_A(t)\Phi_B(t)$ να είναι αντίστοιχα λύσεις για τα προβλήματα

$$X' = A(t)X, \ X(\tau) = I, \ \text{και} \ X' = B(t)X, \ X(\tau) = I.$$

Να βρεθεί η λύση σε κάθε ένα από τα προβλήματα

1. $X' = AX - XB, \ X(\tau) = C$
2. $X' = AX + XB^T, \ X(\tau) = C,$

όπου C είναι ένας σταθερός πίνακας.

Λύση.

(1) Η εξίσωση γράφεται $X' + XB = AX$ απ' όπου έπεται ότι

$$X'\Phi_B + X\Phi_B = AX\Phi_B \Rightarrow X'\Phi_B + X\Phi_B' = AX\Phi_B$$

$$(\Phi_B)' = AX\Phi_B \Rightarrow X\Phi_B = \Phi_A C$$

οπότε τελικά η λύση θα είναι $X = \Phi_A C\Phi_B^{-1}$.

(2) Η εξίσωση γράφεται $X - AX = XB^T$ απ' όπου έπεται ότι

$$\Phi_A^{-1}X' - \Phi_A^{-1}AX = \Phi_A^{-1}XB^T \Rightarrow \Phi_A^{-1}X' + (\Phi_A^{-1})'X = \Phi_A^{-1}XB^T$$

$$(\Phi_A^{-1}X)' = \Phi_A^{-1}XB^T \Rightarrow \Phi_A^{-1}X = C\Phi_B$$

από την Άσκηση 4.10, οπότε τελικά η λύση θα είναι $X = \Phi_A C\Phi_B^T$.

Άσκηση 4.14. Να βρεθεί η λύση του προβλήματος

$$X' = AX + XB, \ X(\tau) = C,$$

όπου A, B, C είναι σταθεροί τετραγωνικοί πίνακες.

Λύση. Γράφοντας την εξίσωση στη μορφή $X' - XB = AX$ έχουμε

$$X'e^{-Br} - XBe^{-Br} = AXe^{-Br} \Rightarrow X'e^{-Br} + X(-B)e^{-Br} = AXe^{-Br}$$

$$X'e^{-Br} + X(e^{-Br})' = AXe^{-Br} \Rightarrow (Xe^{-Br})' = AXe^{-Br}$$

$$Xe^{-Br} = e^{At}C \Rightarrow X = e^{At}Ce^{Br}$$

που είναι η λύση του προβλήματος.
4.7 Ασκήσεις

1. Να βρεθεί ένας θεμελιώδης πίνακας για το σύστημα \(X' = AX \), όπου \(A \) είναι ο πίνακας

 \[
 (\alpha) \begin{bmatrix}
 1 & -1 \\
 2 & 4
 \end{bmatrix}
 \]

 \[
 (\beta) \begin{bmatrix}
 1 & 0 & 0 \\
 0 & 0 & 2 \\
 0 & 2 & 0
 \end{bmatrix}
 \]

 \[
 (\gamma) \begin{bmatrix}
 1 & -1 \\
 4 & 3
 \end{bmatrix}
 \]

 \[
 (\delta) \begin{bmatrix}
 -2 & -5 \\
 1 & 2
 \end{bmatrix}
 \]

 \[
 (\epsilon) \begin{bmatrix}
 -2 & -2 \\
 4 & 2
 \end{bmatrix}
 \]

2. Να λυθούν τα συστήματα με τη μέθοδο των προσδιοριστέων συντελεστών

 \[
 (\alpha) \quad X' = \begin{bmatrix}
 -1 & 1 \\
 -2 & 1
 \end{bmatrix} X + \begin{bmatrix}
 1 \\
 \cos t
 \end{bmatrix}
 \]

 \[
 (\beta) \quad X' = \begin{bmatrix}
 3 & 1 \\
 -1 & 1
 \end{bmatrix} X + \begin{bmatrix}
 -2 \\
 1
 \end{bmatrix} e^{2t}
 \]

 \[
 (\gamma) \quad X' = \begin{bmatrix}
 0 & 1 \\
 -1 & 2
 \end{bmatrix} X + \begin{bmatrix}
 0 \\
 -2 \cos t
 \end{bmatrix}
 \]

3. Να λυθούν τα συστήματα με τη μέθοδο της μεταβολής των παραμέτρων

 \[
 (\alpha) \quad X' = \begin{bmatrix}
 2 & -1 \\
 3 & -2
 \end{bmatrix} X + \begin{bmatrix}
 0 \\
 4t
 \end{bmatrix}
 \]

 \[
 (\beta) \quad X' = \begin{bmatrix}
 0 & 2 \\
 -1 & 3
 \end{bmatrix} X + \begin{bmatrix}
 1 \\
 -1
 \end{bmatrix} e^{t/2}
 \]

 \[
 (\gamma) \quad X' = \begin{bmatrix}
 0 & 2 \\
 -1 & 3
 \end{bmatrix} X + \begin{bmatrix}
 \sin 2t \\
 2 \cos 2t
 \end{bmatrix} e^{2t}
 \]

4. Να λυθούν τα συστήματα με χρήση του εικθετικού πίνακα

 \[
 (\alpha) \quad X' = \begin{bmatrix}
 2 & 1 \\
 -3 & 6
 \end{bmatrix} X
 \]

 \[
 (\beta) \quad X' = \begin{bmatrix}
 0 & 1 \\
 1 & 0
 \end{bmatrix} X + \begin{bmatrix}
 \cosh t \\
 \sinh t
 \end{bmatrix}
 \]

5. Αναφερόμενοι στο Παράδειγμα 4.4, να βρεθούν οι καμπύλες \(r \) μοναδιαίας ταχύτητας, στο χώρο, με καπυλότιτα \(k \) και στρέψη \(\tau \) αντίστοιχα:
4.6 Ασκήσεις

(α') \(k = 0 \), και \(\tau = 0 \)

(β') \(k = 1/\rho \), και \(\tau = 0 \), όπου \(\rho \) είναι μία θετική σταθερά.

(γ') \(k = 1/\sqrt{2} \), και \(\tau = -1/\sqrt{2} \).

6. Εάν \(\Phi(t) \) και \(\Psi(t) \) είναι θεμελιώδεις πίνακες για το σύστημα \(X' = AX \) να δειχθεί ότι υπάρχει σταθερός πίνακας \(C \) τέτοιος ώστε \(\Phi(t) = \Psi(t)C \). Υπολείπεται: Αν \(\Phi \) είναι στάλι του \(\Phi(t) \) τότε \(\Phi' = A\Phi \), και χρησιμοποιήστε το Θεώρημα 4.6.

7. Να δειχθεί ότι το σύστημα Euler, σε αντίστοιχα με τις εξισώσεις Euler,

\[tX'(t) = AX(t), \]

όπου \(A \) είναι ένας σταθερός πίνακας, έχει μη μηδενικές λύσεις της μορφής \(X = rZ \) τότε και μόνον τότε όταν το \(r \) είναι ιδιοτιμή του \(A \) και \(Z \) είναι το αντίστοιχο ιδιοδιάνυσμα.

8. Εάν \(a + d < 0 \) και \(ad - bc > 0 \) να δειχθεί ότι οι λύσεις του συστήματος

\[X' = \begin{bmatrix} a & b \\ c & d \end{bmatrix} X \]

tείνουν στο μηδέν καθώς \(t \to \infty \). Υπολείπεται: Εάν \(\lambda_1 \) και \(\lambda_2 \) είναι οι ιδιοτιμές του πίνακα των συντελεστών, τότε η λύση δίνεται από τη σχέση:

\[X = c_1 e^{\lambda_1 t} \xi_1 + c_2 e^{\lambda_2 t} \xi_2, \]

όπου \(\xi_1 \) και \(\xi_2 \) είναι κατάλληλα σταθερά διανύσματα.

9. Έστω ότι ο πίνακας \(A \) έχει πραγματικές διακριτές ιδιοτιμές. Τι συνθήκει στις ιδιοτιμές εξασφαλίζει ότι

\[\lim_{t \to \infty} \|X(t)\| = \infty \]

gια κάθε λύση \(X(t) \) του \(X' = AX \); Εδώ \(\|X\| \) είναι το μέτρο του διανύσματος \(X \).

10. Θεωρήστε τη δεύτερης τάξης γραμμική διαφορική εξίσωση

\[x'' + bx' + cx = 0 \]

με \(b \) και \(c \) σταθερές. Εάν \(b^2 - 4c > 0 \) τι συνθήκει στα \(b \) και \(c \) εξασφαλίζει ότι

\[\lim_{t \to \infty} x(t) = 0 \]

gια κάθε λύση \(x(t) \);

11. Ιδιότητες του εκθετικού πίνακα. Να δειχθεί ότι

(α) \(e^{(A+B)t} = e^{At}e^{Bt}, \) εάν \(AB = BA \).

(β') \(e^{rt} = e^{tI} \).

(γ') \(e^{At}A = Ae^{At} \).

(δ') \(e^{At}B = Be^{At}, \) εάν \(AB = BA \).

όπου \(A \) και \(B \) είναι \(n \times n \) πίνακες, \(I \) είναι ο μοναδιαίος πίνακας και \(r \) είναι ένας πραγματικός αριθμός.
ΚΕΦΑΛΑΙΟ 5

Η Μέθοδος των Δυναμοσειρών

5.1 Εισαγωγή

Γνωρίζουμε ότι η εκθετική συνάρτιση \(e' \) είναι η λύση του προβλήματος αρχηγών τιμών

\[
y' - y = 0, \quad y(0) = 1.
\]

Γνωρίζουμε επίσης ότι η \(y = e' \) παρίσταται με δυναμοσειρά η οποία συγκλίνει για όλα τα \(t \) στο \(\mathbb{R} \)

\[
e' = 1 + t + \frac{t^2}{2!} + \frac{t^3}{3!} + \cdots = \sum_{n=0}^{\infty} \frac{t^n}{n!}, \quad t \in \mathbb{R}.
\]

Σκεφτόμαστε λοιπόν μίας αναχρηστών τη λύση του προβλήματος σε μορφή δυναμοσειράς \(y = \sum_{n=0}^{\infty} a_n t^n \) προσδιορίζοντας τις σταθερές \(a_n \) αναγνώσιμος ότι \(y = e' \). Υποθέτοντας λοιπόν ότι η λύση γράφεται σαν άπειρο άθροισμα \(y = a_0 + a_1 t + a_2 t^2 + \cdots + a_n t^n + \cdots \) και εφαρμόζοντας ο,τι γνωρίζουμε από τον Απειροστικό Λογισμό παίρνουμε \(y' = a_1 + 2a_2 t + 3a_3 t^2 + \cdots + na_n t^{n-1} + \cdots \) και αντικαθιστώντας στιν εξίσωση \(\chi \) έχουμε

\[
0 = y' - y = (a_1 + 2a_2 t + 3a_3 t^2 + \cdots + na_n t^{n-1} + \cdots) - (a_0 + a_1 t + a_2 t^2 + \cdots + a_n t^n + \cdots)
\]

\[
= (a_1 - a_0) + (2a_2 - a_1) t + (3a_3 - a_2) t^2 + \cdots + (na_n - a_{n-1}) t^{n-1} + \cdots
\]

για κάθε \(t \) σε μία περιοχή του 0. Κατά συνέπεια έχουμε

\[
a_1 - a_0 = 0, \quad 2a_2 - a_1 = 0, \quad 3a_3 - a_2 = 0, \quad \ldots, \quad na_n - a_{n-1} = 0, \quad \ldots
\]

απ’ όπου βρίσκουμε

\[
a_1 = a_0, \quad a_2 = \frac{a_1}{2} = \frac{a_0}{1 \cdot 2}, \quad a_3 = \frac{a_2}{3} = \frac{a_0}{1 \cdot 2 \cdot 3}, \quad \ldots, \quad a_n = \frac{a_{n-1}}{n} = \frac{a_0}{1 \cdot 2 \cdot 3 \cdot \ldots \cdot n} = \frac{a_0}{n!}, \quad \ldots
\]

Έτσι θα είναι

\[
y = a_0 + a_0 t + \frac{a_0 t^2}{2!} + \frac{a_0 t^3}{3!} + \cdots + \frac{a_0 t^n}{n!} + \cdots = a_0 \left(1 + t + \frac{t^2}{2!} + \frac{t^3}{3!} + \cdots + \frac{t^n}{n!} + \cdots\right).
\]

(5.1)
5.1 Περί Δυναμοσειρών

Η σειρά στην παρένθεση είναι η εκθετική η οποία συγκλίνει για όλα τα \(t \in \mathbb{R} \). Η αρχικά συνθήκη υιοποιείται για \(a_0 = 1 \), έτσι βλέπουμε, αναγνωρίζοντας τη συνάρτηση που παριστάνει η σειρά, ότι η λύση του προβλήματος είναι η \(y = e^t \). Σημειώνουμε ότι η (5.1) είναι η γενική λύση της εξίσωσης \(y'' - y = 0 \). Η μέθοδος που ακολουθήσαμε για να λύσουμε το πρόβλημα λέγεται μέθοδος των δυναμοσειρών. Εδώ πρέπει να αναφέρουμε ότι στις περισσότερες περιπτώσεις η σειρά-λύση που προκύπτει δεν είναι το ανάπτυγμα κάποιας γνωστής στοιχειώδους συνάρτησης.

Στο κεφάλαιο αυτό θα εφαρμόσουμε αυτή τη μέθοδο επιλύσεως γραμμικών εξισώσεων δεύτερης τάξης των οποίων η λύση δεν δίνεται σε κλειστή μορφή. Χαρακτηριστικά παραδείγματα τέτοιων εξισώσεων που παίζουν σημαντικό ρόλο στις φυσικές επιστήμες είναι οι

\[
\begin{align*}
 y'' - ty &= 0 & \text{εξίσωση του Airy} \\
 t^2y'' + ty' + (t^2 - y^2)y &= 0 & \text{εξίσωση του Bessel} \\
 (1 - t^2)y'' - ty' + a^2y &= 0 & \text{εξίσωση του Chebyshev} \\
 (1 - t^2)y'' - 2ty' + a(a + 1)y &= 0 & \text{εξίσωση του Legendre} \\
 y'' - 2ty' + \lambda y &= 0 & \text{εξίσωση του Hermite} \\
 ty'' + (1 - t)y' + \lambda y &= 0 & \text{εξίσωση του Laguerre} \\
 t(1 - t)y'' + [y - (1 + \alpha + \beta)t]^2y - \alpha\beta y &= 0 & \text{υπεργεωμετρική εξίσωση}
\end{align*}
\]

οπου \(\alpha, \beta, \gamma, \lambda \) και \(n \) είναι πραγματικές σταθερές. Αρχικά υπενθυμίζουμε τα απαραίτητα στοιχεία από τις δυναμοσειρές που θα χρειαστούμε.

5.2 Περί Δυναμοσειρών

Μία δυναμοσειρά γύρω από το σημείο \(t_0 \) είναι μία έκφραση

\[
\sum_{n=0}^{\infty} a_n(t - t_0)^n = a_0 + a_1(t - t_0) + a_2(t - t_0)^2 + \cdots + a_n(t - t_0)^n + \cdots
\]

οπου οι \(\text{sυντελεστές} \ a_n \) είναι πραγματικές σταθερές και το \(t \) είναι μεταβλητή. Λέμε ότι η σειρά συγκλίνει για \(t = t_1 \) εάν η σειρά \(\sum_{n=0}^{\infty} a_n(t_1 - t_0)^n \) συγκλίνει, δηλαδή το όριο των μερικών αθροισμάτων

\[
\lim_{N \to \infty} \sum_{n=0}^{N} a_n(t_1 - t_0)^n
\]

υπάρχει και είναι πεπερασμένος πραγματικός αριθμός. Εάν τη σειρά \(\sum_{n=0}^{\infty} a_n(t_1 - t_0)^n \) δεν συγκλίνει σε πεπερασμένο πραγματικό αριθμό λέμε ότι η σειρά αποκλίνει για \(t = t_1 \). Λέμε ότι η δυναμοσειρά συγκλίνει απολύτως για \(t = t_1 \) εάν η σειρά \(\sum_{n=0}^{\infty} |a_n(t_1 - t_0)^n| \) συγκλίνει. Θυμηθόμε ότι

\[\text{Θεώρημα 5.1. Για κάθε δυναμοσειρά } \sum_{n=0}^{\infty} a_n(t_1 - t_0)^n \text{ υπάρχει } R \in (0, +\infty) \text{ τέτοιο όστο } \text{ αν } R \in (0, +\infty) \text{ και δυναμοσειρά συγκλίνει απολύτως για } |t - t_0| < R \text{ και αποκλίνει για } |t - t_0| > R. \]

Εάν η δυναμοσειρά συγκλίνει για κάθε \(t \in \mathbb{R} \), τότε \(R = +\infty \). Εάν η δυναμοσειρά συγκλίνει μόνο για \(t = t_0 \), τότε \(R = 0 \).
πίνακας η δυναμοσειράς (5.9).

Θεώρημα 5.2 (Υπολογισμός της ακτίνας σύγκλισης). Θεωρούμε τη δυναμοσειρά \(\sum_{n=0}^{\infty} a_n(t-t_0)^n \) και υποθέτουμε ότι

\[
\lim_{n \to \infty} \frac{1}{|a_n|} = L.
\]
(5.10)

Τότε η ακτίνα σύγκλισης της δυναμοσειράς δίνεται από τη σχέση

\[
R = \frac{1}{L} = \left(\lim_{n \to \infty} \frac{1}{|a_n|} \right)^{-1},
\]
(5.11)

όπου \(R = 0 \) αν \(L = +\infty \), και \(R = +\infty \) αν \(L = 0 \). Επιπλέον ισχύουν τα ακόλουθα

1. Αν το όριο \(\lim_{n \to \infty} \frac{1}{|a_n|} \) υπάρχει, \(\eta \) είναι \(\lambda \) με \(+\infty \), τότε η ακτίνα σύγκλισης \(R \) είναι

\[
R = \left(\lim_{n \to \infty} \frac{1}{|a_n|} \right)^{-1},
\]
(5.12)

2. Αν το όριο \(\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} \) υπάρχει \(\eta \) είναι \(\lambda \) με \(+\infty \), τότε

\[
R = \left(\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} \right)^{-1} = \lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|}
\]
(5.13)

όπου \(R = 0 \) αν το αντίστοιχο όριο είναι \(\lambda \) με \(+\infty \) και \(R = +\infty \) αν το αντίστοιχο όριο είναι \(\lambda \) με \(0 \).

Αν η δυναμοσειρά \(\sum_{n=0}^{\infty} a_n(t-t_0)^n \) συγκλίνει στο διάστημα \((t_0-R, t_0+R) \), τότε ορίζει μία συνάρτηση στο διάστημα αυτό, κατά συνέπεια μπορούμε να γράψουμε \(f(t) = \sum_{n=0}^{\infty} a_n(t-t_0)^n \), για \(|t - t_0| < R \).

Θεώρημα 5.3. Εστω ότι οι δυναμοσειρές \(f(t) = \sum_{n=0}^{\infty} a_n(t-t_0)^n \) και \(g(t) = \sum_{n=0}^{\infty} b_n(t-t_0)^n \) έχουν ακτίνες σύγκλισης \(R_f > 0 \) και \(R_g > 0 \) αντίστοιχα.

1. Για \(\lambda, \mu \in \mathbb{R} \) η συνάρτηση \(\lambda f + \mu g \) είναι δυναμοσειρά που ορίζεται με τη σχέση

\[
(\lambda f + \mu g)(t) = \lambda \sum_{n=0}^{\infty} a_n(t-t_0)^n + \mu \sum_{n=0}^{\infty} b_n(t-t_0)^n = \sum_{n=0}^{\infty} \left(\lambda a_n + \mu b_n \right)(t-t_0)^n
\]

και συγκλίνει για εκείνα τα \(t \) για τα οποία και οι δύο σειρές συγκλίνουν, δηλαδή η σειρά \((\lambda f + \mu g)(t) \) έχει ακτίνα σύγκλισης \(R = \min\{R_f, R_g\} \).

