Pre-print version of the paper published in:
“Strategies for Information Technology Governance”, Wim Van Grembergen (Ed), Idea
Group Publishing, ISBN 1-59140-140-2, Chapter IX, pp. 216-244, 2003.

CHAPTER IX

Technical Issues Related to
| T Governance Tactics:
Product Metrics,
Measurements and
Process Control

Michalis Xenos
School of Science and Technology
Hellenic Open University
23 Saxtouri Str
Patras, GR 262 23, Greece
Tel: +30 2610 367405, Fax: +30 2610 362349
xenos@eap.gr

1. Introduction

IT Governance is “the organizational capacity exercised by the board, executive
management and IT management to control the formulation and implementation of IT
strategy and in this way ensure the fusion of business and IT” (Van Grembergen,
2002). Previous chapters of this book have successfully introduced the reader to
several IT Governance techniques and tactics that aid the board, executive and IT
managers in monitoring, standardization, quality assessment, cost estimation and cost
cut down, in short they aid in controlling the IT process. The practical application of
such techniques and tactics requires the collection and analysis of measurable data
that guide estimation, decision-making and assessment. It is common sense that one
can control and manage better what he is able to measure, as pointed out by DeMarco
(DeMarco, 1982).

This is what product metrics do. They provide measurements of factors related to IT
development that can be utilized as input to process control techniques. Product
metrics, along with the measurement techniques used for their collection, constitute

216

Pre-print version of the paper published in:
“Strategies for Information Technology Governance”, Wim Van Grembergen (Ed), Idea
Group Publishing, ISBN 1-59140-140-2, Chapter IX, pp. 216-244, 2003.

the means to measure desirable product characteristics and in this way allow control
of the product development process. This chapter focuses on product metrics,
measurements and process control techniques. Such instruments can aid significantly
in monitoring the development process and making IT related tasks more transparent
to IT managers. They also aid in design, prediction and assessment of the IT product
quality. They provide data used for decision-making, cost and effort estimation, fault
prevention, and testing time reduction. Moreover, the use of product metrics and
process control techniques can direct the standardization of IT products and IT
development process, the assessment of the process maturity of outsourcing partners.

1.1 Measurements and process control in the IT industry

IT management and development has suffered from many disasters. Examples of such
crises can be found in the classic article of Gibbs (Gibbs, 1994) describing software
crises in both the private and government sectors. In other cases, the delivered IT
quality suffers from such defects that can lead in significant losses. For instance, one
of the recent US National Institute of Standards and Technology reports states that
insufficient software costs the US as much as US$59 billion a year and that up to
US$22 billion of that could be saved if licensed software had just 50 percent fewer
defects (Miller & Ebert 2002). These facts lead to a reasonable question: how can IT
management be aided in reducing errors and improving IT quality? Two of the means
significantly aiding towards this direction are software metrics and process control
techniques. Such metrics and techniques are extensively used in the current IT
development industry and form an inseparable part of the development process of
companies that have achieved CMM 4™ and 5" levels, as documented in recent
reports (McGarry and Decker, 2002).

Metrics are used in IT development process to measure various factors related to
software quality and can be classified as product metrics, process metrics and
recourse metrics. Product metrics are also called software metrics. These are metrics
that are directly related to the product itself, such as code statements, delivered
executables, manuals, and strive to measure product quality, or attributes of the
product that can be related to product quality. Process metrics focus on the process of
IT development and measure process characteristics, aiming to detect problems or to
push forward successful practices. Resource metrics are related to the resources
required for IT development and their performance. This chapter focuses on product
metrics and how such metrics can aid towards IT development process control and
respectively towards IT Governance.

1.2 This chapter

It could be said that this chapter deals with some technical aspects of the strategies for
IT Governance described in most of the other chapters of this book. Having read
about different strategies and tactics for IT Governance (see the relevant chapter) the
reader is now introduced in metrics and how these can aid IT managers. Issues such
as cost estimation, monitoring the IT development process, diagnosing the IT

217

Pre-print version of the paper published in:
“Strategies for Information Technology Governance”, Wim Van Grembergen (Ed), Idea
Group Publishing, ISBN 1-59140-140-2, Chapter IX, pp. 216-244, 2003.

development effectiveness, decision making on outsourcing and integration, and
quality assessment can be achieved more easily with the use of metrics and process
control.

In order to present examples of the techniques covered, this chapter goes into some
technical details that require knowledge of basic software engineering principles and
statistical control. Such technical details are presented using smaller fonts. If the
reader is not interested in them, he may skip areas marked with smaller fonts and still
be able to follow the main objectives of the chapter.