2. Το γινόμενο των δυναμοσειρών \(fg \) είναι δυναμοσειρά που ορίζεται με τη σχέση

\[
f(t)g(t) = \sum_{n=0}^{\infty} c_n(t-t_0)^n, \quad \text{όπου} \quad c_n = \sum_{k=0}^{n} a_kb_{n-k}
\]

και έχει ακτίνα σύγκλισης \(R \geq \min\{R_f, R_g\} \).

Θεώρημα 5.4. Εστω ότι η σειρά \(f(t) = \sum_{n=0}^{\infty} a_n(t-t_0)^n \) συγκλίνει για \(|t-t_0| < R \), όπου \(R > 0 \), ή \(R = +\infty \).
5.1 Περί Δυναμοσειρών

(1) Η \(f'(t) \) υπάρχει για κάθε \(t \) με \(|t - t_0| < R\) και
\[
f'(t) = \sum_{n=1}^{\infty} na_n(t - t_0)^{n-1}
\] (5.14)
για κάθε \(t \) με \(|t - t_0| < R\). Όµων
\[
f''(t) = \sum_{n=2}^{\infty} n(n-1)a_n(t - t_0)^{n-2}
\]
\[
f^{(k)}(t) = \sum_{n=k}^{\infty} n(n-1)\cdots(n-k+1)a_n(t - t_0)^{n-k}
\]
για κάθε \(k = 1, 2, 3, \ldots \) και για κάθε \(t \) με \(|t - t_0| < R\).

(2) \(\int f(t) \, dt \) υπάρχει για κάθε \(t \) με \(|t - t_0| < R\) και
\[
\int_{t_0}^{t} f(s) \, ds = \sum_{n=0}^{\infty} \frac{a_n}{n+1}(t - t_0)^{n+1}.
\] (5.15)

(3) Οι σταθερές \(a_n \) της σειράς δίνονται απο τη σχέση
\[
a_n = \frac{f^{(n)}(t_0)}{n!}, \quad n = 0, 1, 2, \ldots
\] (5.16)
όπου \(f^{(n)}(t_0) \) είναι η \(n \)-τάξης παράγωγος της \(f \) στο \(t_0 \).

Θεώρημα 5.5. Εάν \(η \) δυναμοσειρά \(\sum_{n=0}^{\infty} a_n(t-t_0)^{n} \) μπορεί να διασπάσει για όλα τα \(t \) σε ένα ανοικτό διάστημα γύρω από \(t_0 \), τότε \(a_n = 0 \), για κάθε \(n = 0, 1, 2, 3, \ldots \).

Ορισμός 5.1. Μία συνάρτηση \(f(t) \) λέγεται **αναλυτική στο \(t_0 \)** εάν σε κάποιο ανοικτό διάστημα γύρω από \(t_0 \) \(f(t) \) είναι το άθροισμα μίας δυναμοσειράς \(\sum_{n=0}^{\infty} a_n(t-t_0)^{n} \) η οποία έχει θετική ακτίνα σύγκλισης. Η δυναμοσειρά \(θα \) λέγεται **ανάπτυγμα** της \(f(t) \) γύρω από το σημείο \(t_0 \).

Αναφερομένο μερικά παραδείγματα αναλυτικών συναρτήσεων
\[
e^t = 1 + t + \frac{t^2}{2!} + \frac{t^3}{3!} + \cdots = \sum_{n=0}^{\infty} \frac{t^n}{n!}, \quad t \in \mathbb{R}
\]
\[
\cos t = 1 - \frac{t^2}{2!} + \frac{t^4}{4!} - \cdots = \sum_{n=0}^{\infty} (-1)^n \frac{t^{2n}}{(2n)!}, \quad t \in \mathbb{R}
\]
\[
\sin t = t - \frac{t^3}{3!} + \frac{t^5}{5!} - \cdots = \sum_{n=0}^{\infty} (-1)^n \frac{t^{2n+1}}{(2n+1)!}, \quad t \in \mathbb{R}
\]
\[
\frac{1}{1-t} = 1 + t + t^2 + t^3 + \cdots = \sum_{n=0}^{\infty} t^n, \quad t \in (-1, 1)
\]
\[
\ln(1 + t) = t - \frac{t^2}{2} + \frac{t^3}{3} - \cdots = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{t^n}{n}, \quad t \in (-1, 1]
\]
\[
(1-t)^{-\alpha} = 1 + \alpha t + \frac{\alpha(\alpha+1)}{2!} t^2 + \frac{\alpha(\alpha+1)(\alpha+2)}{3!} t^3 + \cdots
\]
\[
= 1 + \sum_{n=1}^{\infty} \frac{\alpha(\alpha+1)(\alpha+2)\cdots(\alpha+n-1)}{n!} t^n, \quad t \in (-1, 1), \quad \alpha \in \mathbb{R}
\]
Κάνοντας χρήση των παραπάνω αναπτυγμάτων και του Θεωρήματος 5.4 βρίσκουμε τα αναπτύγματα και άλλων αναλυτικών συναρτήσεων, όπως για παράδειγμα

\[
\frac{1}{1+t^2} = \frac{1}{1-(-t^2)} = 1 + (-t^2) + (-t^2)^2 + (-t^2)^3 + \cdots + (-t^2)^n + \cdots \\
= 1 - t^2 + t^4 - t^6 + \cdots + (-1)^n t^{2n} + \cdots \\
t \in (-1, 1).
\]

Παράδειγμα
\[
\frac{1}{(1-t)^2} = \left(\frac{1}{1-t}\right)' = (1 + t^2 + t^3 + \cdots)' \\
= 1 + 2t + 3t^2 + \cdots + nt^{n-1} + \cdots \\
t \in (-1, 1).
\]

Επίσης
\[
\arctan t = \int_0^t \frac{1}{1+s^2} \, ds = \int_0^t (1 - s^2 + s^4 - s^6 + \cdots + (-1)^n s^{2n} + \cdots) \, ds \\
= t - \frac{t^3}{3} + \frac{t^5}{5} - \cdots + (-1)^n \frac{s^{2n+1}}{2n+1} + \cdots \\
t \in [-1, 1].
\]

5.3 Ομαλά και Ανώμαλα σημεία

Θα μας απαχολήσει η επίλυση εξισώσεων

\[
P(t)y'' + Q(t)y' + R(t)y = g(t)
\]

όπου Π(t), Q(t), R(t), και g(t) είναι αναλυτικές συναρτήσεις σε κάποιο διάστημα I. Ας υποθέσουμε ότι θέλουμε να βρούμε τη λύση της εξίσωσης γύρω από το σημείο τ₀ του I. Με οδηγό το εισαγωγικό παράδειγμα είναι λογικό να αναχωρίσουμε τις λύσεις στη μορφή \(y = \sum_0^\infty a_n(t-t_0)^n \). Έτσι αναπτύσσοντας τις Π(t), Q(t), R(t), και g(t) σε δυναμοσιεύες γύρω από το τ₀ παραγωγίζουμε την δυναμοσιεύσια της γ αντικαθιστώμενη στην εξίσωση και εργαζόμαστε όπως στην εισαγωγή. Είναι ωστόσο διαφορετικά η διαδικασία ανάλογα με το αν \(P(t_0) \neq 0 \) ή \(P(t_0) = 0 \).

Ορισμός 5.2. Ένα σημείο \(t_0 \) λέγεται ομαλό σημείο της εξίσωσης (5.17), εάν οι \(P(t), Q(t), R(t), \) και \(g(t) \) είναι αναλυτικές σε κάποιο διάστημα γύρω από το \(t_0 \) και \(P(t_0) \neq 0 \). Διαφορετικά το \(t_0 \) λέγεται ανώμαλο σημείο της εξίσωσης.

Παράδειγμα 5.1. Να προσδιοριστούν τα ανώμαλα σημεία των εξισώσεων

1. \((t^2-1)y'' + 2ty' + y = 0.\)
2. \(ty'' + \frac{t}{1-t}y' + (\sin t)y = 0.\)
3. \(\sqrt{y''} + (t-1)y' + y = 0.\)
5.3 Ομαλά και Ανώμαλα σημεία

Οι εξισώσεις είναι ομοιογενείς, δηλαδή $g(t) = 0$ οποία είναι αναλυτικά παντού, κατά συνέπεια κοινάζουμε που οι συντελεστές τις εξισώσεις είναι αναλυτικές συναρτήσεις.

(1) Εδώ είναι $P(t) = f^2 - 1$, $Q(t) = 2t$ και $R(t) = 1$ οι οποίες σαν πολυώνυμα είναι αναλυτικές σε ολόκληρο το \mathbb{R}. Οι θέσεις της $P(t) = 0$ είναι οι $t = \pm 1$, κατά συνέπεια τα ανώμαλα σημεία της εξίσωσης είναι τα $t = -1$ και $t = 1$.

(2) Στην εξίσωση αυτή είναι $P(t) = t$ οποία είναι αναλυτικά στο \mathbb{R}, $Q(t) = t(1-t)^{-1}$ οποία είναι αναλυτικό στο $(-\infty, 1)$ ή $(1, +\infty)$ και $R(t) = \sin t$ οποία είναι αναλυτικά στο \mathbb{R}. Επιπλέον $P(t) = 0$ για $t = 0$. Κατά συνέπεια τα ανώμαλα σημεία της εξίσωσης είναι τα $t = 0$ και $t = 1$.

(3) Στην περίπτωση αυτή έχουμε $P(t) = \sqrt{t}$ οποία ορίζεται για $t \geq 0$, αλλά είναι αναλυτικά στο $(0, +\infty)$, $Q(t) = t - 1$ οποία είναι αναλυτικά στο \mathbb{R} και $R(t) = 1$. Άρα η εξίσωση έχει μόνο ένα ανώμαλο σημείο το $t = 0$.

Παράδειγμα 5.2. Βρεθεί το γενικό λύση της εξίσωσης του Airy

\[
y'' - ty = 0, \quad t \in \mathbb{R}, \quad (5.18)
\]

σε σειρά δυνάμεων του t.

Εδώ είναι $P(t) = 1$, $Q(t) = 0$, και $R(t) = -t$, επομένως κάθε $t \in \mathbb{R}$ είναι ομαλό σημείο. Υποθέτουμε λοιπόν ότι $y = \sum_{n=0}^{\infty} a_n t^n$ και ότι τη σειρά συγκλίνει σε κάποιο διάστημα $-\rho < t < \rho$. Παραγωγίζουμε

\[
y' = \sum_{n=1}^{\infty} na_n t^{n-1}, \quad y'' = \sum_{n=2}^{\infty} n(n-1)a_n t^{n-2},
\]

και αντικαθιστούμε στην εξίσωση (5.18)

\[
\sum_{n=2}^{\infty} n(n-1)a_n t^{n-2} - t \sum_{n=0}^{\infty} a_n t^n = 0 \Rightarrow \sum_{n=2}^{\infty} n(n-1)a_n t^{n-2} - \sum_{n=0}^{\infty} a_n t^{n+1} = 0
\]

Στη συνέχεια θέλουμε να γράψουμε τη διαφορά των σειρών σαν μία σειρά συλλέγοντας τους ομοβάθμους όρους $\sum_{n=-\infty}^{\infty} (\cdots)t^n$. Παρατηρούμε ότι

\[
\sum_{n=2}^{\infty} n(n-1)a_n t^{n-2} = 2a_2 + 3 \cdot 2a_3t + 4 \cdot 3a_4t^2 + \cdots + (n+2)(n+1)a_{n+2}t^n + \cdots
\]

\[
= \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}t^n,
\]

Η διαδικασία αυτή, δηλαδή η αλλαγή των δεικτών άθροισης χρησιμοποιείται στις πράξεις μεταξύ σειρών, προκειμένου το άθροισμα ή τη διαφορά σειρών να γραφεί σαν μία σειρά. Είναι δε ανάλογη της αλλαγής μεταβλητής στα ολοκληρώματα. Πράγματι αν στις σειρές $\sum_{n=2}^{\infty} n(n-1)a_n t^{n-2}$ θέσουμε $k = n - 2$, τότε θα είναι $n = k + 2$ και το k παίρνει τις τιμές 0, 1, 2, … Κατά συνέπεια

\[
\sum_{n=2}^{\infty} n(n-1)a_n t^{n-2} = \sum_{k=0}^{\infty} (k+2)(k+2-1)a_{k+2}t^k = \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}t^n.
\]
Όμοια

\[\sum_{n=0}^{\infty} a_n t^{n+1} = \sum_{n=1}^{\infty} a_{n-1} t^n. \]

Έτσι η εξίσωση γράφεται

\[\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2} t^n - \sum_{n=1}^{\infty} a_{n-1} t^n = 0 \]

\[2a_2 + \sum_{n=1}^{\infty} (n+2)(n+1)a_{n+2} t^n - \sum_{n=1}^{\infty} a_{n-1} t^n = 0 \]

\[2a_2 + \sum_{n=1}^{\infty} [(n+2)(n+1)a_{n+2} - a_{n-1}] t^n = 0. \]

Η σειρά ισούται με μπάν για κάθε \(t \) σε κάποιο διάστημα γύρω από το 0, συνεπώς

\[2a_2 = 0, \quad (n+2)(n+1)a_{n+2} - a_{n-1} = 0, \quad n = 1, 2, 3, \ldots, \]

ισοδύναμα

\[a_2 = 0, \quad a_{n+2} = \frac{a_{n-1}}{(n+1)(n+2)}, \quad n = 1, 2, 3, \ldots. \]

Η σχέση που συνδέει το \(a_{n+2} \) με το \(a_{n-1} \) είναι μία αναδρομική σχέση με βήμα 3. Από τη σχέση αυτή και το γεγονός ότι \(a_2 = 0 \) έχουμε \(a_2 = a_5 = a_8 = a_{11} = \cdots = a_{2+3n} = \cdots = 0 \). Γενικότερα υπολογίζουμε

\[a_2 = 0 \]

\[(n = 1) \quad a_3 = \frac{a_0}{2 \cdot 3} \]

\[(n = 2) \quad a_4 = \frac{a_1}{3 \cdot 4} \]

\[(n = 3) \quad a_5 = \frac{a_2}{4 \cdot 5} = 0 \]

\[(n = 4) \quad a_6 = \frac{a_3}{5 \cdot 6} = \frac{a_0}{2 \cdot 3 \cdot 5 \cdot 6} \]

\[(n = 5) \quad a_7 = \frac{a_4}{6 \cdot 7} = \frac{a_1}{3 \cdot 4 \cdot 6 \cdot 7} \]

\[(n = 6) \quad a_8 = \frac{a_5}{7 \cdot 8} = \frac{a_2}{4 \cdot 5 \cdot 7 \cdot 8} = 0 \]

\[(n = 7) \quad a_9 = \frac{a_6}{8 \cdot 9} = \frac{a_0}{2 \cdot 3 \cdot 5 \cdot 6 \cdot 8 \cdot 9} \]

\[(n = 8) \quad a_{10} = \frac{a_7}{9 \cdot 10} = \frac{a_1}{3 \cdot 4 \cdot 6 \cdot 7 \cdot 9 \cdot 10} \]

\[(n = 9) \quad a_{11} = \frac{a_8}{10 \cdot 11} = \frac{a_2}{4 \cdot 5 \cdot 7 \cdot 8 \cdot 10 \cdot 11} = 0 \]

\[\vdots \]
5.3 Ομαλά και Ανώμαλα σημεία

Για τα παραπάνω αποτελέσματα συστήνουν

\[
\begin{align*}
 a_{3n} &= \frac{a_0}{2 \cdot 3 \cdot 5 \cdot 6 \cdots (3n - 1)(3n)}, \\
 a_{3n+1} &= \frac{a_1}{3 \cdot 4 \cdot 6 \cdot 7 \cdots (3n)(3n + 1)}, \\
 a_{3n+2} &= 0,
\end{align*}
\]

όπου \(n = 1, 2, 3, \ldots \). Οι σχέσεις αυτές μπορούν να αποδειχθούν αυτοποιητικά, με επανάληψη για παράδειγμα. Έτσι η γενική λύση της εξίσωσης του Λιγό είναι

\[
y = a_0 \left[1 + \frac{t^3}{2 \cdot 3} + \frac{t^6}{2 \cdot 3 \cdot 5 \cdot 6} + \cdots + \frac{t^{3n}}{2 \cdot 3 \cdot 5 \cdot 6 \cdots (3n - 1)(3n)} + \cdots \right] + a_1 \left[t + \frac{t^5}{3 \cdot 4} + \frac{t^8}{3 \cdot 4 \cdot 6 \cdot 7} + \cdots + \frac{t^{3n+1}}{3 \cdot 4 \cdot 6 \cdots (3n)(3n + 1)} + \cdots \right]
\]

\[
= a_0 \left(1 + \sum_{n=1}^{\infty} \frac{t^{3n}}{2 \cdot 3 \cdots (3n - 1)(3n)} \right) + a_1 \left(t + \sum_{n=1}^{\infty} \frac{t^{3n+1}}{3 \cdot 4 \cdots (3n)(3n + 1)} \right),
\]

όπου \(s = t^3 \). Από το κριτήριο του λόγου (5.13) για την \(s \)-σειρά υπολογίζουμε

\[
R_s = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \frac{2 \cdot 3 \cdot (3n - 1)(3n)[3(n + 1) - 1][3(n + 1)]}{2 \cdot 3 \cdots (3n - 1)(3n)} = \lim_{n \to \infty} (3n + 2)(3n + 3) = \infty,
\]

κατά συνέπεια η \(t \)-σειρά συγκλίνει για \(-\infty < t^3 < \infty\), ισοδύναμα \(-\infty < t < \infty\), αφού \(R_1 = \infty \). Αναφορικά με τη δεύτερη σειρά γράφουμε

\[
\sum_{n=1}^{\infty} \frac{t^{3n+1}}{3 \cdot 4 \cdots (3n)(3n + 1)} = t \sum_{n=1}^{\infty} \frac{t^{3n}}{3 \cdot 4 \cdots (3n)(3n + 1)}.
\]

Θετοντας πάλι \(s = t^3 \) όπως και στην πρώτη σειρά βρίσκουμε ότι η \(t \)-σειρά συγκλίνει για \(-\infty < t < \infty\), αφού \(R_2 = \infty \) (γατάτι). Κατά συνέπεια η έκφραση

\[
y = a_0 \sum_{n=1}^{\infty} \frac{t^{3n}}{2 \cdot 3 \cdots (3n - 1)(3n)} + a_1 \sum_{n=1}^{\infty} \frac{t^{3n+1}}{3 \cdot 4 \cdots (3n)(3n + 1)} = a_0y_1 + a_1y_2 \quad (5.19)
\]

έχει έννοια για κάθε \(t \in \mathbb{R} \). Σημειώνουμε ότι \(y_1 \) και \(y_2 \) είναι λύσεις της εξίσωσης, προκύπτουν για \(a_0 = 1, a_1 = 0 \) και \(a_0 = 0, a_1 = 1 \) αντίστοιχα. Επιπλέον επειδή \(y_1(0) = 1 \) και \(y_2(0) = 0 \), έπειτα ότι οι \(y_1 \) και \(y_2 \) είναι γραμμικά ανεξάρτητες (γατάτι), άρα αποτελούν ένα θεμελιώδες σύνολο λύσεων της εξίσωσης. Κατά συνέπεια η (5.19) αποτυπώνει το γεγονός ότι κάθε λύση της εξίσωσης είναι ένας γραμμικός συνδυασμός στοιχείων ενός θεμελιώδους συνόλου λύσεων.
Άσκηση 5.1. Η γενική λύση της εξίσωσης

\[y'' + y = 0 \]

eίναι \(y = a \cos t + b \sin t \), \(t \in \mathbb{R} \), όπου \(a \) και \(b \) είναι πραγματικές σταθερές, βλέπε Παράδειγμα 3.7. Αποδείξτε αυτό το αποτέλεσμα με τη μέθοδο των δυναμοσειρών. Υποθέστε διπλαί ότι \(y = \sum_{n=0}^{\infty} a_n t^n \) και εργαζόμενοι όπως στο Παράδειγμα 5.2 καταλήξατε ότι \(y = a_0 (\sum b_n t^n) + a_1 (\sum c_n t^n) \) όπου η πρώτη σειρά είναι η σειρά Maclaurin της \(\cos t \) και η δεύτερη είναι η σειρά Maclaurin της \(\sin t \).