This chapter aims at introducing the reader in product metrics and measurements,
proposing methods relating to the implementation of a measurements program and
analyzing how product metrics can be used to control IT development.

What this chapter presents is an overview of software metrics and measurement
techniques. The most commonly used metrics are presented and the reader is
introduced to measurement techniques and automation tools. Furthermore, emphasis
is placed on the correlation of internal metrics with external product quality
characteristics by combining internal and external measurements. Finally, this chapter
discusses the application of metrics along with statistical process control tools. Such
tools aim at keeping the IT development process under control. Emphasis has also
been placed on the argument that product metrics can be utilized not only by large IT
developing enterprises, but also by smaller or medium-size ones, since in many cases
the misinterpretation of measurements in small and medium enterprises has lead to
the belief that product metrics are only meant for large companies. This chapter
provides suggestions on how product metrics can aid towards better IT Governance
not only in major IT companies, but also in the smaller ones.

The chapter is organized as follows: section 2 is a literature review of product
metrics, measurements and statistical process control. Section 3 discusses issues
related to measurements, use of product metrics, correlation between internal and
external measurements and the application of Statistical Process Control during IT
development and offers solutions and recommendations. Section 4 discusses future
trends, while section 5 summarizes the conclusions of this chapter.

2. Background

2.1 Metrics and measurements

Measurement is the process by which numbers or symbols are assigned to attributes
of entities in the real world in such a way as to describe them according to clearly
defined rules (Fenton and Pfleeger, 1997). In IT development, measurements are
conducted by using metrics. A metric is an empirical assignment of a value in an
entity aiming to describe a specific characteristic of this entity. Measurements have
been part of our everyday life for a long time and were introduced to IT Governance

218

Pre-print version of the paper published in:
“Strategies for Information Technology Governance”, Wim Van Grembergen (Ed), Idea
Group Publishing, ISBN 1-59140-140-2, Chapter IX, pp. 216-244, 2003.

in order to satisfy the need to control IT development, since according to DeMarco
(1982) IT development cannot be controlled if it cannot be measured.

The first software metrics were proposed in the mid *70s by McCabe (1976) and
Halstead (1977), while the first practical use of metrics —in terms of correlation with
development data— was presented by Funami and Halstead (1976). In the following
years, a large number of software metrics was proposed some of which still have
practical use and can lead to improvements in IT development, while others proved to
be quite impractical in certain occasions. The proliferation of metrics was followed
by more practical proposals on how to interpret results from metrics, such as the one
by Fitzsimmons and Love (1978) or the one by Shepperd and Ince (1990). A number
of methods combining metrics into measurement methodologies were also presented,
such as the ones proposed by Hansen (1978) and by Xenos and Christodoulakis
(1994).

A company involved in IT development can select from a variety of applied metrics
those that are more suitable to be included in its IT Governance techniques. This
selection can be made from a large volume of proposed product metrics that includes
code metrics such as lines of code, software science metrics, complexity metrics,
readability metrics such as the one proposed by Joergensen (1980), data metrics,
nesting metrics, structure metrics such as the one proposed by Henry and Kafura
(1981). There are also process metrics, estimation metrics, design metrics, testing
metrics, reliability metrics, maintainability metrics, reusability metrics, as well as
metrics applied on specific programming languages, such as object-oriented metrics,
or metrics for visual programming. Therefore, taking into account the volume of
literature that exists about software metrics, it is no more a question of finding
metrics for an IT project, rather than selecting the appropriate ones for better IT
Governance. Given the great number of metrics (measuring almost everything), any
attempt to select a metric without basing the selection on a detailed breakdown of the
IT developing company needs and an extensive investigation of the proposed metric’s
applicability, would result in minor benefits from its use or no benefits at all. To
benefit from the use of metrics, apart from fully understanding the various existing
metrics, one should also define well why he wants to measure, what to measure and
when is the right time to measure it.

So the first question rising is: ‘why use metrics?” The answer to this question is that
metrics are needed to provide understanding of different elements of IT projects.
Since it is not always clear what causes an IT project to fail, it is essential for IT
Governance to measure and record characteristics of good projects as well as bad
ones. Metrics provide indicators for the developed software. As Ragland (1995)
states, indicators are metrics or combinations of metrics that provide insights of the IT
process, the software project, or the product itself. Measurements aim at the
assessment of the status of the development process and the developed product.
Therefore, metrics can be used for performance evaluation, cost estimation as
Stamelos and Angelis (2001) have proposed, effort estimation, improving IT
productivity, selecting best practices and —in general— for improving IT Governance.

219

Pre-print version of the paper published in:
“Strategies for Information Technology Governance”, Wim Van Grembergen (Ed), Idea
Group Publishing, ISBN 1-59140-140-2, Chapter IX, pp. 216-244, 2003.

This discussion leads to the next question: ‘what to measure?’ As previously
mentioned, process and product are what we need to measure. One may argue that
since the result of IT projects is software, what we need to measure is software and
only software. This is not true. According to Deming (1986), if the product you have
developed is erroneous, do not just fix the errors, but also fix the process that allowed
the errors into the product. This way you will not have to keep fixing the error in
subsequent productions. Therefore, both process and product metrics and
measurements are important in IT Governance. You have already read about
techniques for governing IT process in the other chapters of this book including
Statistical Process Control shortly described in this chapter. For this reason, the
remaining part of this chapter focuses on the IT product itself; it focuses on product
metrics.

The use of product metrics is highly related to the maturity of the IT development
company. The adoption of standards such as the 1SO 9001 (1991) or the CMM
(Paulk, Curtis, Chrissis and Weber, 1993) enforces a disciplined IT development
process that has to be in control, therefore measured. Methods like Goal Question
Metric (Solingen and Berghout, 1999) enable developers to implement realistic
product metrics in the development process tailored to their needs. The more mature
the company is with regard to the employment of IT Governance techniques, the
more improved its measurement plan is and the more complex and detailed can be the
metrics introduced into the IT development process.

It must be noted that before selecting the appropriate metrics, it is very important to
define the desired product quality characteristics. The selection of these quality
characteristics aids in defining what needs to be measured and what needs not,
depending on the particular needs of the IT developing company. In the early 70’s,
McCall, Richards and Walters (1977) defined a framework for measuring such
characteristics and proposed the Factors Criteria Metrics model —also known as FCM
model- a model for defining what is software quality in terms of sub-characteristics.
Incorporating FCM and experience from similar proposals, years later, the ISO
standard I1SO 9126 (1996) standardized what product quality is in terms of sub-
characteristics. Therefore product metrics can be used within the IT development
procedure in order to measure such product characteristics related to product quality.
The amount and the identity of the characteristics to be measured is related to the IT
Governance maturity and is further discussed in section 3 of this chapter.

Having defined the goals and reasons for measuring, the next question that rises is:
‘when to measure?’ Although measurements should be conducted throughout the
entire IT development life cycle, their scope varies depending on the IT development
phase. Different measurement goals are defined at different development phases and
therefore different kinds of metrics should be used. In the early phases of IT
development, metrics are used mainly for estimation purposes. It is useful to collect
metrics relating to different projects, so that they can serve as historical data for
future projects, aiding in better IT Governance. As far as current projects are
concerned, such data from past projects are used to assist in estimation (Putnam and
Myers, 1992). e.g. size metrics are frequently used to predict the size of a new

220

Pre-print version of the paper published in:
“Strategies for Information Technology Governance”, Wim Van Grembergen (Ed), Idea
Group Publishing, ISBN 1-59140-140-2, Chapter IX, pp. 216-244, 2003.

project. This is how COCOMO (Boehm, 1989), a well-known estimation model
operates. Function points (Albrecht, 1979) are also commonly used for estimation.

In the intermediate phases of IT development process, metrics are used for project
monitoring purposes while, in the meantime, code metrics are used to prevent errors.
Furthermore, defect reports during testing are used for evaluating product quality and
calibrating the measurement methods of the early phases. This purpose is also served
by collecting external measurement data following project delivery, namely during
the beta testing or maintenance phases of a project. So the time to measure is
determined by the requirements and the aims of the measurement program and can
vary from an IT project to another.

Summarizing, using an oversimplifying statement it could be said that metrics are an
important instrument of IT Governance aiding in making estimations in the early
phases of an IT development project, preventing problems in intermediate phases and
evaluating quality in the late project phases.

2.2 Statistical Process Control

Product metrics are essential instruments for the application of Statistical Process
Control techniques into IT Governance. Statistical Process Control —briefly called
SPC- is a collection of problem-solving tools useful in achieving process stability
and improving capability (Montgomery, 1991). SPC has been successfully used by
industry for the production of material goods aiming at the detection of non-
conformity and the elimination of waste during production of such goods. The
following paragraphs, in smaller fonts, discuss further some SPC technical details.