Παράδειγμα 5.3. Να βρεθεί η γενική λύση της εξίσωσης

\[ty'' - y = 0, \quad t \in \mathbb{R}, \quad (5.20) \]

σε σειρά δυνάμεων του \(t \).

Εδώ είναι \(P(t) = t \), \(Q(t) = 0 \), και \(R(t) = -1 \), επομένως το \(t = 0 \) είναι ανώμαλο σημείο της εξίσωσης ενώ κάθε άλλο σημείο είναι ομαλό. Υποθέστομε ότι η λύση \(y \) έχει ανάπτυξη γύρω από το ανώμαλο σημείο της εξίσωσης της μορφής \(y = \sum_{n=0}^{\infty} a_n t^n \) και ότι η σειρά συγκλίνει σε κάθε διάστημα \(-\rho < t < \rho\). Παραγωγός\(y' = \sum_{n=1}^{\infty} n a_n t^{n-1} \) και \(y'' = \sum_{n=2}^{\infty} n(n-1)a_n t^{n-2} \), και αντικαθιστώντας στην εξίσωση (5.20) παίρνουμε

\[t \sum_{n=2}^{\infty} n(n-1)a_n t^{n-2} - \sum_{n=0}^{\infty} a_n t^n = 0 \]
\[\sum_{n=2}^{\infty} n(n-1)a_n t^{n-1} - \sum_{n=0}^{\infty} a_n t^n = 0 \]

όπου κάνοντας αλλαγή στο δεύτερο άθροισης

\[\sum_{n=1}^{\infty} (n+1)na_{n+1} t^n - \sum_{n=0}^{\infty} a_n t^n = 0 \]
\[\sum_{n=1}^{\infty} [(n+1)na_{n+1} - a_n] t^n - a_0 = 0. \]

Η σειρά ισούται με μπέν για κάθε \(t \) σε κάποιο διάστημα γύρω από το 0, συνεπώς

\[a_0 = 0, \quad (n+1)na_{n+1} - a_n = 0, \quad n = 1, 2, 3, \ldots, \]

ισοδύναμα

\[a_0 = 0, \quad a_{n+1} = \frac{a_n}{n(n+1)}, \quad n = 1, 2, 3, \ldots. \]

Η αναδρομική σχέση εδώ έχει με βήμα 1 και για \(n = 1, 2, 3, 4 \) υπολογίζουμε

\[a_2 = \frac{a_1}{1 \cdot 2}, \quad a_3 = \frac{a_2}{2 \cdot 3} = \frac{a_1}{1 \cdot 2^2 \cdot 3}, \quad a_4 = \frac{a_3}{3 \cdot 4} = \frac{a_1}{1 \cdot 2^2 3^2 \cdot 4}, \quad a_5 = \frac{a_4}{4 \cdot 5} = \frac{a_1}{1 \cdot 2^2 3^2 4^2 \cdot 5}. \]
5.4 Το ανάπτυγμα της λύσης γύρω από ένα ομαλό σημείο

Τα παραπάνω αποτελέσματα συντίνουν

\[a_n = \frac{a_1}{[(n-1)!]^2 n}, \quad n = 1, 2, 3, \ldots \]

Η σχέση αυτή μπορεί να αποδεχθεί αυστηρά, με επαγωγή. Έτσι η λύση \(y \) της εξίσωσης είναι

\[
y = a_1 \left[t + \frac{t^2}{(1!)^2 2!} + \frac{t^3}{(2!)^2 3!} + \cdots + \frac{t^n}{(n-1)!^2 n!} + \cdots \right].
\]

Δεν είναι δύσκολο να δείξουμε, ή ακόμα και να δούμε, ότι η σειρά στην αγκύλη συγκλίνει για κάθε \(t \in \mathbb{R} \) (γιατί), αρκετά παρατάσσεται μία συνάρτηση, έστω, \(y_1 \) ορισμένη και αναλυτική στο \(\mathbb{R} \). Έτσι θα είναι \(y = a_1 y_1 \). Η γενική όμως λύση της (5.3) θα πρέπει να εξαρτάται από δύο σταθερές, να είναι δηλαδή \(y = a_1 y_1 + b y_2 \). Το αποτέλεσμα αυτό όμως δεν προκύπτει από την μέθοδο που ακολουθήσαμε. Κατά συνέπεια θα πρέπει να βρούμε ένα δεύτερο λύσιν με τη μέθοδο του υποβιβασμού της τάξης (βλέπε παράγραφο 3.2 σχέση (3.8)) πράγμα αδύνατο από τη στιγμή που \(y_1 \) δεν δίνεται σε κλειστή μορφή, ή να τροποποιήσουμε τη μέθοδο στην περίπτωση που αναπτύσσουμε γύρω από ένα ανώμαλο σημείο. Θα επανέλθουμε στο θέμα αυτό στο παράγραφο 5.5.

Σημείωση 5.1. Έχοντας κατά νου τις εξίσωσεις (5.3)–(5.8) στη συνέχεια θα θεωρήσουμε την ομοιόγενη εξίσωση

\[
P(t)y'' + Q(t)y' + R(t)y = 0,
\]

μιας και η ανάλυση δεν διαφέρει ουσιαστικά αν το δεξί μέλος είναι διάφορο του μπενόσ, όπου οι συντελεστές \(P(t), Q(t), R(t) \) είναι αναλυτικές συναρτήσεις σε κάποιο διάστημα \(I \). Σημειώνουμε ότι οι συντελεστές στις εξίσωσεις–πρότυπα (5.3)–(5.8) είναι πολυώνυμα. Μπορούμε επίσης να επαναδιατυπώσουμε τον ορισμό του ομαλού και ανώμαλου σημείου. Διαφέροντας με τον συντελεστή \(P(t) \) της \(y'' \) στην (5.21) παίρνουμε την εξίσωση

\[
y'' + p(t)y' + q(t)y = 0,
\]

όπου \(p(t) = Q(t)/P(t) \) και \(q(t) = R(t)/P(t) \). Θα λέμε λοιπόν ότι το σημείο \(t_0 \) είναι ομαλό για την εξίσωση (5.21) ή την (5.22) εάν \(p(t) \) και \(q(t) \) είναι αναλυτικές σε κάποιο διάστημα γύρω από το \(t_0 \). Εάν \(p(t) \) ή \(q(t) \), ή και οι δύο δεν είναι αναλυτικές σε κάποιο διάστημα γύρω από το \(t_0 \), θα λέμε ότι το \(t_0 \) είναι ανώμαλο σημείο για την (5.21) ή την (5.22).

5.4 Το ανάπτυγμα της λύσης γύρω από ένα ομαλό σημείο

Στο Παράδειγμα 5.2 είπαμε ότι αναχτητόντας λύση της εξίσωσης \(y'' - ty = 0 \) σε μορφή δυναμοσειράς γύρω από το ομαλό σημείο \(t = 0 \) βρίσκαμε δύο γραμμικά ανεξάρτητες αναλυτικές λύσεις \(y_1 = \Sigma a_n t^n \) και \(y_2 = \Sigma b_n t^n \), έτσι ώστε η γενική λύση της εξίσωσης, όπως θα περιήλθε κάποιος, να είναι \(y = a_1 y_1 + b y_2 \), όπου \(a \) και \(b \) να είναι αυθαίρετες σταθερές. Το αποτέλεσμα αυτό είναι τυπικό αν αναχτάται λύση της εξίσωσης (5.22) σε μορφή δυναμοσειράς γύρω από ένα ομαλό σημείο.
Θεώρημα 5.6. Εστιά ότι το t_0 είναι ομαλό σημείο για την εξίσωση

$$y'' + p(t)y' + q(t)y = 0. \quad (5.23)$$

Τότε (5.23) έχει δύο γραμμικά ανεξιστότετες αναλυτικές λύσεις της μορφής

$$y_1 = \sum_{n=0}^{\infty} a_n t^n, \quad y_2 = \sum_{n=0}^{\infty} b_n t^n. \quad (5.24)$$

Επιπλέον εκτίνα σύγκλισης κάθε μιας από τις σειρές είναι μεγαλύτερη ή ίση της απόστασης του t_0 από το κοντινότερο ανώμαλο σημείο της (5.23).

Απόδειξη. Εστιά $R > 0$ να είναι η απόσταση του t_0 από το κοντινότερο ανώμαλο σημείο της εξίσωσης, τότε οι $p(t)$, $q(t)$ αναπτύσσονται σε δυναμοσειρές

$$p(t) = \sum_{n=0}^{\infty} p_n (t - t_0)^n, \quad q(t) = \sum_{n=0}^{\infty} q_n (t - t_0)^n$$

με $|t - t_0| < R$. Αναζητούμε λύση της εξίσωσης στη μορφή $y(t) = \sum_{n=0}^{\infty} a_n (t - t_0)^n$ όπου $|t - t_0| < \rho$ για κάποιο $\rho > 0$. Παραγωγίζοντας και πολλαπλασιάζοντας με $p(t)$ και $q(t)$ έχουμε

$$y'(t) = \sum_{n=1}^{\infty} na_n (t - t_0)^{n-1} = \sum_{n=0}^{\infty} (n+1)a_{n+1}(t - t_0)^n$$

$$y''(t) = \sum_{n=1}^{\infty} n(n+1)a_{n+1}(t - t_0)^{n-1} = \sum_{n=0}^{\infty} (n+1)(n+2)a_{n+2}(t - t_0)^n$$

$$p(t)y'(t) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} (k+1)a_{k+1}p_{n-k}(t - t_0)^n$$

$$q(t)y(t) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} a_k q_{n-k}(t - t_0)^n.$$

Άντικαθιστώντας τις εκφράσεις αυτές στην εξίσωση παίρνουμε

$$\sum_{n=0}^{\infty} \left[(n+1)(n+2)a_{n+2} + \sum_{k=0}^{n} (k+1)a_{k+1}p_{n-k} + \sum_{k=0}^{n} a_k q_{n-k} \right](t - t_0)^n = 0,$$

κατά συνέπεια θα πρέπει να ισχύει η αναδρομική σχέση

$$a_{n+2} = -\frac{1}{(n+1)(n+2)} \left[\sum_{k=0}^{n} (k+1)a_{k+1}p_{n-k} + \sum_{k=0}^{n} a_k q_{n-k} \right] \quad (5.25)$$

για $n = 0, 1, 2, \ldots$. Παρατηρούμε ότι οι σταθερές a_0 και a_1 είναι αυθαίρετες ενώ οι a_n, για $n = 2, 3, \ldots$, προσδιορίζονται από την (5.25). Στη συνέχεια δείχνουμε ότι η σειρά $\sum_{n=0}^{\infty} a_n (t - t_0)^n$, όπου οι συντελεστές δίνονται από την (5.25) συγκλίνει για $|t - t_0| < R$. Επειδή οι p και q δυναμοσειρές συγκλίνουν απολύτως για $|t - t_0| = r < R$ υπάρχει σταθερά M ώστε

$$|p_n|^n \leq M, \quad |q_n|^n \leq M$$
5.5 Ζανακοιτάζοντας την εξίσωση του Euler

για κάθε $n = 0, 1, 2, \ldots$. Έτσι από την (5.25) έπεται ότι

$$|a_{n+2}| \leq \frac{M}{(n+1)(n+2)} \left[\sum_{k=0}^{n} \frac{(k+1)|a_{k+1}|}{r^{n-k}} + \sum_{k=0}^{n} \frac{|a_k|}{r^{n-k}} \right]$$

$$= \frac{M}{(n+1)(n+2)} \frac{1}{r^n} \sum_{k=0}^{n} [(k+1)|a_{k+1}| + |a_k|r^k]$$

Θέτουμε

$$C_n = \frac{M}{(n+1)(n+2)} \frac{1}{r^n}$$

και ορίζουμε μία ακολουθία $(A_n)_{n=0}^{\infty}$, με $A_0 > |a_0|$, $A_1 > |a_1|$ και

$$A_{n+2} = C_n \left[\sum_{k=0}^{n} [(k+1)|a_{k+1}| + |a_k|r^k + |a_{n+1}|r^{n+1}] \right], \quad (5.26)$$

$n = 0, 1, 2, \ldots$. Τότε είναι $A_n > |a_n| \geq 0$ για όλα τα n. Δείχνουμε ότι η δυνομοσειώδης $\sum_{n=0}^{\infty} A_n(t-t_0)^n$ συγκλίνει για $|t-t_0| < r$. Από τον ορισμό των A_n έπεται ότι

$$A_{n+3} = C_{n+1} \left[\sum_{k=0}^{n+1} [(k+1)|a_{k+1}| + |a_k|r^k + |a_{n+2}|r^{n+2}] \right]$$

$$= C_{n+1} \left[\frac{A_{n+2}}{C_n} + (n+2)|a_{n+2}|r^{n+1} + |a_{n+2}|r^{n+2} \right]$$

$$= C_{n+1} \frac{A_{n+3}}{C_n} + C_{n+1}|a_{n+2}|(n+2+r)r^{n+1},$$

απ' όπου προκύπτει ότι

$$\frac{A_{n+3}}{A_{n+2}} = \frac{n+1}{n+3} \frac{1}{r} + \frac{|a_{n+2}|}{A_{n+2}} \frac{M(n+2+r)}{(n+2)(n+3)} \rightarrow 1,$$

καθώς $n \rightarrow \infty$, αφού $|a_n| \leq A_n$. Κατά συνέπεια η ακτίνα συγκλίσεως της σειράς $\sum_{n=0}^{\infty} A_n(t-t_0)^n$ ισούται με r. Επειδή η σειρά $\sum_{n=0}^{\infty} a_n(t-t_0)^n$, όπου τα a_n δίνονται από την (5.25) συγκλίνει απολύτως για $|t-t_0| < r$ για κάθε $r < R$ έπεται ότι η ακτίνα συγκλίσεως της λύσης είναι τουλάχιστον ίση με R. \hfill \Box

5.5 Ζανακοιτάζοντας την εξίσωση του Euler

5.6 Το ανάπτυγμα της λύσης γύρω από ένα κανονικό ανώμαλο σημείο
ΚΕΦΑΛΑΙΟ 6

Ο Μετασχηματισμός Laplace

6.1 Εισαγωγή

Έστω \(f : [0, \infty) \to \mathbb{R} \) να είναι μία συνεχής και φραγμένη συνάρτηση. Πολλαπλασιάζοντας την \(f(t) \) με \(e^{-st} \), όπου \(s \) μία θετική παράμετρος και ολοκληρώνοντας στο \([0, \infty)\) προκύπτει μία συνάρτηση του \(s \), έστω \(F(s) \), δηλαδή

\[
F(s) = \int_{0}^{\infty} e^{-st} f(t) \, dt. \tag{6.1}
\]

Ας υποθέσουμε στη συνέχεια ότι η \(f \) είναι παραγωγής και ότι η παράγωγος είναι επίσης συνεχής και φραγμένη τότε μετά από παραγωγτικά ολοκλήρωση προκύπτει ότι

\[
\int_{0}^{\infty} e^{-st} f'(t) \, dt = e^{-st} f(t) \bigg|_{0}^{\infty} - \int_{0}^{\infty} -se^{-st} f(t) \, dt = f(0) + s \int_{0}^{\infty} e^{-st} f(t) \, dt,
\]

ή διαμέσου της (6.1) ότι

\[
\int_{0}^{\infty} e^{-st} f'(t) \, dt = sF(s) - f(0). \tag{6.2}
\]

Επιπλέον σαν αποτέλεσμα των ιδιοτήτων του ολοκληρώματος βλέπουμε ότι

\[
\int_{0}^{\infty} e^{-st}[c_{1}f_{1}(t) + c_{2}f_{2}(t)] \, dt = c_{1}\int_{0}^{\infty} e^{-st} f_{1}(t) \, dt + c_{2}\int_{0}^{\infty} e^{-st} f_{2}(t) \, dt, \tag{6.3}
\]

για κατάλληλες συναρτήσεις \(f_{1} \) και \(f_{2} \), για τις οποίες τα ολοκληρώματα στο δεξί μέλος της (6.3) υπάρχουν, και σταθερές \(c_{1} \) και \(c_{2} \). Όριζοντας, τυπικά, τον μετασχηματισμό Laplace μίας συνάρτησης \(f \), \(\mathcal{L}(f(t)) \) με τη σχέση (6.1), δηλαδή \(\mathcal{L}(f(t)) = F(s) \) παρατηρούμε ότι οι (6.2), (6.3), επιτρέπουν τον μετασχηματισμό ενός γραμμικού προβλήματος αρχικών τιμών με σταθερούς συντελεστές

\[
ay' + by = f(t), \quad y(0) = c
\]

μέσω του μετασχηματισμού Laplace σε ένα αλγεβρικό προβλήμα, συγκεκριμένα

\[
\mathcal{L}(ay' + by) = \mathcal{L}(f(t)) \Rightarrow a(s\mathcal{L}[y] - c) + b\mathcal{L}[y] = \mathcal{L}(f(t)) \Rightarrow (as + b)\mathcal{L}[y] = \mathcal{L}(f(t)) + ac,
\]

ή για \(F(s) = \mathcal{L}(f(t)) \)

\[
\mathcal{L}[y] = \frac{F(s) + ac}{as + b}.
\]
6.2 Ορισμός του μετασχηματισμού Laplace

Ο μετασχηματισμός Laplace είναι ένα τυπικό παράδειγμα ολοκληρωτικού γραμμικού τελεστή, όπως βλέπουμε από τις (6.1) και (6.3).

Ορισμός 6.1. Έστω \(f(t) \) μία συνάρτηση ορισμένη στο \([0, \infty)\). Ο μετασχηματισμός Laplace της \(f \), \(\mathcal{L}(f) \) είναι μία συνάρτηση \(F(s) \) που ορίζεται από το ολοκλήρωμα

\[
\mathcal{L}(f)(s) = F(s) = \int_{0}^{\infty} e^{-st} f(t) \, dt.
\] (6.4)

Το πεδίο ορισμού της \(F \) αποτελείται απ’ όλα τα \(s \) για τα οποία το ολοκλήρωμα στην (6.4) συγκλίνει.

Παράδειγμα 6.1. Να υπολογισθεί ο μετασχηματισμός Laplace της \(f(t) = 1 \), \(t \geq 0 \).

Από τον ορισμό έχουμε

\[
F(s) = \int_{0}^{\infty} e^{-st} \, dt = \lim_{T \to \infty} \int_{0}^{T} e^{-st} \, dt = \lim_{T \to \infty} \left[\frac{-e^{-st}}{s} \right]_{0}^{T} = \lim_{T \to \infty} \left[\frac{-e^{-sT}}{s} + 1 \right].
\]

Το όριο υπάρχει μόνο αν \(s > 0 \). Αν \(s \leq 0 \) το ολοκλήρωμα αποκλίνει. Κατά συνέπεια

\[
\mathcal{L}(1) = \frac{1}{s}, \quad s > 0.
\]

Παράδειγμα 6.2. Να υπολογισθεί ο μετασχηματισμός Laplace της \(f(t) = e^{at} \), \(t \geq 0 \) και \(a \in \mathbb{R} \).