One of the concepts of SPC techniques is to monitor specific product quality characteristics
over time. This is a way of monitoring whether the development process is ‘in control’, or
whether it has become ‘out of control’ and consequently should be stopped and adjusted.
Sample measurements relating to specific product characteristics are compared to each other
using a control chart illustrating when problems occur in the development process and human
intervention is required. Figure 1 is an example of a control chart. The vertical axis illustrates
the values of the measured characteristic, while the horizontal axis represents periodical
sample measurements. The measurement period may cover a few minutes or days or even
weeks, although in industry it usually covers minutes rather than days or weeks. The center
horizontal line represents the desired value of the measured characteristic —also called mean
value, since in a process that is in control the mean value measured must be the desired one—
while the other two horizontal lines represent the upper and lower acceptable limits of the
characteristic’s values. The dots depict sample measurements, while the lines connecting the
dots are drawn simply to make monitoring easier by visualizing the dots sequence.

As long as the dots appear within the area between the upper and lower limit lines, the
monitored process is considered to be in control. Such a process is considered as a stable one,
and over 99% of its variation falls within 3 sigma of the mean value of the measured quantity,
i.e. within the upper and lower limit. On the other hand, a dot falling out of the upper or lower
limit is an indication that the process might be out of control and further investigation or even
adjustment is required. A process, however, may still be considered as out of control even if
all measurements fall within the acceptable limit lines. This is the case when the dots seem to
behave in a systematic, therefore non-random, manner. For example, in the control chart of
figure 1, ten consequent measurements fall above the desired value. This is strong indication

221

Pre-print version of the paper published in:
“Strategies for Information Technology Governance”, Wim Van Grembergen (Ed), Idea
Group Publishing, ISBN 1-59140-140-2, Chapter IX, pp. 216-244, 2003.

that the development process may be out of control and in need of adjustments. Therefore, a
process that stays within the upper and lower limit and does not show other indications of non-
random behavior is a controlled process; in such cases the past performance of a process can
be used to predict its future performance.

Upper acceptable limit

Meanvalie o /\ A /\ /\/V\\/
/\/\“\/ \/\/ v

Lower acceptable limit

values of the measured characteristic

measurements over time
Figure 1. Example of a control chart

The aforementioned example makes it clear that SPC can only be applied on
characteristics that can be objectively measured. This is very common in the
production of material goods, where SPC has been applied with success, i.e. the
values of the characteristics are most often dimensions or weights, such as the size of
an instrument in millimeters or its weight in kilograms. This is rarely the case,
however, in software development, where objective measurements are not always
easy to obtain. For this reason, product metrics are essential in the IT development
process since they are the instruments used to provide objective values that make the
application of SPC techniques feasible. Summarizing, the exploitation of product
metrics for obtaining values of the desired quality characteristics has made SPC a
valuable tool aiding towards the improvement of the IT development process (Burr
and Owen, 1996).

Sample cases of SPC use into IT development have been presented by Weller (2000),
who used SPC for source code inspections to assess product quality during testing
and to predict post-ship product quality, and by Florac, Carleton and Barnard (2000)
who used SPC for analyzing the IT development process of a NASA space shuttle
project that was related to 450,000 total delivered source LOC. To conclude, SPC can
be used in IT development in conjunction with product metrics so as to exploit
measurements of past performance and aiming to determine the IT development
process capability to meet user specifications.

222

Pre-print version of the paper published in:
“Strategies for Information Technology Governance”, Wim Van Grembergen (Ed), Idea
Group Publishing, ISBN 1-59140-140-2, Chapter IX, pp. 216-244, 2003.

3. Product Measurements and Process Control in IT

3.1 Issues, Controversies, Problems

This section classifies product metrics in two categories: internal and external and
provides a short definition and examples of each category, descriptions of how they
can be used in IT development and what kind of problems one might have to face
during their application. Emphasis is placed on the correlation between internal and
external metrics, since this issue is highly related to the use of metrics. The discussion
also focuses on the way that the company size affects the application of metrics, since
in certain cases the conduction of measurements appears to be problematic in small
and medium size IT companies. For this reason, issues related to the application of
product metrics in small or medium size companies are further analyzed in this
section.

Product metrics can be categorized (Fenton and Pfleeger, 1997) as internal product
metrics and external product metrics. Internal product metrics are those used to
measure attributes of the product that can be measured directly by examining the
product on its own irrespectively of its behavior. External product metrics are those
used to measure attributes of the product that can be measured only with respect to
how the product relates to its environment.

3.1.1 Internal metrics

Internal metrics can be classified in three categories based on the product attributes
they measure. These categories are: size, complexity and data metrics.

— Size metrics are metrics that measure attributes related to the product size.
Such attributes are the lines of code, the percentage of comments within the
code, the volume of the basic entity used for design (for example the number
of 5" level bubbles on a DFD-based design), the volume of the
documentation, etc.