Έστω \(F_1(s) = \mathcal{L}(1)(s) = 1/s \). Από τον ορισμό του μετασχηματισμού έχουμε

\[
F(s) = \int_{0}^{\infty} e^{-st} \, dt = \int_{0}^{\infty} e^{-(s-a)t} \, dt = F_1(s-a)
\]

για \(s-a > 0 \). Αν \(s-a \leq 0 \) το ολοκλήρωμα αποκλίνει. Κατά συνέπεια

\[
\mathcal{L}(e^{at}) = \frac{1}{s-a}, \quad s > a.
\]

Σημειώνουμε ότι για \(a = 0 \) το αποτέλεσμα είναι συμβατό με αυτό του Παραδείγματος 6.1. Επιπλέον σημειώνουμε ότι ενώ η συνάρτηση \(f(t) = e^{at} \) δεν είναι φραγμένη στο \([0, \infty)\) ο μετασχηματισμός Laplace υπάρχει.
Παράδειγμα 6.3. Να υπολογίσετε ο μετασχηματισμός Laplace της \(f(t) = t, \ t \geq 0 \).
Από τον ορισμό έχουμε

\[
F(s) = \int_0^\infty e^{-st} \, dt = \lim_{T \to \infty} \int_0^T e^{-st} \, dt
\]

\[
= \lim_{T \to \infty} \left[\left. -\frac{e^{-st}}{s} \right|_0^T + \int_0^T \frac{e^{-st}}{s} \, dt \right]
\]

\[
= \lim_{T \to \infty} \left[\left. -\frac{e^{-sT}}{s} + \frac{1}{s} \left(\frac{e^{-sT}}{s} + \frac{1}{s} \right) \right|_0^T \right]
\]

\[
= \lim_{T \to \infty} \left[\left. -\frac{1}{s^2} - \frac{e^{-sT}}{s^2} - \frac{e^{-sT}}{s} \right|_0^T \right]
\]

σύμφωνα με το Παράδειγμα 6.1. Από το ανάπτυγμα Taylor της \(e^{st} \) έπεται ότι για \(s > 0 \)

\[
e^{st} > \frac{s^2T^2}{2!}
\]

cατά συνέπεια θα είναι

\[
0 < \frac{T}{se^{sT}} < \frac{2T}{s^3T} = \frac{2}{s^3T} \to 0,
\]

καθώς \(T \to \infty \). Επομένως

\[
L(t) = \frac{1}{s^2}, \quad s > 0.
\]

Ασκηση 6.1. Γενικεύοντας το Παράδειγμα 6.3 να δείχθει ότι για κάθε \(n = 1, 2, \ldots \) ο μετασχηματισμός Laplace της \(f^n \) υπάρχει και

\[
L\{f^n\} = \frac{n!}{s^{n+1}},
\]

για \(s > 0 \).

Παράδειγμα 6.4. Να υπολογίσετε ο μετασχηματισμός Laplace της \(f(t) = \sin at, \ t \geq 0 \), όπου \(a \in \Re \).
Από τον ορισμό του μετασχηματισμού υπολογίζουμε

\[
F(s) = \int_0^\infty e^{-st} \sin at \, dt = \lim_{T \to \infty} \int_0^T e^{-st} \sin at \, dt
\]

Τώρα

\[
\int_0^T e^{-st} \sin at \, dt = -\frac{e^{-st} \sin at}{s} \bigg|_0^T + \frac{a}{s} \int_0^T e^{-st} \cos at \, dt
\]

\[
= -\frac{e^{-st} \sin at}{s} \bigg|_0^T - \frac{a}{s^2} \int_0^T e^{-st} \cos at \, dt
\]

\[
= -\frac{e^{-st} \sin at}{s} \bigg|_0^T - \frac{a}{s^2} \left[e^{-st} \cos at \right]_0^T
\]

\[
= -\frac{e^{-st} \sin at}{s} \bigg|_0^T - \frac{a}{s^2} \left(-\frac{e^{-st} \sin at}{s} \right) \bigg|_0^T
\]

\[
= -\frac{e^{-st} \sin at}{s} \bigg|_0^T - \frac{a}{s^2} \left(-\frac{e^{-st} \sin at}{s} \right) \bigg|_0^T
\]

\[
= -\frac{e^{-st} \sin at}{s} \bigg|_0^T - \frac{a}{s^2} \left(-\frac{e^{-st} \sin at}{s} \right) \bigg|_0^T
\]

\[
= -\frac{e^{-st} \sin at}{s} \bigg|_0^T - \frac{a}{s^2} \left(-\frac{e^{-st} \sin at}{s} \right) \bigg|_0^T
\]
Άρα
\[
\left(1 + \frac{a^2}{s^2}\right) \int_0^T e^{-st} \sin at \, dt = -\frac{e^{-st} \sin at}{s} \bigg|_0^T - \frac{e^{-st} \cos at}{s^2} \bigg|_0^T
\]
\[
= -\frac{e^{-st} \sin at}{s} - \frac{e^{-st} \cos at}{s^2} + \frac{a}{s^2},
\]
επομένως
\[
\int_0^T e^{-st} \sin at \, dt = \frac{a}{s^2 + a^2} - \frac{e^{-st} \left(\frac{s \sin at}{s^2 + a^2} + \frac{a \cos at}{s^2 + a^2}\right)}{s^2 + a^2},
\]
από όπου για \(s > 0 \) παίρνοντας το όριο \(T \to \infty \) προκύπτει, τελικά, ότι
\[
\mathcal{L}\{\sin at\} = \frac{a}{s^2 + a^2}.
\]
Για \(s \leq 0 \) το ολοκλήρωμα δεν συγκλίνει.

Ασκήση 6.2. Να δειχθεί ότι
\[
\mathcal{L}\{\cos at\} = \frac{s}{s^2 + a^2},
\]
για \(s > 0 \).

Παράδειγμα 6.5. Αν \(c \) είναι μία θετική σταθερά να βρεθεί ο μετασχηματισμός Laplace της
\[
f_c(t) = \begin{cases} a, & 0 \leq t < c \\ b, & t \geq c \end{cases}
\]
όπου \(a \) και \(b \) είναι σταθερές.

Από τον ορισμό της \(f_c(t) \) έπεται
\[
F_c(s) = \int_0^\infty e^{-st} f_c(t) \, dt = \int_0^c e^{-st} a \, dt + \int_c^\infty e^{-st} b \, dt = a \left[-\frac{e^{-st}}{s}\right]_0^c + b \lim_{T \to \infty} \left[-\frac{e^{-st}}{s}\right]_c^T.
\]
Το όριο υπάρχει για \(s > 0 \), κατά συνέπεια
\[
\mathcal{L}\{f_c(t)\} = a \frac{1 - e^{-sc}}{s} + b \frac{e^{-sc}}{s} = \frac{a}{s} + \frac{b - a}{s} e^{-sc},
\]
με \(s > 0 \).

Τέθεις 6.1. Αν \(f_1 \) και \(f_2 \) είναι συναρτήσεις στο \([0, \infty)\) των οποίων ο μετασχηματισμός Laplace υπάρχει για \(s > a \) και \(c_1, c_2 \) είναι πραγματικές σταθερές τότε
\[
\mathcal{L}\{c_1 f_1 + c_2 f_2\} = c_1 \mathcal{L}\{f_1\} + c_2 \mathcal{L}\{f_2\}
\]
(6.5)
για \(s > a \).
Απόδειξη. Για κάθε \(T > 0 \) από τις ιδιότητες του ολοκληρώματος έχουμε

\[
\int_0^T e^{-st}[c_1 f_1(t) + c_2 f_2(t)] \, dt = c_1 \int_0^T e^{-st} \, f_1(t) \, dt + c_2 \int_0^T e^{-st} \, f_2(t) \, dt.
\]

Από την υπόθεση το όριο του δεξιού μέλους καθώς \(T \to \infty \) υπάρχει για κάθε \(s > a \), κατά συνέπεια και το όριο του αριστερού μέλους υπάρχει για \(s > a \). Έτσι

\[
\int_0^\infty e^{-st}[c_1 f_1(t) + c_2 f_2(t)] \, dt = c_1 \int_0^\infty e^{-st} \, f_1(t) \, dt + c_2 \int_0^\infty e^{-st} \, f_2(t) \, dt,
\]

που είναι \((6.5) \). \(\Box \)

Παράδειγμα 6.6. Να υπολογίσει ο μετασχηματισμός Laplace της \(f(t) = \sinh at \), \(t \geq 0 \), όπου \(a \in \mathbb{R} \).

Επειδή \(\sinh t = (e^t - e^{-t})/2 \) από τη γραμμικότητα του μετασχηματισμού και το Παράδειγμα 6.2 έχουμε για \(s > a \) και \(s > -a \)

\[
F(s) = \mathcal{L}\{\frac{1}{2}e^{at} - \frac{1}{2}e^{-at}\} = \frac{1}{2} \mathcal{L}\{e^{at}\} - \frac{1}{2} \mathcal{L}\{e^{-at}\} = \frac{1}{2} \frac{1}{s-a} - \frac{1}{2} \frac{1}{s+a} = \frac{a}{s^2 - a^2},
\]

για \(s > |a| \).

Ασκηση 6.3. Να δειχθεί ότι

\[
\mathcal{L}\{\cosh at\} = \frac{s}{s^2 - a^2},
\]

για \(s > |a| \).

Στη συνέχεια ορίζουμε μία κλάση συναρτήσεων για τις οποίες ο μετασχηματισμός Laplace υπάρχει. Πριν όμως ας δούμε δύο παραδείγματα. Για την \(f(t) = 1/t \), \(t > 0 \) το ολοκλήρωμα

\[
\int_0^a e^{-st} \frac{1}{t} \, dt,
\]

όπου \(a > 0 \), είναι καταχρηστικό και για \(0 < \epsilon < 1 \) είναι

\[
\int_\epsilon^1 e^{-st} \frac{1}{t} \, dt \geq \int_\epsilon^1 e^{-\epsilon} \frac{1}{t} \, dt = -e^{-\epsilon} \ln \epsilon \to \infty,
\]

καθώς \(\epsilon \to 0 \). Κατά συνέπεια το ολοκλήρωμα

\[
\int_0^\infty e^{-st} \frac{1}{t} \, dt
\]

dεν συγκλίνει, ουτοσελίδως ο μετασχηματισμός Laplace της \(1/t \) δεν υπάρχει. Για την \(f(t) = 1/\sqrt{t} \), \(t > 0 \) το ολοκλήρωμα

\[
\int_0^a e^{-st} \frac{1}{\sqrt{t}} \, dt,
\]
6.2 Ορισμός του μετασχηματισμού Laplace

όπου \(a > 0 \), είναι επίσης καταχωριστικό και για \(0 < \epsilon < 1 \) είναι

\[
\int_{\epsilon}^{1} e^{-st} \frac{1}{\sqrt{t}} \, dt = 2 \sqrt{e^{-st}} \frac{1}{\epsilon} + 2s \int_{\epsilon}^{1} \sqrt{e^{-st}} \, dt = 2e^{-s} - 2 \sqrt{e^{-st}} + 2s \int_{\epsilon}^{1} \sqrt{e^{-st}} \, dt,
\]

οπότε καθώς \(\epsilon \to 0 \) παίρνουμε

\[
\int_{0}^{1} e^{-st} \frac{1}{\sqrt{t}} \, dt = 2e^{-s} + 2s \int_{0}^{1} \sqrt{e^{-st}} \, dt.
\]

Επειδή για \(t \geq 1 \) είναι

\[
\int_{1}^{\infty} e^{-st} \frac{1}{\sqrt{t}} \, dt \leq \int_{1}^{\infty} e^{-st} \, dt
\]

έπεται ότι το λοκλήρωμα

\[
\int_{0}^{\infty} e^{-st} \frac{1}{\sqrt{t}} \, dt
\]

συγκλίνει, κατά συνέπεια ο μετασχηματισμός Laplace της \(1/\sqrt{t} \) υπάρχει.

Άσκηση 6.4. Δείξτε ότι

\[
\mathcal{L}\left\{ \frac{1}{\sqrt{t}} \right\} = 2s\mathcal{L}\{ \sqrt{t} \}.
\]

Ορισμός 6.2. Μία συνάρτηση \(f(t) \) θα λέγεται τιμητικά συνεχής στο πεπερασμένο διάστημα \([a, b]\) εάν είναι συνεχής σε κάθε σημείο του \([a, b]\) εκτός ίσως από ένα πεπερασμένο πλήθος σημείων \(t_1, t_2, \ldots, t_n \) του \([a, b]\) στα οποία τα πλευρικά όρια

\[
\lim_{t \to t_k^+} f(t) = \lim_{t \to t_k^-} f(t)
\]

υπάρχουν και είναι πεπερασμένα για κάθε \(k = 1, 2, \ldots, n \). Μία συνάρτηση \(f(t) \) θα λέγεται τιμητικά συνεχής στο \([0, \infty)\) εάν είναι τιμητικά συνεχής σε κάθε διάστημα \([0, T]\), με \(T > 0 \).

Σημειώνουμε ότι τόσο \(1/t \) όσο και \(1/\sqrt{t} \) δεν είναι τιμητικά συνεχής στο \([0, \infty) \) (γιατί).

Στο Παράδειγμα 6.2 ειδαμε ότι ενώ η συνάρτηση \(f(t) = e^{at} \) δεν είναι φορημένη στο \([0, \infty)\), για \(a > 0 \), ο μετασχηματισμός Laplace υπάρχει για \(s > a \). Αντίθετα αν θεωρήσουμε τη συνάρτηση \(f(t) = e^{s^2} \), τότε για κάθε \(s > 0 \)

\[
\int_{s+1}^{T} e^{-st} e^{s^2} \, dt = \int_{s+1}^{T} e^{(t-s)} \, dt \geq \left[e^{T} - e^{s+1} \right] \to \infty,
\]

καθώς \(T \to \infty \), γεγονός που συνεπάγεται ότι ο μετασχηματισμός Laplace της \(e^{s^2} \) δεν υπάρχει.

Ορισμός 6.3. Μία συνάρτηση \(f(t) \) θα λέγεται εκθετικής τάξης \(a \) εάν υπάρχουν θετικές σταθερές \(T_0 \) και \(M \) ώστε \(|f(t)| \leq Me^{at} \) για κάθε \(t \geq T_0 \).

Θεώρημα 6.2. Εάν \(n f(t) \) είναι τιμητικά συνεχής στο \([0, \infty)\) και εκθετικής τάξης \(a \), τότε ο μετασχηματισμός Laplace \(\mathcal{L}\{f(t)\}(s) \) υπάρχει για \(s > a \).
Απόδειξη. Από την υπόθεση έπειτα ότι υπάρχουν σταθερές T_0 και M ώστε $|f(t)| \leq Me^{-st}$ για κάθε $t \geq T_0$. Άρα για $T > T_0$ έχουμε

$$\int_0^T e^{-st}f(t)\, dt = \int_0^{T_0} e^{-st}f(t)\, dt + \int_{T_0}^T e^{-st}f(t)\, dt.$$

Επειδή η $f(t)$ είναι τμηματικά συνεχής στο διάστημα $[0, T_0]$ το ολοκλήρωμα Riemann $\int_0^{T_0} e^{-st}f(t)\, dt$ υπάρχει. Στη συνέχεια δείχνουμε ότι και το $\int_{T_0}^\infty e^{-st}f(t)\, dt$ υπάρχει. Για κάθε $T > T_0$ έχουμε

$$\left| \int_{T_0}^T e^{-st}f(t)\, dt \right| \leq \int_{T_0}^T e^{-st}|f(t)|\, dt \leq M \int_{T_0}^\infty e^{-(s-a)t}\, dt = \frac{Me^{-(s-a)T}}{s-a}$$

$$\leq M e^{-(s-a)T_0}$$

για $s > a$, κατά συνέπεια το $\int_{T_0}^\infty e^{-st}f(t)\, dt$ υπάρχει για $s > a$ άρα και ο μετασχηματισμός Laplace $\mathcal{L}\{f\}(s)$ υπάρχει για $s > a$. □

Σημείωση 6.1. Η συνάρτηση γάμμα $\Gamma(t)$ ορίζεται με τη σχέση

$$\Gamma(t) = \int_0^\infty e^{-t}x^{t-1}\, dx, \quad t > 0.$$

Αφίνουμε σαν άσκηση να δειχθούν τα ακόλουθα:

1. Το ολοκλήρωμα συγκλίνει.
2. $\Gamma(t+1) = \Gamma(t)$ για $t > 0$.
3. Για κάθε θετικό ακέραιο n είναι $\Gamma(n+1) = n!$.

Κάνοντας χρήση της συναρτήσεις γάμμα γενικεύουμε το αποτέλεσμα της Άσκησης 6.1

$$\mathcal{L}\{t^n\} = \frac{n!}{s^{n+1}}.$$ \hspace{1cm} (6.6)

για $s > 0$. Για $r > -1$ υπολογίζουμε

$$\mathcal{L}\{t^r\}(s) = \int_0^\infty e^{-st}t^r\, dt = \frac{1}{s} \int_0^\infty e^{-x}\left(\frac{x}{s}\right)^r dx = \frac{\Gamma(r+1)}{s^{r+1}}.$$

Έτσι για $r = n = 1, 2, \ldots$ το τελευταίο αποτέλεσμα συμφωνεί με την (6.6) μιας και $\Gamma(n+1) = n!$.
Σημείωση 6.2. Ένα ιδιαίτερα χρήσιμο αποτέλεσμα στον υπολογισμό του μετασχηματισμού Laplace ρήτρων δυνάμεων του \(t \) είναι το \(\Gamma(1/2) = \sqrt{\pi} \). Στη συνέχεια περιγράφουμε την απόδειξη.

Το ολοκλήρωμα \(\int_{0}^{\infty} e^{-x^2} \, dx \) συγκλίνει. Πράγματι επειδή \(e^{-x^2} < e^{-x} \), για \(x > 1 \), έχουμε

\[
\int_{0}^{\infty} e^{-x^2} \, dx = \int_{0}^{1} e^{-x^2} \, dx + \int_{1}^{\infty} e^{-x^2} \, dx \leq A + \int_{1}^{\infty} e^{-x} \, dx = A + [-e^{-x}]_{1}^{\infty} = A + \frac{1}{e},
\]

όπου \(A = \int_{0}^{1} e^{-x^2} \, dx \). Κατά συνέπεια, από συμμετρία, και το ολοκλήρωμα \(\int_{-\infty}^{\infty} e^{-x^2} \, dx \) συγκλίνει. Έστω \(I = \int_{-\infty}^{\infty} e^{-x^2} \, dx \), τότε

\[
I^2 = \left(\int_{-\infty}^{\infty} e^{-x^2} \, dx \right) \left(\int_{-\infty}^{\infty} e^{-y^2} \, dy \right) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^2+y^2)} \, dx \, dy \leq \lim_{L \to \infty} \int_{-L}^{L} \int_{-L}^{L} e^{-(x^2+y^2)} \, dx \, dy
\]

κατά συνέπεια μπορούμε στο όριο αντί για τετραγωνικές περιοχές να πάρουμε κυκλικές, έτσι

\[
I^2 = \lim_{R \to \infty} \int_{0}^{2\pi} \int_{0}^{2\pi} e^{-r^2} \, r \, dr \, d\theta = 2\pi \lim_{R \to \infty} \left[\frac{1}{2} e^{-r^2} \right]_{0}^{R} = \pi \lim_{R \to \infty} \left(1 - \frac{1}{e^{R^2}} \right) = \pi.
\]

Έτσι τελικά είναι

\[
I = \int_{-\infty}^{\infty} e^{-x^2} \, dx = \sqrt{\pi}.
\]

Στη συνέχεια υπολογίζουμε

\[
\Gamma \left(\frac{1}{2} \right) = \int_{0}^{\infty} e^{-x^{1/2}} \, dx = \int_{0}^{\infty} e^{-y} \frac{1}{\sqrt{y}} \, dy \quad (y = \sqrt{x}, \, dy = \frac{1}{2\sqrt{x}} \, dx)
\]

\[
= 2 \int_{0}^{\infty} e^{-y^2} \, dy = \int_{-\infty}^{\infty} e^{-y^2} \, dy = \sqrt{\pi}.
\]

Παράδειγμα 6.7. Χρησιμοποιήστε το γεγονός ότι \(\Gamma(1/2) = \sqrt{\pi} \) για να υπολογίσετε τους μετασχηματισμούς \(\mathcal{L} \left[r^{1/2} \right] \) και \(\mathcal{L} \left[r^{5/2} \right] \).

Από τον πίνακα των μετασχηματισμών Laplace στουχειωδών συναρτήσεων έχουμε

\[
\mathcal{L} \left[\frac{1}{\sqrt{t}} \right] = \frac{\Gamma(1 - 1/2)}{s^{1/2}} = \frac{\Gamma(1/2)}{\sqrt{s}} = \frac{\sqrt{\pi}}{\sqrt{s}}.
\]

για \(s > 0 \).

Όμως έχουμε

\[
\mathcal{L} \left[r^{5/2} \right] = \frac{\Gamma(1 + 5/2)}{s^{1+5/2}}.
\]
Από την αναδρομική σχέση \(\Gamma(1 + t) = t \Gamma(t) \) παίρνουμε

\[
\Gamma(1 + 5/2) = \frac{5}{2} \Gamma(5/2) = \frac{5}{2} \Gamma(3/2) = \frac{5}{2} \Gamma(1 + 1/2) = \frac{5}{2} \frac{1}{2} \Gamma(1/2) = \frac{5 \cdot 3 \cdot 1}{2^3} \sqrt{\pi},
\]

έτσι από την (6.7) τελικά υπολογίζουμε

\[
\mathcal{L}[t^{5/2}] = \frac{\Gamma(1 + 5/2)}{s^{1+5/2}} = \frac{1 \cdot 3 \cdot 5 \sqrt{\pi}}{2^3 s^{1+5/2}}.
\]

Άσκηση 6.5. Χρησιμοποιήστε την αναδρομική σχέση \(\Gamma(1 + t) = t \Gamma(t) \) και το γεγονός ότι \(\Gamma(1/2) = \sqrt{\pi} \) για να δείξετε ότι

\[
\mathcal{L}[t^{\alpha-1/2}] = \frac{1 \cdot 3 \cdot 5 \cdots (2n - 1) \sqrt{\pi}}{2^n s^{n+1/2}}, \quad (6.8)
\]

όπου \(n = 1, 2, 3, \ldots \).

Συνοψίζουμε τα αποτελέσματα των παραδειγμάτων και των ασκήσεων αυτής της παραγράφου στον πίνακα

<table>
<thead>
<tr>
<th>Μετασχηματισμός Laplace στοιχείων συναρτήσεων</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(t))</td>
<td>(F(s) = \mathcal{L}f)</td>
</tr>
<tr>
<td>1</td>
<td>(1/s, \quad s > 0)</td>
</tr>
<tr>
<td>(e^{at})</td>
<td>(1/(s - a), \quad s > a)</td>
</tr>
<tr>
<td>(t^n, \quad n = 1, 2, \ldots)</td>
<td>(n!/s^{n+1}, \quad s > 0)</td>
</tr>
<tr>
<td>(\sin bt)</td>
<td>(b/(s^2 + b^2), \quad s > 0)</td>
</tr>
<tr>
<td>(\cos bt)</td>
<td>(s/(s^2 + b^2), \quad s > 0)</td>
</tr>
<tr>
<td>(\sinh bt)</td>
<td>(b/(s^2 - b^2), \quad s ></td>
</tr>
<tr>
<td>(\cosh bt)</td>
<td>(s/(s^2 - b^2), \quad s ></td>
</tr>
<tr>
<td>(t^r, \quad r > -1)</td>
<td>(\Gamma(r + 1)/s^{r+1}, \quad s > 0)</td>
</tr>
<tr>
<td>(t^{-\frac{1}{2}})</td>
<td>(\sqrt{\pi}/s, \quad s > 0)</td>
</tr>
<tr>
<td>(\sqrt{t})</td>
<td>(\sqrt{\pi}/(2s^{3/2}), \quad s > 0)</td>
</tr>
<tr>
<td>(t^{\alpha-1/2}, \quad n = 1, 2, \ldots)</td>
<td>(1 \cdot 3 \cdot 5 \cdots (2n - 1) \sqrt{\pi}/(2^n s^{n+1/2}), \quad s > 0)</td>
</tr>
</tbody>
</table>

Από τον πίνακα παρατηρούμε ότι \(\mathcal{L}[f](s) \rightarrow \infty \) καθώς \(s \rightarrow \infty \) για κάθε \(f \) που εμφανίζεται στον πίνακα. Αυτό το αποτέλεσμα ισχύει γενικότερα, συγκεκριμένα έχουμε το εξής

Πρόταση 6.1. Εάν \(f(t) \) είναι τιμητικά συνεχής στο \([0, \infty)\) και εκθετικά τάξες, τότε
6.3 Ιδιότητες του μετασχηματισμού Laplace

(1) Υπάρχουν σταθερές M_1 και a ώστε $|f(t)| \leq M_1 e^{at}$ για κάθε $t \geq 0$.
(2) $\lim_{t \to \infty} \mathcal{L}[f](s) = 0$.

Απόδειξη. Από την υπόθεση έχουμε ότι υπάρχουν θετικές σταθερές M και T_0, και σταθερά a ώστε να είναι $|f(t)| \leq M e^{at}$ για κάθε $t \geq T_0$.

(1) Επειδή f είναι τιμητικά συνεχής στο $[0, \infty)$ είναι φραγμένη στο $[0, T_0]$. Έστω $|f(t)| \leq M'$ για κάθε $t \in [0, T_0]$. Διακρίνουμε τις περιπτώσεις $a > 0$ και $a < 0$.

Αν $a > 0$, τότε για $M_1 = \max\{M, M'\}$ έχουμε $|f(t)| \leq M_1 e^{at}$ για κάθε $t \geq 0$, επειδή $e^{at} \geq 1$.

Για $a < 0$. Αν $M' < M e^{a T_0}$, τότε για $M_1 = M$ επειδή e^{at} είναι φθάνουσα θα είναι $|f(t)| \leq M_1 e^{at}$ για κάθε $t \geq 0$. Αν $M' \geq M e^{a T_0}$, τότε για $M_1 = M' e^{-a T_0}$ πάλι θα είναι $|f(t)| \leq M_1 e^{at}$ για κάθε $t \geq 0$.

(2) Από το πρώτο μέρος της απόδειξης έχουμε

$$|\mathcal{L}[f](s)| = \left| \int_0^\infty e^{-st} f(t) \, dt \right|$$
$$\leq \int_0^\infty e^{-st} M_1 e^{at} \, dt$$
$$\leq M_1 \int_0^\infty e^{-(s-a)t} \, dt$$
$$= \frac{M_1}{s-a}$$

για $s > a$ απ’ όπου έπεται το συμπέρασμα. □

6.3 Ιδιότητες του μετασχηματισμού Laplace

Θεώρημα 6.3. Έστω ότι ο μετασχηματισμός Laplace $\mathcal{L}[f](s) = F(s)$ υπάρχει για $s > a$, τότε

$$\mathcal{L}[e^{bt} f(t)](s) = F(s - b),$$

(6.9)

για $s > a + b$.

Απόδειξη. Από τον ορισμό του μετασχηματισμού έχουμε

$$\mathcal{L}[e^{bt} f(t)](s) = \int_0^\infty e^{-st} e^{bt} f(t) \, dt$$
$$= \int_0^\infty e^{-(s-b)t} f(t) \, dt$$
$$= F(s - b)$$

για $s - b > a$, ή $s > a + b$. □

Άσκηση 6.6. Έστω ότι ο μετασχηματισμός Laplace της $f(t)$ με $t \geq 0$ υπάρχει και έστω $\mathcal{L}[f](s) = F(s)$. Να βρεθούν οι μετασχηματισμοί Laplace των συναρτήσεων $f(at)$ και $f(t - a)$.

Θεώρημα 6.4. Έστω ότι $n f(t)$ είναι συνεχής στο $[0, \infty)$ και $n f'(t)$ είναι τιμητικά συνεχής στο $[0, \infty)$ και εικατεχνικά τάξης a. Τότε

$$\mathcal{L}[f](s) = s \mathcal{L}[f](s) - f(0),$$

(6.10)

για $s > a$.
Απόδειξη. Από τον ορισμό του μετασχηματισμού έχουμε

\[\mathcal{L}(f')(s) = \int_0^\infty e^{-st} f'(t) \, dt = \lim_{T \to \infty} \int_0^T e^{-st} f'(t) \, dt \]

\[= \lim_{T \to \infty} \left[e^{-st} f(t) \bigg|_0^T + s \int_0^T e^{-st} f(t) \, dt \right] \]

\[= \lim_{T \to \infty} e^{-st} f(T) - f(0) + s \lim_{T \to \infty} \int_0^T e^{-st} f(t) \, dt \]

\[= \lim_{T \to \infty} e^{-st} f(T) - f(0) + s \mathcal{L}(f)(s), \]

έτσι

\[|\mathcal{L}(f')(s) - (s\mathcal{L}(f)(s) - f(0))| = \lim_{T \to \infty} e^{-st} |f(T)| \]

\[\leq \lim_{T \to \infty} e^{-st} Me^{aT} \]

για \(T > T_0 \), επειδή \(f \) είναι εκθετικά τάξης \(a \)

\[\leq \lim_{T \to \infty} Me^{(s-a)T} \]

\[= 0 \]

για \(s > a \), γεγονός που αποδεικνύει την (6.10).

\[\square \]

Πρότυπο 6.1. Έστω ότι \(f(t), f'(t), \ldots, f^{(n-1)}(t) \) είναι συνεχείς στο \([0, \infty)\) και εκθετικά τάξης \(a \) και \(n \) \(f^{(n)}(t) \) είναι τμηματικά συνεχείς και εκθετικάς τάξης \(a \) στο \([0, \infty)\). Τότε

\[\mathcal{L}(f^{(n)})(s) = s^n \mathcal{L}(f)(s) - s^{n-1} f(0) - s^{n-2} f'(0) - \cdots - f^{(n-1)}(0), \]

(6.11)

για \(s > a \).

Απόδειξη. Η απόδειξη γίνεται με επαγωγή. Δείξουμε το πρώτο βίβλο \(n = 2 \) εφαρμόζοντας το Θεώρημα 6.4 στην \(f'(t) \)

\[\mathcal{L}(f'')(s) = s \mathcal{L}(f')(s) - f'(0) \]

\[= s[s \mathcal{L}(f)(s) - f(0)] - f'(0) \]

\[= s^2 \mathcal{L}(f)(s) - sf(0) - f'(0). \]

Το υπόλοιπο της απόδειξης αφίνεται σαν άσκηση.

\[\square \]

Παράδειγμα 6.8. Να βρεθεί ο μετασχηματισμός Laplace της \(f(t) = \cos at \).

Επειδή \((\cos at)' = a^{-1} \sin at \) από το Θεώρημα 6.4 έχουμε

\[\mathcal{L}(\cos at) = s \mathcal{L}\left(\frac{1}{a} \sin at\right) - \sin a0 = \frac{s}{a} \mathcal{L}(\sin at) = \frac{s}{a} \frac{a}{s^2 + a^2} = \frac{s}{s^2 + a^2} \]

για \(s > 0 \), που συμφωνεί με το αποτέλεσμα της Άσκησης 6.2.
6.3 Ιδιότητες του μετασχηματισμού Laplace

Παρατήρηση 6.1. Εάν η \(f(t) \) είναι συνεχής συνάρτηση στο \([0, \infty)\) τότε \(f_0(t) = \int_0^t f(\tau) \, d\tau \) είναι μία παράγοντα της \(f \), δηλαδή \(f_0'(t) = f(t) \), με \(f_0(0) = 0 \). Κατά συνέπεια αν ο μετασχηματισμός Laplace της \(f(t) \) υπάρχει, από το Θεώρημα 6.4 έπεται ότι

\[
\mathcal{L}\{f_0'(t)\} = s\mathcal{L}\{f_0\}(s) - f_0(0) \iff \mathcal{L}\{f(t)\}(s) = s\mathcal{L}\left\{\int_0^t f(\tau) \, d\tau\right\}(s).
\]

Έτσι έχουμε, για κατάλληλα \(s \)

\[
\mathcal{L}\left\{\int_0^t f(\tau) \, d\tau\right\}(s) = \frac{1}{s} \mathcal{L}\{f(t)\}(s). \tag{6.12}
\]

Αν η \(f \) είναι μια συνάρτηση για την οποία ο μετασχηματισμός Laplace υπάρχει, τότε \(e^{-st}f(t) \) είναι άπειροι φορές παραγωγήσιμη ως προς \(s \) και

\[
\frac{\partial^n}{\partial s^n} e^{-st}f(t) = (-1)^n t^n e^{-st}f(t), \quad n = 1, 2, \ldots
\]

Λήμμα 6.1. Έστω ότι \(f(t) \) είναι τιμητικά συνεχής στο \([0, \infty)\) και εκθετικάς τάξης \(a \) και \(\text{έστω} \ F(s) = \mathcal{L}\{f\}(s) \). Τότε \(F(s) \) είναι παραγωγήσιμη και

\[
F'(s) = -\int_0^\infty e^{-st}tf(t) \, dt = \int_0^\infty \frac{\partial}{\partial s} e^{-st}f(t) \, dt.
\]

για \(s > a \).

Απόδειξη. Από τον ορισμό του μετασχηματισμού και για \(h \) μικρό \(έχουμε \)

\[
\frac{F(s + h) - F(s)}{h} - \int_0^\infty e^{-st}tf(t) \, dt = \int_0^\infty \left(\frac{e^{-(s+h)t} - e^{-st}}{h} + e^{-st}t \right)f(t) \, dt
\]

\[
= \int_0^\infty \left(e^{-ht} - \frac{1}{h} + t \right)e^{-st}f(t) \, dt.
\]

Από το Θεώρημα του Taylor για την \(g(h) = e^{-ht} \) \(έπεται ότι \)

\[
e^{-ht} - 1 = -th + \frac{t^2}{2} e^{-ht} - h^2
\]

για κάποιο \(\delta \) μεταξύ 0 και \(h \), και για κάθε \(t \). Έτσι

\[
\frac{F(s + h) - F(s)}{h} - \int_0^\infty e^{-st}tf(t) \, dt = \frac{h}{2} \int_0^\infty e^{-(s+\delta)t}f(t) \, dt.
\]

Επειδή \(f \) είναι εκθετικάς τάξης το ολοκλήρωμα στο δεξί μέλος συγκλίνει (βλέπε Παράδειγμα 6.3 και Άσκηση 6.1), κατά συνέπεια το όριο στο δεξί μέλος καθώς \(h \to 0 \) είναι \(0 \). Άρα και το όριο στο αριστερό μέλος υπάρχει και είναι ίσο με 0, και από το αποτέλεσμα αυτό \(έπεται \) το συμπέρασμα.

Θεώρημα 6.5. Έστω ότι \(f(t) \) είναι τιμητικά συνεχής στο \([0, \infty)\) και εκθετικάς τάξης \(a \) και \(\text{έστω} \ F(s) = \mathcal{L}\{f\}(s) \). Τότε

\[
\mathcal{L}\{t^n f(t)\}(s) = (-1)^n \frac{d^n}{ds^n} F(s), \quad n = 1, 2, \ldots
\]

για \(s > a \).
Απόδειξη. Δίνουμε την απόδειξη με επαγωγή. Η περίπτωση \(n = 1 \) είναι το Λήμμα 6.1, αφού

\[
\frac{dF}{ds}(s) = \int_0^\infty \frac{\partial}{\partial s} e^{-st}f(t) \, dt \\
= \int_0^\infty e^{-st}(-t)f(t) \, dt \\
= -L(tf(t)).
\]

Υποθέτοντας ότι \(L[t^n f(t)](s) = (-1)^n F^{(n)}(s) \) υπολογίζουμε

\[
F^{(n+1)}(s) = \frac{d}{ds} F^{(n)}(s) = (-1)^n \frac{d}{ds} \int_0^\infty e^{-st}t^n f(t) \, dt \\
= (-1)^n \int_0^\infty \frac{\partial}{\partial s} e^{-st}t^n f(t) \, dt \\
= (-1)^n \int_0^\infty e^{-st}t^n f(t) \, dt \\
= (-1)^n \int_0^\infty e^{-st}t^n f(t) \, dt
\]

Η απόδειξη είναι πλήρης.

Στον πίνακα που ακολουθεί συνοψίζονται κάποιες από τις ιδιότητες του μετασχηματισμού Laplace

<table>
<thead>
<tr>
<th>Ιδιότητες του Μετασχηματισμού Laplace</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(t))</td>
<td>(F(s) = L(f)(s))</td>
</tr>
<tr>
<td>(e^{at}f(t))</td>
<td>(F(s-a))</td>
</tr>
<tr>
<td>(f(at))</td>
<td>((1/a)F(s/a))</td>
</tr>
<tr>
<td>(f'(t))</td>
<td>(sF(s) - f(0))</td>
</tr>
<tr>
<td>(f''(t))</td>
<td>(s^2F(s) - sf(0) - f'(0))</td>
</tr>
<tr>
<td>(\int_0^t f(\tau) , d\tau)</td>
<td>((1/s)F(s))</td>
</tr>
<tr>
<td>(t^n f(t))</td>
<td>((-1)^n F^{(n)}(s), \quad n = 1, 2, \ldots)</td>
</tr>
</tbody>
</table>

Ασκήση 6.7. Εάν \(Y = L[y](s) \) να δειχθεί ότι

1. \(L[ty'(t)](s) = -sy''(s) - Y(s) \)
2. \(L[t^2y'(t)](s) = s^2Y''(s) + 2Y'(s) \).
3. \(L[t^3y''(t)](s) = s^3Y''(s) + 4Y'(s) + 2Y(s) \).

6.4 Επίλυση προβλημάτων αρχικών τιμών

Από τις ιδιότητες του μετασχηματισμού Laplace που έχουμε δεί μέχρι τώρα φαίνεται ότι ο μετασχηματισμός είναι ιδανικό εργαλείο επίλυσης προβλημάτων αρχικών τιμών συγκεκριμένου τύπου. Ας δούμε μερικά παραδείγματα.
Παράδειγμα 6.9. Να λυθεί το πρόβλημα αρχικών τιμών

\[y'' - 2y' + 5y = 0, \quad y(0) = 2, \quad y'(0) = 12. \]

Εφαρμόζοντας τον μετασχηματισμό Laplace στα δύο μέλη της εξίσωσης παίρνουμε

\[
\mathcal{L}\{y'' - 2y' + 5y\} = \mathcal{L}\{0\} \\
\mathcal{L}\{y''\} - 2\mathcal{L}\{y'\} + 5\mathcal{L}\{y\} = 0.
\]

Θέτοντας \(Y = \mathcal{L}\{y\} \) από τις ιδιότητες του μετασχηματισμού για παραγώγους έχουμε

\[
\begin{align*}
 s^2Y - sy(0) - y'(0) - 2(sY - y(0)) + 5Y &= 0 \\
 s^2Y - 2s - 12 - 2(sY - 2) + 5Y &= 0 \\
 (s^2 - 2s + 5)Y &= 2s + 8
\end{align*}
\]

κατά συνέπεια

\[
Y = \frac{2s + 8}{s^2 - 2s + 5} = \frac{2(s - 1) + 10}{(s - 1)^2 + 2^2} = \frac{2(s - 1)}{(s - 1)^2 + 2^2} + \frac{5}{(s - 1)^2 + 2^2},
\]

επομένως

\[
y = \mathcal{L}^{-1}\{Y\} = 2\mathcal{L}^{-1}\left\{\frac{(s - 1)}{(s - 1)^2 + 2^2}\right\} + 5\mathcal{L}^{-1}\left\{\frac{2}{(s - 1)^2 + 2^2}\right\},
\]

ή τελικά

\[
y = 2e^t \cos 2t + 5e^t \sin 2t
\]

που είναι λύση του προβλήματος αρχικών τιμών.

Παράδειγμα 6.10. Να λυθεί το πρόβλημα αρχικών τιμών

\[y'' + 4y' - 5y = te^t, \quad y(0) = 1, \quad y'(0) = 0. \]

Εφαρμόζοντας τον μετασχηματισμό Laplace στα δύο μέλη της εξίσωσης παίρνουμε

\[
\begin{align*}
 \mathcal{L}\{y'' + 4y' - 5y\} = \mathcal{L}\{te^t\} \\
 \mathcal{L}\{y''\} + 4\mathcal{L}\{y'\} - 5\mathcal{L}\{y\} &= \frac{1}{(s - 1)^2}.
\end{align*}
\]
Θέτοντας \(Y = \mathcal{L}[y] \) από τις ιδιότητες του μετασχηματισμού για παραγώγους έχουμε

\[
s^2 Y - s y(0) - y'(0) + 4(sY - y(0)) - 5Y = \frac{1}{(s-1)^2}
\]

\[
s^2 Y - 4(sY - 1) - 5Y = \frac{1}{(s-1)^2}
\]

\[(s^2 + 4s - 5)Y = s + 4 + \frac{1}{(s-1)^2}\]

\[(s + 5)(s - 1)Y = \frac{s^3 + 2s^2 - 7s + 5}{(s-1)^2}\]

κατά συνέπεια

\[
Y = \frac{s^3 + 2s^2 - 7s + 5}{(s+5)(s-1)^3}.
\]

Αναλύοντας σε απλά κλάσματα έχουμε

\[
\frac{s^3 + 2s^2 - 7s + 5}{(s+5)(s-1)^3} = \frac{A}{s+5} + \frac{B}{s-1} + \frac{C}{(s-1)^3} + \frac{D}{(s-1)^5}
\]

απ’ όπου επιλύοντας βρίσκουμε \(A = 35/216, B = 181/216, C = -1/36, \) και \(D = 1/6, \) έτσι

\[
y = \frac{35}{216} \mathcal{L}^{-1}\left\{ \frac{1}{s+5} \right\} + \frac{181}{216} \mathcal{L}^{-1}\left\{ \frac{1}{s-1} \right\} - \frac{1}{36} \mathcal{L}^{-1}\left\{ \frac{1}{(s-1)^2} \right\} + \frac{1}{12} \mathcal{L}^{-1}\left\{ \frac{2}{(s-1)^3} \right\}
\]

\[
= \frac{35}{216} e^{-5t} + \frac{181}{216} e^t - \frac{1}{36} te^t + \frac{1}{12} t^2 e^t
\]

που είναι λύση του προβλήματος αρχικών τιμών.

Παράδειγμα 6.11. Να λυθεί το πρόβλημα αρχικών τιμών

\[
y'' + 2ty' - 4y = 1, \quad y(0) = 0, \quad y'(0) = 0.
\]

Παρατηρούμε ότι η εξίσωση δεν είναι σταθερών συντελεστών. Εφαρμόζοντας τον μετασχηματισμό Laplace στα δύο μέλη της εξίσωσης και θέτοντας \(Y = \mathcal{L}[y] \) παίρνουμε

\[
\mathcal{L}[y'' + 2ty' - 4y] = \mathcal{L}[1]
\]

\[
\mathcal{L}[y''] + 2s\mathcal{L}[ty'] - 4\mathcal{L}[y] = \frac{1}{s}
\]

\[
s^2Y + 2s\mathcal{L}[ty'] - 4Y = \frac{1}{s}.
\]

Επειδή

\[
\mathcal{L}[ty'](s) = -\frac{d}{ds}\mathcal{L}[y'] - \frac{d}{ds}[sY - y(0)] = -sY' - Y
\]
6.4 Επίλυση προβλημάτων αρχικών τιμών

αντικαθιστώντας στην εξίσωση έχουμε

\[s^2 Y + 2[-sY' - Y] - 4Y = \frac{1}{s} \]

\[-2sY' + (s^2 - 6)Y = \frac{1}{s} \]

\[Y' + \left(\frac{3 - s}{2} \right) Y = \frac{-1}{2s^2}. \]

Η τελευταία εξίσωση είναι γραμμική πρώτης τάξης. Βρίσκοντας έναν ολοκληρωτικό παράγοντα

\[\mu(s) = e^{\int(3/s-s/2)ds} = e^{3\ln s-s^2/4} = e^{\ln s^3}e^{-s^2/4} = s^3e^{-s^2/4} \]

και πολλαπλασιάζοντας την εξίσωση παίρνουμε διαδοχικά

\[\frac{d}{ds}\left(s^3e^{-s^2/4} Y\right) = s^3e^{-s^2/4} - \frac{1}{2s^2} \]

\[s^3e^{-s^2/4} Y = -\int \frac{s}{2} e^{-s^2/4} ds \]

\[Y = \frac{1}{s^3} e^{s^2/4}(e^{-s^2/4} + C), \]

όπου Κ μία αυθαίρετη σταθερά, όρα

\[Y(s) = \frac{1}{s^3} + \frac{C}{s^3}e^{s^2/4}. \]

Η συνάρτηση \(Y \) είναι ο μετασχηματισμός Laplace της λύσης της αρχικής εξίσωσης, κατά συνέπεια θα πρέπει, υπό το πρόσημο της Πρότασης 6.1, να τείνει στο μινδέν καθώς \(s \to \infty \). Έτσι θα πρέπει να είναι \(C = 0 \) μας και \(e^{s^2/4}/s^3 \to \infty \) καθώς \(s \to \infty \). Έτσι τελικά \(Y(s) = 1/s^3 \), οπότε \(y(t) = \mathcal{L}^{-1}Y(t) = t^2/2 \).

Ο μετασχηματισμός Laplace της \(y^{(n)} \) ισούται με \(s^n \mathcal{L}[y] \) μείον ένα πολυώνυμο τάξης \(n - 1 \) με συντελεστές τις τιμές \(y(0), y'(0), \ldots, y^{(n-2)}(0), y^{(n-1)}(0) \), κατά συνέπεια οι αρχικές συνθήκες πρέπει να προσδιορίζονται στο \(0 \). Στο παράδειγμα που ακολουθεί διεξώνουμε τι μπορούμε να κάνουμε σε διαφορετικά περίπτωση.

Παράδειγμα 6.12. Να λυθεί το πρόβλημα αρχικών τιμών

\[y'' - 2y' + 5y = e^{-t}, \quad y(\pi) = 2, \quad y'(\pi) = 12. \]

Ορίζουμε \(z(t) = y(t + \pi) \), έτσι \(z(0) = y(\pi) \). Από την εξίσωση έχουμε

\[y''(t + \pi) - 2y'(t + \pi) + 5y(t + \pi) = e^{-(t+\pi)}, \]

απ' όπου προκύπτει ότι

\[z'' - 2z' + 5z = e^{-\pi}e^{-t}, \quad z(0) = 2, \quad z'(0) = 12. \]
Το ομοιογενές τμήμα της εξίσωσης μαζί με τις αρχικές συνθήκες αποτελούν το πρόβλημα του Παραδείγματος 6.9. Θέτουμε $Z = \mathcal{L}(z)$ και εφαρμόζοντας τον μετασχηματισμό Laplace στα δύο μέλη της εξίσωσης παίρνουμε χρησιμοποιώντας τους υπολογισμούς του Παραδείγματος 6.9

$$\mathcal{L}(z'' - 2z' + 5z) = \mathcal{L}(e^{-\pi} e^{-t})$$
$$\mathcal{L}(z'') - 2\mathcal{L}(z') + 5\mathcal{L}(z) = \frac{e^{-\pi}}{s+1}$$
$$(s^2 - 2s + 5)Z = 2s + 8 + \frac{e^{-\pi}}{s+1},$$
κατά συνέπεια

$$Z = \frac{(2s + 8)(s + 1) + e^{-\pi}}{(s^2 - 2s + 5)(s + 1)} = \frac{2s^2 + 10s + 8 + e^{-\pi}}{[(s-1)^2 + 2^2](s + 1)}.$$

Αναλύοντας σε απλά κλάσματα έχουμε (γιατί:)

$$\frac{2s^2 + 10s + 8 + e^{-\pi}}{[(s-1)^2 + 2^2](s + 1)} = \frac{A(s-1) + B}{(s-1)^2 + 2^2} + \frac{C}{s + 1}.$$

Επιλύοντας βρίσκουμε $A = 2 - e^{-\pi}/8$, $B = 10 + e^{-\pi}/4$ και $C = e^{-\pi}/8$, επομένως

$$z = A\mathcal{L}^{-1}\left\{\frac{(s-1)}{(s-1)^2 + 2^2}\right\} + \frac{B}{2}\mathcal{L}^{-1}\left\{\frac{2}{(s-1)^2 + 2^2}\right\} + C\mathcal{L}^{-1}\left\{\frac{1}{s + 1}\right\},$$

ώς

$$z = Ae^t \cos 2t + \frac{B}{2}e^t \sin 2t + Ce^{-t}.$$

Επειδή $y(t) = z(t - \pi)$ η λύση y του αρχικού προβλήματος είναι

$$y = Ae^{(t-\pi)} \cos 2(t - \pi) + \frac{B}{2}e^{(t-\pi)} \sin 2(t - \pi) + Ce^{-(t-\pi)}$$
$$= Ae^{-\pi} e^t \cos 2t + \frac{Be^{-\pi}}{2}e^t \sin 2t + Ce^{-t}$$
$$= e^{-\pi} \left(2 - \frac{e^{-\pi}}{8}\right) e^t \cos 2t + e^{-\pi} \left(5 + \frac{e^{-\pi}}{8}\right)e^t \sin 2t + \frac{1}{8} e^{-t}.$$

όπως, σχετικά εύκολα, μπορεί να επαληθευτεί.

6.5 Η συνέλιξη Laplace

Ας προσπαθήσουμε να λύσουμε το πρόβλημα αρχικών τιμών

$$y'' + y = g(t), \quad y(0) = 0, \quad y'(0) = 0$$ (6.14)
6.4 Η συνέλιξη Laplace

με μετασχηματισμό Laplace. Θέτοντας $Y = \mathcal{L}[y]$ και $G = \mathcal{L}[g]$, έχουμε

$$s^2 Y(s) - s0 - 0 + Y(s) = G(s) \Rightarrow Y(s) = \frac{1}{s^2 + 1} G(s).$$

Προέκυψε λοιπόν ότι

$$\mathcal{L}[y] = \mathcal{L}[\sin t] \mathcal{L}[g(t)]$$

και έτσι θα είναι

$$y = \mathcal{L}^{-1}\left[\mathcal{L}[\sin t] \mathcal{L}[g(t)]\right] . \quad (6.15)$$

Ο αντίστροφος μετασχηματισμός Laplace είναι γραμμικός κατά συνέπεια δεν περιμένουμε να υ- σχύει, και δεν ισχύει, ότι $\mathcal{L}^{-1}\{\mathcal{L}[\sin t] \mathcal{L}[g(t)]\} = (\sin t)g(t)$. Δημιουργείται λοιπόν, γενικότερα, το ερώτημα με τι ισούται ο αντίστροφος μετασχηματισμός του γινομένου δύο μετασχηματισμών Laplace. Αποδεικνύουμε ένα γενικό αποτέλεσμα σύμφωνα με το οποίο

$$\mathcal{L}^{-1}\{\mathcal{L}[\sin t] \mathcal{L}[g(t)]\} = \int_0^t \sin(t - x)g(x) \, dx . \quad (6.16)$$

Ορισμός 6.4. Αν f και g είναι δύο τιμητικά συνεχείς συναρτήσεις οριζόμενες στο $[0, \infty)$ ορίζουμε την συνέλιξ $f * g$ των f και g με τη σχέση

$$(f * g)(t) := \int_0^t f(t - x)g(x) \, dx . \quad (6.17)$$

Ας υπολογίσουμε για παράδειγμα τη συνέλιξ των t και 1

$$t * 1 = \int_0^t (t - x)1 \, dx = \left[tx - \frac{x^2}{2}\right]_0^t = t^2 - \frac{t^2}{2} = \frac{t^2}{2}$$

και των 1 και 1

$$1 * 1 = \int_0^1 (1)(1) \, dx = x\bigg|_0^1 = t .$$

Θεώρημα 6.6 (Ιδιότητες της συνέλιξης). Αν f, g, και h είναι τιμητικά συνεχείς συναρτήσεις οριζόμενες στο $[0, \infty)$, τότε

1. $f * g = g * f$.
2. $f * (g * h) = (f * g) * h$.
3. $f * (g + h) = (f * g) + (f * h)$.
4. $f * 0 = 0$.

Απόδειξη. Έστω $t \geq 0$. Για την απόδειξη της (1) από τον ορισμό της συνέλιξης έχουμε

$$(f * g)(t) = \int_0^t f(t - x)g(x) \, dx$$

$$= -\int_0^t f(y)g(t - y) \, dy \quad (y = t - x \quad dy = -dx)$$

$$= \int_0^t g(t - y)f(y) \, dy$$

$$= (g * f)(t).$$
Για την απόδειξη της (2) από τον ορισμό της συνέλεξης έχουμε

\[
(f * (g * h))(t) = \int_0^t f(t - x)(g * h)(x) \, dx
\]

\[
= \int_0^t \left[\int_0^x g(x - y)h(y) \, dy \right] dx
\]

\[
= \int_0^t \int_0^x f(t - x)g(x - y)h(y) \, dy \, dx
\]

tο χωρίο ολοκλήρωσης στο \(x\)-επίπεδο είναι το τρίγωνο με κορυφές τα σημεία \((0, 0), (t, 0)\) και \((t, t)\) κατά συνέπεια αλλάζοντας τη σειρά ολοκλήρωσης έχουμε

\[
= \int_0^t \int_0^x f(t - x)g(x - y)h(y) \, dy \, dx
\]

\[
= \int_0^t \int_0^{t-x} f(t - x)(g - z)h(y) \, dy \, dz
\]

\[z = x - y \quad dz = dx\]

\[
= \int_0^t (f * g)(t)h(y) \, dy
\]

\[
= ((f * g) * h)(t).
\]

Η (3) είναι άμεση συνέπεια της γραμμικότητας του ολοκληρώματος αφού

\[
(f * (g + h))(t) = \int_0^t f(t - x)(g(x) + h(t)) \, dx.
\]

Η (4) είναι προφανής αφού \(f(t - x)0 = 0\) για κάθε \(x \in [0, t]\). \(\square\)

Λήμμα 6.2. Αν \(f\) και \(g\) είναι τιμητικά συννεφείς συναρτήσεις συναρτήσεων ορισμένες στο \([0, \infty)\) και εκθετικής τάξης, τότε \(n\) συνέλεξη \(f * g\) είναι συνεχής συναρτήσεων και εκθετικής τάξης.

Απόδειξη. Από την υπόθεση και την Πρόταση 6.1 έπεται ότι υπάρχει θετική σταθερά \(M\), και \(a\) όπως \(|f(t)| \leq Me^{at}\) και \(|g(t)| \leq Me^{at}\) για κάθε \(t \geq 0\). Έστω \(t > 0\) και \(\epsilon > 0\). Δείχνουμε ότι \(n\) \(f * g\) είναι συνεχής στο \(t\). Θέτουμε \(m_f = \max(|f(x)| : t - \epsilon \leq x \leq t + \epsilon)\) και \(m_g = \max(|g(x)| : t - \epsilon \leq x \leq t + \epsilon)\). Αν \(m_t = \max(m_f, m_g, 1)\), και \(\delta < \epsilon/m_t^2\) για \(|s - t| < \delta\) έχουμε

\[
|(f * g)(t) - (f * g)(s)| = \left| \int_s^t f(t - x)g(x) \, dx - \int_0^t f(t - x)g(x) \, dx \right|
\]

\[
= \left| \int_s^t f(t - x)g(x) \, dx \right|
\]

\[
\leq m_f m_g |t - s|
\]

\[
\leq m_t^2 \delta
\]

\[
< \epsilon.
\]
6.4 Η συνέλιξη Laplace

Στη συνέχεια δείχνουμε ότι τα f * g είναι εικθετικά τάξης. Για t > 0 έχουμε

\[|(f * g)(t)| = \left| \int_0^t f(t - x)g(x) \, dx \right| \]
\[\leq \int_0^t |f(t - x)g(x)| \, dx \]
\[\leq \int_0^t Me^{\alpha(t-x)} Me^{\beta x} \, dx \]
\[\leq M^2 t e^{\alpha t} \]
\[\leq M^2 e^{(\alpha + \epsilon) t}, \]

όπου \(\epsilon > 0 \), γεγονός που αποδεικνύει ότι η συνάρτηση είναι εικθετική τάξης.

Θεώρημα 6.7 (της συνέλιξης). Αν f και g είναι τιμητικά συνεχείς συναρτήσεις ορισμένες στο \([0, \infty)\) και εικθετικές τάξης \(a\), και \(F(s) = \mathcal{L}\{f\}(s)\) και \(G(s) = \mathcal{L}\{g\}(s)\), τότε

\[\mathcal{L}\{f * g\}(s) = \mathcal{L}\{f\}(s) \mathcal{L}\{g\}(s) \] \hspace{1cm} (6.18)

ή εισοδύναμα

\[\mathcal{L}^{-1}\{FG\}(t) = (f * g)(t). \] \hspace{1cm} (6.19)

Απόδειξη. Αποδεικνύουμε την (6.18). Για \(s > a \) έχουμε

\[\mathcal{L}\{f * g\}(s) = \int_0^\infty e^{-st} \left[\int_0^t f(t - x)g(x) \, dx \right] \, dt \]
\[= \int_0^\infty \int_0^t e^{-st} f(t - x)g(x) \, dx \, dt \]

το χωρό ολοκλήρωσης στο \(xt \)-πεδίο περιγράφεται από τις σχέσεις \(0 \leq t < \infty \) και \(0 \leq x < t \) κατά συνέπεια αλλάζοντας τη σειρά ολοκλήρωσης έχουμε

\[= \int_0^\infty \int_x^\infty e^{-sy} f(t - x)g(x) \, dy \, dx \]
\[= \int_0^\infty \int_0^\infty e^{-sy} f(y + x) \, dy \, g(x) \, dx \]
\[= \int_0^\infty \int_0^\infty e^{-sy} f(y) \, dy \, e^{-sx} g(x) \, dx \]
\[= \int_0^\infty e^{-sy} f(y) \, dy \int_0^\infty e^{-sx} g(x) \, dx \]
\[= \mathcal{L}\{f\}(s) \mathcal{L}\{g\}(s). \]

\[\square \]

Σημειώνουμε ότι τη (6.19) μπορεί να γραφεί σαν

\[\mathcal{L}^{-1}\{\mathcal{L}\{f\}\mathcal{L}\{g\}\}(t) = (f * g)(t). \] \hspace{1cm} (6.20)
Παράδειγμα 6.13. Να βρεθεί η λύση του προβλήματος αρχικών τιμών

\[y'' - y = g(t), \quad y(0) = 1, \quad y'(0) = 1. \]

Αν \(Y = \mathcal{L}[y](s) \) και \(G(s) = \mathcal{L}[g](s) \), εφαρμόζοντας τον μετασχηματισμό Laplace στα δύο μέλη της εξίσωσης παίρνουμε μετά από πράξεις

\[s^2 Y - s - 1 - Y = G(s), \]

απ’ όπου λύνοντας ως προς \(Y \) βρίσκουμε

\[Y = \frac{s + 1}{s^2 - 1} + \left(\frac{1}{s^2 - 1} \right) G(s) = \frac{1}{s - 1} + \left(\frac{1}{s^2 - 1} \right) G(s), \]

επομένως

\[y = \mathcal{L}^{-1}\left\{ \frac{1}{s - 1} \right\}(t) + \mathcal{L}^{-1}\left\{ \frac{1}{s^2 - 1} G(s) \right\}(t) = e^t + \sinh t * g(t) \]

αναγνωρίζοντας ότι \(\mathcal{L}^{-1}\left\{ 1/(s^2 - 1) \right\}(t) = \sinh t \). Έτσι η λύση του προβλήματος αρχικών τιμών είναι

\[y = e^t + \int_0^t \sinh(t - x)g(x) \, dx. \]

Παράδειγμα 6.14. Να υπολογισθεί ο αντίστροφος μετασχηματισμός

\[\mathcal{L}^{-1}\left\{ \frac{1}{(s-a)(s-b)} \right\}(t). \]

Το παράδειγμα αυτό γενικεύει το αποτέλεσμα του Παράδειγματος 6.13 αφού

\[\mathcal{L}^{-1}\left\{ \frac{1}{s^2 - 1} \right\}(t) = \mathcal{L}^{-1}\left\{ \left(\frac{1}{s - 1} \right) \left(\frac{1}{s+1} \right) \right\}(t). \]
6.4 Η συνέλιξη Laplace

Για τον υπολογισμό θα μπορούσαμε να αναλύσουμε σε απλά κλάσματα, όπως στην υποσημείωση του Παραδείγματος 6.13. Εφαρμόζουμε όμως το θεώρημα της συνέλιξης. Έτσι

\[
\mathcal{L}^{-1}\left\{ \frac{1}{(s-a)(s-b)} \right\}(t) = \mathcal{L}^{-1}\left\{ \left(\frac{1}{s-a} \right) \left(\frac{1}{s-b} \right) \right\}(t) = e^{at} * e^{bt} \\
= \int_0^t e^{a(t-x)} e^{b x} \, dx = e^{at} \int_0^t e^{(b-a)x} \, dx.
\]

Αν \(a = b \), τότε

\[
\mathcal{L}^{-1}\left\{ \frac{1}{(s-a)^2} \right\}(t) = te^{at}.
\]

Αν \(a \neq b \), τότε

\[
\mathcal{L}^{-1}\left\{ \frac{1}{(s-a)(s-b)} \right\}(t) = \frac{e^{at}}{b-a} [e^{(b-a)t} - 1] = \frac{e^{bt} - e^{at}}{b-a}.
\]

Παράδειγμα 6.15. Να υπολογισθεί ο αντίστροφος μετασχηματισμός

\[
\mathcal{L}^{-1}\left\{ \left(\frac{1}{s^2+1} \right)^2 \right\}(t).
\]

Επειδή \(\mathcal{L}\{\sin t\}(s) = 1/(s^2 + 1) \) θα έχουμε

\[
\mathcal{L}^{-1}\left\{ \left(\frac{1}{s^2+1} \right)^2 \right\}(t) = \mathcal{L}^{-1}\left\{ \left(\frac{1}{s^2+1} \right) \left(\frac{1}{s^2+1} \right) \right\}(t) = \sin t * \sin t,
\]

έτσι υπολογίζουμε

\[
\mathcal{L}^{-1}\left\{ \left(\frac{1}{s^2+1} \right)^2 \right\}(t) = \int_0^t \sin(t-x) \sin x \, dx = \int_0^t \frac{1}{2} \left(\cos(t-2x) - \cos t \right) \, dx \\
= \frac{1}{2} \left[\frac{-\sin(t-2x)}{2} - x \cos t \right]_0^t = \frac{1}{2} \left(\frac{\sin t}{2} + \frac{\sin t}{2} - t \cos t \right) \\
= \frac{1}{2} \sin(t-t \cos t).
\]

Μία εξίσωση στην οποία η άνωτάτη συνάρτηση εμφανίζεται μέσα σε ολοκλήρωμα λέγεται ολοκληρωτική εξίσωση. Αν το ολοκλήρωμα είναι συνελκτικού τύπου, τότε ο μετασχηματισμός Laplace μετατρέπει την ολοκληρωτική εξίσωση σε αλγεβρική.

Παράδειγμα 6.16. Να λυθεί η ολοκληρωτική εξίσωση

\[
y(t) = at + \int_0^t y(t-x) \sin x \, dx.
\]
Γράφοντας

\[y(t) = at + y(t) \cdot \sin t \]

και εφαρμόζοντας τον μετασχηματισμό Laplace στα δύο μέλη της εξίσωσης παίρνουμε

\[Y(s) = \frac{a}{s^2} + Y(s)\frac{1}{s^2 + 1} \Rightarrow \left(1 - \frac{1}{s^2 + 1}\right)Y(s) = \frac{a}{s} \]

άρα

\[Y(s) = \frac{a(s^2 + 1)}{s^4} = \frac{a}{s^2} + \frac{a}{s^4} \]

κατά συνέπεια

\[y = at + \frac{a}{6} t^3. \]

Παράδειγμα 6.17. Να λυθεί η ολοκληρωτικό-διαφορική εξίσωση

\[y'(t) = 1 - \int_0^t y(t - x)e^{-2x} \, dx, \quad y(0) = 1. \]

Η εξίσωση γράφεται στην αναγνώρισιμη μορφή

\[y'(t) = 1 - y(t) \cdot e^{-2t} \]

κατά συνέπεια από το Θεώρημα της συνέλεξης εφαρμόζοντας τον μετασχηματισμό Laplace παίρνουμε

\[sY(s) - 1 = \frac{1}{s} - Y(s)\frac{1}{s + 2} \]

όπου \(Y = \mathcal{L}(y) \). Λύνοντας ως προς \(Y \) βρίσκουμε

\[sY(s) + \frac{1}{s + 2} Y(s) = 1 + \frac{1}{s} \Rightarrow \frac{s^2 + 2s + 1}{s + 2} Y(s) = \frac{s + 1}{s}, \]

άρα

\[Y(s) = \frac{(s + 1)(s + 2)}{s(s + 1)^2} = \frac{s + 2}{s(s + 1)} = \frac{2}{s} - \frac{1}{s + 1}, \]

οπότε η λύση της εξίσωσης είναι

\[y = 2 - e^{-t}. \]

Ασκηση 6.8. Θεωρούμε το πρόβλημα αρχικών τιμών

\[ay'' + by' + cy = g(t), \quad y(0) = y_0, \quad y'(0) = y_1 \quad (6.21) \]
6.4 Επίλυση γραμμικών συστημάτων

όπου $a \neq 0$, b, c είναι σταθερές και $g(t)$ μία συνάρτηση συνεχής σε κάποιο διάστημα γύρω από το 0. Τότε η μοναδική λύση του (6.21) δίνεται από τη σχέση

$$y(t) = (h * g)(t) + y_q(t), \quad (6.22)$$

όπου $h(t)$ είναι η μοναδική λύση του προβλήματος

$$ah'' + bh' + ch = 0, \quad h(0) = 0, \quad h'(0) = 1/a \quad (6.23)$$

και $y_q(t)$ είναι η μοναδική λύση του προβλήματος

$$ay'' + by' + cy = 0, \quad y_q(0) = y_0, \quad y_q'(0) = y_1. \quad (6.24)$$

6.6 Επίλυση γραμμικών συστημάτων

Όπως έχουμε δεί ένα γραμμικό πρόβλημα αρχικών τιμών μετατρέπεται μέσω του μετασχηματισμού Laplace σε μία αλγεβρική εξίσωση. Το ίδιο συμβαίνει και στην περίπτωση γραμμικών συστημάτων. Ας δούμε λοιπόν, μέσω παραδειγμάτων, πως μπορούν να επιλυθούν τέτοια συστήματα.

Παράδειγμα 6.18

Να λυθεί το σύστημα

\[
\begin{align*}
 y'_1 - 2y_1 + y_2 &= 4, & y_1(0) &= 0 \\
 y'_2 - y_2 + 2y_1 &= 0, & y_2(0) &= 1.
\end{align*}
\]

Εφαρμόζοντας τον μετασχηματισμό Laplace σε κάθε εξίσωση του συστήματος παίρνουμε

\[
L(y'_1) - 2L(y_1) + L(y_2) = 4L(1), \\
L(y'_2) - L(y_2) + 2L(y_1) = 0.
\]

Θέτοντας στη συνέχεια $Y_1 = L(y_1)$ και $Y_2 = L(y_2)$ από τις αρχικές συνθήκες έχουμε

\[
\begin{align*}
 sY_1 - 2Y_1 + Y_2 &= 4 \quad \Leftrightarrow \quad \begin{cases}
 sY_1 + sY_2 &= 4s + 1 \\
 2Y_1 + (s-1)Y_2 &= 1
\end{cases} \quad \Leftrightarrow \quad \begin{cases}
 Y_1 &= 1 - \frac{4}{s} - \frac{1}{s^2} - Y_2 \\
 (s-3)Y_2 &= 1 - \frac{2}{s} - \frac{8}{s^2}
\end{cases}
\end{align*}
\]

Έτσι βρίσκουμε

\[
Y_2 = \frac{s^2 - 2s - 8}{s(s-3)} = \frac{A}{s} + \frac{B}{s^2} + \frac{C}{s-3}.
\]

Εξισώνοντας

\[
s^2 - 2s - 8 = As(s-3) + B(s-3) + Cs^2 \\
= (A + C)s^2 + (B - 3A)s - 3B
\]

\[
Y_2 = \frac{A}{s} + \frac{B}{s^2} + \frac{C}{s-3}.
\]
βρίσκουμε ότι $A = 14/9$, $B = 8/3$ και $C = -5/9$. Έτσι θα είναι

$$Y_2 = \frac{141}{9s} + \frac{81}{3s^2} - \frac{5}{9} + \frac{1}{s - 3}$$
και

$$Y_1 = -\frac{51}{9s} + \frac{41}{3s^2} + \frac{5}{9} - \frac{1}{s - 3}. $$

Έτσι παίρνοντας τον αντίστροφο μετασχηματισμό από τον πίνακα βρίσκουμε ότι η λύση του συστήματος είναι

$$y_1 = -\frac{5}{9} + \frac{4}{3} t + \frac{5}{9} e^{3t}, \quad y_2 = \frac{14}{9} + \frac{8}{3} t - \frac{5}{9} e^{3t}. $$

Παράδειγμα 6.19. Να λυθεί το σύστημα

$$y''_1 + y''_2 = 2, \quad y_1(0) = 3, \quad y'_1(0) = 0$$
$$4y_1 + y''_2 = 6, \quad y_2(0) = 4. $$

Παρατηρούμε ότι οι ζητούμενες συναρτήσεις καινοποιούν αρχικές συνθήκες σε διαφορετικά σημεία, κατά συνέπεια δεν μπορεί να ακολουθήσει η τεχνική που εφαρμόστηκε στο Παράδειγμα 6.12. Θεωρήστε λοιπόν το σύστημα

$$y''_1 + y''_2 = 2, \quad y_1(0) = 3, \quad y'_1(0) = 0$$
$$4y_1 + y''_2 = 6, \quad y_2(0) = a$$

και στο τέλος υπολογίζουμε το a ώστε να είναι $y_2(1) = 4$. Παίρνοντας τον μετασχηματισμό Laplace και θέτοντας $Y_1 = \mathcal{L}[y_1]$ και $Y_2 = \mathcal{L}[y_2]$ έχουμε

$$s^2 Y_1 - 3s + sY_2 - a = 2 \quad \Leftrightarrow \quad \begin{cases} s^2 Y_1 + sY_2 = \frac{2}{s} + 3s + a \\ 4Y_1 + sY_2 = \frac{6}{s} + a \end{cases}.$$

Αφαιρώντας τη δεύτερη εξίσωση από την πρώτη έχουμε

$$(s^2 - 4) Y_1 = 3s - \frac{4}{s} \quad \Leftrightarrow \quad Y_1 = \frac{3s^2 - 4}{s(s^2 - 4)}. $$

ώρα

$$Y_1 = \frac{3s^2 - 4}{s(s - 2)(s + 2)} \quad (6.25)$$

ενώ από τη δεύτερη εξίσωση παίρνουμε

$$Y_2 = \frac{a}{s} + \frac{6}{s^2} - \frac{4}{s} Y_1. \quad (6.26)$$

Αναλύουμε σε απλά κλάσματα την έκφραση της Y_1

$$\frac{3s^2 - 4}{s(s - 2)(s + 2)} = \frac{A}{s} + \frac{B}{s - 2} + \frac{C}{s + 2}.$$
και υπολογίζουμε $A = B = C = 1$. Έτσι

$$Y_1 = \frac{1}{s} + \frac{1}{s - 2} + \frac{1}{s + 2}. \quad (6.27)$$

Για την τελική έκφραση της Y_2 θα μπορούσαμε να αντικαταστήσουμε την (6.27) στην (6.26) αλλά θα έχουμε πάλι να αναλύσουμε σε απλά κλάσματα. Αντί αυτού λοιπόν θα χρησιμοποιήσουμε το Θεώρημα της συνέλυσης. Έτσι από την (6.27) βρίσκουμε

$$y_1 = 1 + e^{2t} + e^{-2t}$$

οπότε από την (6.26) παίρνουμε

$$y_2 = a + 6t - 4(1 + y_1)(t)$$
$$= a + 6t - 4 \int_0^t (1 + e^{2t} + e^{-2t}) \, dt$$
$$= a + 2t - 2(e^{2t} - e^{-2t}).$$

Από την αρχική συνθήκη υπολογίζουμε

$$4 = a + 2 - 2(e^2 - e^{-2}) \Rightarrow a = 2 + 2(e^2 - e^{-2})$$

κατά συνέπεια

$$y_2 = 2 + 2(e^2 - e^{-2}) + 2t - 2(e^{2t} - e^{-2t}).$$

6.7 Συμπληρωματικά στοιχεία

6.7.1 Περιοδικές συναρτήσεις

Θυμόμαστε ότι μία συνάρτηση $f(t)$ λέγεται περιοδική με περίοδο T εάν $f(t) = f(t+T)$ για κάθε t στο πεδίο ορισμού της. Διαπιστώνεται ότι αν $f(t)$ είναι περιοδική με περίοδο T τότε $f(t) = f(t+nT)$ για κάθε ακέραιο n.

Πρόταση 6.2. Εστώ ότι $f(t)$ είναι τιμηματικά συνεχής στο $[0, T]$ και περιοδική με περίοδο T, τότε

$$L\{f\}(s) = \frac{1}{1 - e^{-sT} \int_0^T e^{-st} f(t) \, dt} \quad (6.28)$$

για $s > 0$.

Απόδειξη. Η $f(t)$ είναι φραγμένη στο $[0, T]$ και επειδή είναι περιοδική είναι τιμηματικά συνεχής και φραγμένη στο $[0, \infty)$, κατά συνέπειά της μετασχηματισμός Laplace υπάρχει. Έτσι υπολογίζουμε

$$L\{f\}(s) = \int_0^\infty e^{-st} f(t) \, dt = \lim_{N \to \infty} \int_0^{(N+1)T} e^{-st} f(t) \, dt,$$
όπου \(N \) είναι θετικός ακέραιος. Τώρα

\[
\int_{0}^{(N+1)T} e^{-st} f(t) \, dt = \int_{0}^{T} e^{-st} f(t) \, dt + \int_{T}^{2T} e^{-st} f(t) \, dt + \cdots + \int_{NT}^{(N+1)T} e^{-st} f(t) \, dt
\]

\[
= \sum_{n=0}^{N} \int_{nT}^{(n+1)T} e^{-st} f(t) \, dt
\]

\[
= \sum_{n=0}^{N} \int_{nT}^{(n+1)T} e^{-st} f(t - nT) \, dt
\]

\[
= \sum_{n=0}^{N} \int_{0}^{T} e^{-s(t+nT)} f(\tau) \, d\tau
\]

\[
= \left(\sum_{n=0}^{N} e^{-snT} \right) \int_{0}^{T} e^{-st} f(\tau) \, d\tau,
\]

απ’ όπου, αναγνωρίζοντας ότι το άθροισμα \(\sum_{n=0}^{N} e^{-snT} \) είναι το μερικό άθροισμα της γεωμετρικής σειράς με λόγο \(e^{-sT} < 1 \), για \(s > 0 \), προκύπτει τελικά ότι

\[
\int_{0}^{\infty} e^{-st} f(t) \, dt = \left(\sum_{n=0}^{\infty} e^{-snT} \right) \int_{0}^{T} e^{-st} f(\tau) \, d\tau = \frac{1}{1 - e^{-sT}} \int_{0}^{T} e^{-st} f(t) \, dt
\]

που είναι ότι θέλαμε να αποδείξουμε. \(\square \)

Άσκηση 6.9. Οι συναρτήσεις \(\sin t \) και \(\cos t \) είναι περιοδικές με περίοδο 2\(\pi \). Να βρεθούν οι μετασχηματισμοί Laplace \(\mathcal{L}\{\sin t\}(s) \) και \(\mathcal{L}\{\cos t\}(s) \) χρησιμοποιώντας την (6.28).

6.7.2 Η συνάρτηση μοναδιαίου βήματος

Ορισμός 6.5. Η συνάρτηση μοναδιαίου βήματος \(u(t) \) ορίζεται με τη σχέση

\[
u(t) = \begin{cases}
0, & t < 0 \\
1, & t > 0
\end{cases}
\]

Γενικά εάν το άλμα συμβαίνει στο \(c \in \mathbb{R} \) αυτό εκφράζεται με την

\[
u(t-c) = \begin{cases}
0, & t < c \\
1, & t > c
\end{cases}
\]

Παράδειγμα 6.20. Να εκφραστεί κάθε μία από τις συναρτήσεις

\[
f(t) = \begin{cases}
0, & t < c \\
b, & t > c
\end{cases}, \quad g(t) = \begin{cases}
a, & t < c \\
0, & t > c
\end{cases}, \quad h(t) = \begin{cases}
a, & t < c \\
b, & t > c
\end{cases}
\]

όπου \(a \) και \(b \) είναι μη μιδενικές σταθερές, μέσω της συνάρτησης μοναδιαίου βήματος.
6.5 Συμπληρωματικά στοιχεία

Η \(f \) πειδάει από την τιμή 0 στην τιμή \(b \) στο \(t = c \), κατά συνέπεια θα είναι

\[
 f(t) = bu(t - c).
\]

Για την έκφραση της \(g \) είναι χρήσιμη η συνάρτηση \(1 - u(t - c) \) για την οποία έχουμε ότι

\[
 1 - u(t - c) = 1 - \begin{cases}
 0, & t < c \\
 1, & t > c
 \end{cases} = \begin{cases}
 1, & t < c \\
 0, & t > c
 \end{cases}.
\]

Έτσι όπως και με την \(f \) έχουμε ότι

\[
 g(t) = a(1 - u(t - c)) = a - au(t - c).
\]

Για την \(h \) παρατηρούμε ότι \(h(t) = f(t) + g(t) \), επομένως

\[
 h(t) = bu(t - c) + a - au(t - c) = a + (b - a)u(t - c).
\]

Πρόταση 6.3. Εάν \(u(t) \) είναι η συνάρτηση μοναδιαίου βίβλου τότε για \(c \geq 0 \) είναι

\[
 \mathcal{L}\{u(t - c)\}(s) = \frac{e^{-cs}}{s}
\]

για \(s > 0 \).

Απόδειξη. Η (6.29) έπεται από το Παράδειγμα 6.5 για \(a = 0 \) και \(b = 1 \). Διαφορετικά από τον ορισμό της \(u(t) \) έπεται

\[
 \mathcal{L}\{u(t - c)\}(s) = \int_{0}^{\infty} e^{-st}u(t - c) \, dt = \int_{c}^{\infty} e^{-st} \, dt = \lim_{T \to \infty} \left[-\frac{e^{-st}}{s} \right]_{c}^{T} = \frac{e^{-sc}}{s},
\]

για \(s > 0 \).

Πρόταση 6.4. Εάν ο μετασχηματισμός Laplace της \(f(t) \) υπάρχει για \(s > a \geq 0 \) και \(F(s) = \mathcal{L}\{f\}(s) \), και εάν \(u(t) \) είναι η συνάρτηση μοναδιαίου βίβλου τότε για \(c \geq 0 \) είναι

\[
 \mathcal{L}\{u(t - c)f(t - c)\}(s) = e^{-cs}F(s)
\]

για \(s > 0 \).

Απόδειξη. Από τον ορισμό της \(u(t) \) έπεται

\[
 \mathcal{L}\{u(t - c)f(t - c)\}(s) = \int_{0}^{\infty} e^{-st}u(t - c)f(t - c) \, dt
\]

\[
 = \int_{c}^{\infty} e^{-st} f(t - c) \, dt
\]

\[
 = \int_{0}^{\infty} e^{-s(\tau + c)} f(\tau) \, d\tau
\]

\[
 = e^{-sc} \int_{0}^{\infty} e^{-s\tau} f(\tau) \, d\tau
\]

που είναι η (6.30).
Παρατηρούμε ότι το (6.29) είναι ειδική περίπτωση της (6.30) για \(f(t - c) = 1 \). Συνέπεια των δύο αυτών σχέσεων είναι να δεχτούμε ότι οι κατά τιμήματα συνεχείς συναρτήσεων \(u(t - c) \) και \(u(t - c)f(t - c) \) είναι οι αντίστροφοι μετασχηματισμοί Laplace των \(e^{-st}/s \) και \(e^{-st}F(s) \) αντίστοιχα, ισοδύναμα

\[
\mathcal{L}^{-1}\{e^{-sc}L[f](s)\} = u(t - c)f(t - c).
\]
(6.31)

Παράδειγμα 6.21. Να βρεθεί ο μετασχηματισμός Laplace της \(u(t - \pi)\sin t \).

Η συνάρτηση δεν είναι γραμμική στη μορφή \(u(t - c)f(t - c) \) της οποίας ο μετασχηματισμός Laplace δίνεται από την (6.30), αλλά στην \(u(t-c)f(t) \). Στην περίπτωση αυτή ορίζοντας \(f(t) = g(t-c) \) θα έχουμε

\[
\mathcal{L}[u(t-c)f(t)](s) = \mathcal{L}[u(t-c)g(t+c)](s)
= e^{-sc}\mathcal{L}[g(t)](s)
= e^{-sc}\mathcal{L}[f(t+c)](s).
\]

'Ετσι στη περίπτωση αυτή θα είναι

\[
\mathcal{L}[u(t - \pi)\sin t](s) = e^{-sc}\mathcal{L}[(\sin(t + \pi)](s) = e^{-sc}\mathcal{L}[-\sin t](s) = -e^{-sc}\frac{1}{s^2 + 1}.
\]

Παράδειγμα 6.22. Να υπολογισθεί ο αντίστροφος μετασχηματισμός \(\mathcal{L}^{-1}\{e^{-3s}/s^3\} \).

Γράφουμε τη συνάρτηση \(e^{-3s}/s^3 \) σε αναγνωρίσιμη μορφή \(e^{-3s}\mathcal{L}[f](s) \), όπου \(\mathcal{L}[f](s) = 1/s^3 \). Έτσι από τον πίνακα των μετασχηματισμών Laplace βρίσκουμε \(f(t) = t^2/2 \). Κατά συνέπεια έχουμε μέσω της (6.31)

\[
\mathcal{L}^{-1}\left\{\frac{e^{-3s}}{s^3}\right\} = u(t - 3)\frac{(t - 3)^2}{2} = \begin{cases} 0, & t < 3 \\ (t - 3)^2/2, & t > 3 \end{cases}.
\]

6.7.3 Σειρές Taylor και μετασχηματισμός Laplace

Ας υποθέσουμε ότι \(n f(t) \) είναι συνεχής στο \([0, \infty)\) και εικετικής τάξης και ότι αναπτύσσεται σε δυναμοσειρά

\[
f(t) = \sum_{n=0}^{\infty} a_n t^n = a_0 + a_1 t + a_2 t^2 + \cdots + a_n t^n + \cdots.
\]

Αν \(S_N(f)(t) = \sum_{n=0}^{N} a_n t^n \) είναι το μερικό άθροισμα της σειράς, τότε από τη γραμμικότητα του μετασχηματισμού έχουμε

\[
\mathcal{L}[S_N(f)](s) = \mathcal{L}\left\{\sum_{n=0}^{N} a_n t^n\right\} = \sum_{n=0}^{N} a_n \mathcal{L}[t^n](s) = \sum_{n=0}^{N} a_n \frac{n!}{s^{n+1}}
\]
για $s > a$. Θα περιμέναμε, και σε αρκετές περιπτώσεις μπορεί όντως να αποδειχθεί, ότι

$$\mathcal{L}\{f(t)\}(s) = \lim_{N \to \infty} \mathcal{L}\{S_N(f)\}(s) = \sum_{n=0}^{\infty} \frac{a_n}{s^{n+1}}.$$

Κατά συνέπεια αν γνωρίζουμε πως συγκλίνει η σειρά τότε ξέρουμε τον μετασχηματισμό Laplace της $f(t)$. Σε οποιαδήποτε περίπτωση έχουμε το ανάπτυγμα σε σειρά δυνάμεων του $1/s$ του μετασχηματισμού της $f(t)$.

Παράδειγμα 6.23. Θεωρούμε τη συνάρτηση

$$f(t) = \begin{cases} \frac{\sin t}{t}, & t \neq 0 \\ 1, & t = 0 \end{cases}. $$

Να βρεθεί ο μετασχηματισμός Laplace της $f(t)$.

Η συνάρτηση είναι συνεχής για $t \neq 0$, και επειδή

$$\lim_{t \to 0} \frac{\sin t}{t} = 1,$$

έπεται ότι η $f(t)$ είναι συνεχής στο \mathbb{R}. Είναι επίσης φραγμένη (γιατί) στο \mathbb{R}, κατά συνέπεια ο μετασχηματισμός $\mathcal{L}\{f\}$ υπάρχει. Από το ανάπτυγμα

$$\sin t = t - \frac{t^3}{3!} + \frac{t^5}{5!} - \cdots = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} t^{2n+1}, \quad t \in \mathbb{R},$$

έπεται ότι

$$f(t) = 1 - \frac{t^2}{3!} + \frac{t^4}{5!} - \cdots + (-1)^n \frac{t^{2n}}{(2n+1)!} + \cdots = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} t^{2n}, \quad t \in \mathbb{R}.$$

Αν

$$S_N(f)(t) = 1 - \frac{t^2}{3!} + \frac{t^4}{5!} - \cdots + (-1)^n \frac{t^{2N}}{(2N+1)!} = \sum_{n=0}^{N} \frac{(-1)^n}{(2n+1)!} t^{2n},$$

eίναι το N-τάξης μερικό άθροισμα της σειράς $f(t)$.

$$\mathcal{L}\{S_N(f)\}(s) = \sum_{n=0}^{N} \frac{(-1)^n}{(2n+1)!} \mathcal{L}\{t^{2n}\} = \sum_{n=0}^{N} \frac{(-1)^n}{(2n+1)!} \frac{(2n)!}{s^{2n+1}} = \sum_{n=0}^{N} \frac{(-1)^n}{2n+1} \frac{1}{s^{2n+1}},$$

gια $s > 0$. Μπορεί να αποδειχθεί, με το κριτήριο της Ρίζας για παράδειγμα, ότι η σειρά

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} \frac{1}{s^{2n+1}}$$

συγκλίνει για $|1/s| < 1$, κατά συνέπεια η ακόλουθα των μερικών αθροισμάτων $\mathcal{L}\{S_N(f)\}(s)$ συγκλίνει. Επομένως

$$\mathcal{L}\{f\}(s) = \lim_{N \to \infty} \mathcal{L}\{S_N(f)\}(s) = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} \frac{1}{s^{2n+1}} = \mathcal{L}\left\{\frac{\sin t}{t}\right\}.$$
για $s > 1$. Διαφορετικά, από το ανάπτυγμα

$$
\arctan t = t - \frac{t^3}{3} + \frac{t^5}{5} - \cdots + (-1)^n \frac{t^{2n+1}}{2n+1} + \cdots, \quad -1 < t < 1,
$$

βλέπουμε ότι

$$
\mathcal{L}\left\{ \frac{\sin t}{t} \right\} = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} \frac{1}{s^{2n+1}} = \arctan \frac{1}{s},
$$

για $s > 1$.

Άσκηση 6.10. Θεωρήστε το ανάπτυγμα Taylor γύρω από το $t = 0$ και υπολογίστε τον μετασχηματισμό Laplace $\mathcal{L}(f)(s)$ για κάθε μία από τις συναρτήσεις

1. $f(t) = e^t$.
2. $f(t) = \sin t$.
3. $f(t) = e^{-t}$.
4. $f(t) = (1 - \cos t)/t$.

Άσκηση 6.11. Να βρεθεί το ανάπτυγμα της $e^{-1/2}$ σε δινάμεις του $1/s$ και με χρήση του να βρεθεί ένα ανάπτυγμα της $s^{-r/2}e^{-1/s}$, όπου r είναι θετικός ακέραιος, με όρους $1/s^{n+r/2}$. Υποθέτοντας ότι ο αντίστορος μετασχηματισμός Laplace μπορεί να υπολογισθεί όρο προς όρο και με χρήση της (6.8) να δειχθεί ότι

1. $\mathcal{L}^{-1}\{s^{-1/2}e^{-1/s}\}(t) = \frac{1}{\sqrt{\pi}} \cos 2\sqrt{t}$.
2. $\mathcal{L}^{-1}\{s^{-3/2}e^{-1/s}\}(t) = \frac{1}{\sqrt{\pi}} \sin 2\sqrt{t}$.

6.8 Ασκήσεις

1. Με τον ορισμό να υπολογισθεί ο μετασχηματισμός Laplace των συναρτήσεων

 $$(\alpha') t^2.$$
 $$(\beta') e^{2t}.$$
 $$(\gamma') t e^{2t}.$$
 $$(\delta') e^{3t} \cos 2t.$$
 $$(\varepsilon') e^{-t} \sin 2t.$$
 $$(\zeta') f(t) = \begin{cases} 0, & 0 < t < 1 \\ t, & t > 1 \end{cases}.$$
 $$(\xi') f(t) = \begin{cases} 1 - t, & 0 < t < 1 \\ 0, & t > 1 \end{cases}.$$
 $$(\eta') f(t) = \begin{cases} e^{2t}, & 0 < t < 3 \\ 0, & t > 3 \end{cases}.$$

2. Εξετάστε ποιες από τις συναρτήσεις είναι εικεθηκόις τάξης. Για όποιες είναι να βρεθεί η τάξη.

 $$(\alpha') t^2.$$
 $$(\beta') t^2 e^{2t}.$$
 $$(\gamma') t \ln t.$$
 $$(\delta') te^{-t}.$$
 $$(\varepsilon') e^{3t}/(t+1).$$
 $$(\zeta') \cos e^2.$$
 $$(\xi') \cos e^2.$$
 $$(\eta') \cosh 2t.$$
 $$(\theta') e^{\sqrt{t}}.$$
3. Χρησιμοποιήστε τον τύπο του Euler $e^{x+iy} = e^x \cos y + i e^x \sin y$ με $x,y \in \mathbb{R}$ και το γεγονός ότι για μυγαδικές συναρτήσεις $f(t) = u(t) + iv(t)$, $t \in [\eta, \xi]$ είναι

$$
\int_{\eta}^{\xi} f(t) \, dt = \int_{\eta}^{\xi} u(t) \, dt + i \int_{\eta}^{\xi} v(t) \, dt,
$$

οποτεδίποτε τα ολοκληρώματα στο δεξί μέλος υπάρχουν, και δείξτε ότι

$$(a') \quad \int_{\eta}^{\xi} e^{(a+ib)t} \, dt = \frac{e^{(a+ib)\xi} - e^{(a+ib)\eta}}{a + ib},$$

$$(b') \quad \mathcal{L}\{e^{(a+ib)t}\} = \frac{1}{s - (a + ib)} = \frac{s - a + ib}{(s - a)^2 + b^2}.$$

(γ') Εξισώνοντας τα πραγματικά και φανταστικά μέρη στην (b') καταλήξετε στους μετασχηματισμούς Laplace των $\cos bt$ και $\sin bt$ αντίστοιχα.

4. Να υπολογίσετε ο μετασχηματισμός Laplace των συναρτήσεων

$$(a') \quad 4t^2 - e^3t.$$

$$(b') \quad 2te^{-t} + \cos 2t.$$

$$(c') \quad e^{-t} \sin 2t.$$

$$(n') \quad t \sin 3t \sin 5t.$$

$$(\eta') \quad (t - 1)^3.$$

$$(\xi') \quad \sin^2 t.$$

$$(\theta') \quad \cos 3t \cos 5t.$$

5. Στα παρακάτω προβλήματα να υπολογίσετε ο αντίστροφος μετασχηματισμός $\mathcal{L}^{-1}\{F\}$.

$$(a') \quad F(s) = \frac{1}{(s-1)^3}.$$

$$(b') \quad F(s) = \frac{s+1}{s^2 + 2s + 10}.$$

$$(c') \quad F(s) = \frac{s^2 - 15}{2s^3 - 4s + 10}.$$

$$(d') \quad F(s) = \frac{2s + 16}{s^2 + 4s + 13}.$$

$$(e') \quad F(s) = \frac{6s^2 - 13s + 2}{s(s-1)(s-6)}.$$

$$(\xi') \quad F(s) = \frac{6s^2 - 13s + 2}{s(s-1)(s-6)}.$$

6. Στα παρακάτω προβλήματα να υπολογίσετε ο αντίστροφος μετασχηματισμός $\mathcal{L}^{-1}\{F\}$.

$$(a') \quad s^2 F(s) + s F(s) - 6 F(s) = \frac{s^2 + 4}{s^2 + s}.$$

$$(\gamma') \quad s^2 F(s) - 4 F(s) = \frac{5}{s + 1}.$$

$$(b') \quad s F(s) + F(s) = \frac{s^2}{s^2 - 2s + 2}.$$

$$(\delta') \quad s F(s) - F(s) = \frac{2s + 5}{s^2 + 2s + 1}.$$

7. Το αποτέλεσμα του Θεωρήματος 6.5 μπορεί να γραφεί σαν

$$
\mathcal{L}^{-1}\left\{ \frac{d^n F}{ds^n}(s) \right\} = (-1)^n t^n f(t), \quad n = 1, 2, \ldots, \tag{6.32}
$$

όπου $F(s) = \mathcal{L}\{f\}(s)$. Χρησιμοποιήστε αυτό το αποτέλεσμα για να υπολογίσετε τον αντίστροφο μετασχηματισμό Laplace των συναρτήσεων.
8. Να βρεθεί η λύση για κάθε κάθε ένα από τα προβλήματα αρχικών τιμών με τη μέθοδο του μετασχηματισμού Laplace

(α') \(y'' - 2y = 0, \quad y(0) = 1, \quad y'(0) = -1. \)

(β') \(4y'' + 12y' + 9y = 0, \quad y(0) = 1, \quad y'(0) = -4. \)

(γ') \(y'' + 2y = 0, \quad y(0) = 1, \quad y'(0) = -1. \)

(δ') \(y'' + 4y' + 4y = 0, \quad y(-1) = 2, \quad y'(-1) = 1. \)

(ε') \(2y'' - 3y' + y = 0, \quad y(0) = 2, \quad y'(0) = 1. \)

(ζ') \(y'' - 7y' + 10y = 9 \cos t + 7 \sin t, \quad y(0) = 5, \quad y'(0) = -4. \)

(η') \(y'' - 2y' + y = 6t - 2, \quad y(-1) = 3, \quad y'(-1) = 7. \)

(θ') \(ty'' - ty' + y = 2, \quad y(0) = 2, \quad y'(0) = -1. \)

(ι') \(y'' + ty' - y = 0, \quad y(0) = 0, \quad y'(0) = 3. \)

9. Να βρεθεί η λύση για κάθε κάθε ένα από τα προβλήματα αρχικών τιμών με τη μέθοδο του μετασχηματισμού Laplace

(α') \(y'' + 4y = g(t), \quad y(0) = -1, \quad y'(0) = 0, \) όπου \(g(t) = \begin{cases} \quad t, & 0 < t < 2 \\ \\ 5, & t \geq 2 \end{cases} \)

(β') \(y'' - y = g(t), \quad y(0) = 1, \quad y'(0) = 2, \) όπου \(g(t) = \begin{cases} \\ 1, & 0 < t < 3 \\ t, & t \geq 3 \end{cases} \)

10. Να βρεθεί ο μετασχηματισμός Laplace των συναρτήσεων

(α') \(f(t) = \int_{0}^{t} (t - x) e^{x} \ dx. \)

(β') \(f(t) = \int_{0}^{t} e^{x} \sin(t - x) \ dx. \)

11. Να βρεθεί η λύση κάθε μιας ολοκληρωτικής ή ολοκληρωτικο-διαφορικής εξίσωσης

(α') \(y(t) + 3 \int_{0}^{t} y(x) \sin(t - x) \ dx = t. \)

(γ') \(y'(t) + \int_{0}^{t} (t - x)y(x) \ dx = t, \quad y(0) = 0. \)

(β') \(y(t) + \int_{0}^{t} (t - x)^{2} y(x) \ dx = t^{3} + 3. \)

(δ') \(y'(t) - 2 \int_{0}^{t} e^{t-x} y(x) \ dx = t, \quad y(0) = 2. \)

12. Χρησιμοποιήστε το θεώρημα της συνέλιξης για να δείξετε ότι

\[\mathcal{L}^{-1}\left\{ \frac{F(s)}{s} \right\}(t) = \int_{0}^{t} f(\tau) \ d\tau, \]

όπου \(F(s) = \mathcal{L}[f](s). \)
13. Χρησιμοποιήστε το αποτέλεσμα για το μετασχηματισμό Laplace των παραγώγων και το θεώρημα της συνέλευσης για να δείξετε ότι
\[
\int_0^t \int_0^\tau f(x) \, dx \, d\tau = \mathcal{L}^{-1}\left\{ \frac{F(s)}{s^2} \right\}(t) = t \int_0^t f(\tau) \, d\tau - \int_0^t \tau f(\tau) \, d\tau,
\]
όπου \(F(s) = \mathcal{L}[f](s) \).

14. Με χρήση του μετασχηματισμού Laplace να λυθούν τα συστήματα

(a) \(y'_1 = 3y_1 - 2y_2, \quad y_1(0) = 1, \quad y'_1 = 2y_2 - 0, \quad y_1(0) = 0, \)

\(y'_2 = 3y_2 - 2y_1, \quad y_2(0) = 1, \quad y'_2 = 0, \quad y_2(0) = 0, \)

(b) \(y'_1 = y_1 + \sin t, \quad y_1(0) = 2, \quad y'_1 = y_2 - y_3 = 0, \quad y_1(0) = 3, \quad y_2(0) = 0, \)

\(y'_2 = y_1 + 2\cos t, \quad y_2(0) = 0, \quad y'_2 = 3y_1 - y_2 + 2y_3 = 0, \quad y_2(0) = 6, \)

(c) \(y'_1 + y_2 = 1, \quad y_1(0) = 0, \quad y'_1 + 2y_2 - 4y_3 = 0, \quad y_1(0) = 2, \quad y_2(0) = 0, \)

\(y'_2 = 0, \quad y_2(0) = 0, \quad y'_2 = 3y_1 - 3y_2 + 3y_3 = 0, \quad y_2(0) = 12. \)

15. Με χρήση του μετασχηματισμού Laplace να λυθούν τα συστήματα

(a) \(y''_1 + y_2 = 1, \quad y_1(0) = 1, \quad y'_1(0) = 1, \)

\(y_2(0) = 1, \quad y'_2(0) = -1. \)

(b) \(y''_1 + 2y'_2 = -y_1, \quad y_1(0) = 0, \quad y'_1(0) = -7, \)

\(-3y''_1 + 2y'_2 = 3y_1 - 4y_2, \quad y_2(0) = 4, \quad y'_2(0) = -9. \)

16. Με χρήση του μετασχηματισμού Laplace να λυθούν τα συστήματα

(a) \(y'_1 + y_2 = 1 - u(t - 2), \quad y_1(0) = 0, \)

\(y_2(0) = 0. \)

(b) \(y''_1 - y_2 = u(t - 1), \quad y_1(0) = 1, \quad y'_1(0) = 0, \)

\(y'_2 = 1 - u(t - 1), \quad y_2(0) = 0, \quad y'_2(0) = 0. \)

17. Να βρεθεί ένα ανάπτυγμα της \(\ln[1 + (1/s^2)] \) σε δυνάμεις του \(1/s \). Υποθέτοντας ότι ο αντίστροφος μετασχηματισμός Laplace μπορεί να υπολογιστεί όρο προς όρο, να δείξετε ότι
\[
\mathcal{L}^{-1}\left\{ \ln\left(1 + \frac{1}{s^2}\right) \right\}(t) = \frac{2}{t} (1 - \cos t).
\]