— Complexity metrics are metrics that measure attributes related to program
complexity. Such attributes are the complexity of the program flow graph, the
nesting levels, the object-oriented methods complexity, etc.

— Data metrics are metrics that measure attributes related to the data types and
data structures used by the product. Such attributes are the volume of the data,
the complexity of data structures, the volume of recursive data structures, the
volume of data used per class in object-oriented programming, etc.

A more technical discussion enriched with typical examples of metrics from each
category is presented in the following paragraphs using smaller fonts.

Among the internal size metrics, perhaps the most simple and most extensively used is the

LOC metric, where LOC stands for Lines Of Code. However, despite its simplicity, defining
LOC is not always an easy task. Namely, before applying the LOC metric, one must define

223

Pre-print version of the paper published in:
“Strategies for Information Technology Governance”, Wim Van Grembergen (Ed), Idea
Group Publishing, ISBN 1-59140-140-2, Chapter IX, pp. 216-244, 2003.

whether LOC includes comment lines or not, empty lines or not and how code statements that
have been broken into many lines will be counted. Of course, a measurements program based
on a well-defined quality manual helps a lot towards solving such issues, as discussed in the
following sub-section of this chapter.

Although LOC is a commonly used size metric, it does not always provide accurate
estimations of product size, due to differentiation in the definition of the ‘line’ according to
each programmer’s style. A way to face this problem (Halstead, 1977) is to break down code
statements into tokens, which can either be operators or operands. In this way, measurements
are not based on counting ambiguous lines anymore, but on counting well-defined tokens.
Following the above concept, a set of metrics is defined by considering that n; is the number
of distinct operators, n, the number of distinct operands, N; the total occurrences of operators
in the measured module and N, the total occurrences of operands. Examples of such metrics
are program size given by equation (1), effort estimator given by equation (2) and language
level given by equation (3).

N=N+N, (1)

n -N
E:(N1+N2)'|ng(n1+n2)' é.nz (2)

2

A :(Nl + Nz)'logz(nl + nz)'(nz:nz] (3)

As regards metrics (1), (2) and (3), N provides a sufficient metric of the module’s size, which
has proven to be more accurate than LOC, while E is a good indicator of the effort spent on a
module. Moreover, the E metric has proven (Fitzsimmons and Love, 1978) to be highly
correlated to the number of defect reports for many programming languages. The A metric is
an indicator of how well the programming language has been used and variations of a standard
measured A of the programming language or languages the IT company is using for a
particular IT project can aid in the early detection of problematic modules.

There are many more internal metrics, such as comments ratio, number of methods per class,
number of public instance methods per class (Lorenz and Kidd, 1994), ratio of methods per
class, etc. For example function points, which fall into this category, are a very widespread
internal metric used for estimation. Function points are based on an empirical relation and the
assignment of weighting factors, used to make countable measures of information domain to
contribute to the total count of function points (Arthur, 1985).

As regards the internal complexity metrics, perhaps the most well-known and commonly used
one is cyclomatic complexity (McCabe, 1976). Simplifying the formula so as to be applicable
for each module, the cyclomatic complexity metric V(g) could be calculated as in (4), where e
is the number of edges and n is the number of nodes of the measured module’s flow graph g.

V(g)=e-n+2 (4)

Table 1 shows a small sample of code in Object Pascal, produced using Borland Delphi for an
image-processing tool. The numbers in the left of the code are used simply to aid in
corresponding code statements with the graph points. The simplified flow graph g for this
small module of sample code is illustrated in figure 2. Consequent statement lines have been
merged to a single node for simplicity purposes.

224

Pre-print version of the paper published in:
“Strategies for Information Technology Governance”, Wim Van Grembergen (Ed), Idea
Group Publishing, ISBN 1-59140-140-2, Chapter IX, pp. 216-244, 2003.

Table 1. Sample code in Object Pascal

01 for 1:=0 to m*n-(signlength*8) do
begin
if 1 mod step = 0 then
02 begin
pgrsl._position := trunc (i/step);
label5.caption := inttostr(info)+"%";
03 end;
for j:=i to i+(signlength*8)-1 do
04 begin
templ[j-i]:=levels[level,j];
end;
sim:=0;
05 for j:=0 to (signlength*8)-1 do
begin
06 iT templ[j]=signature[j] then
begin
sim:=sim+1;
07 end;
end;
08 similarity[i]:=sim;
if similarity[i]>=signlength*8 then
09 sign_found:=sign_found+1;
10 end;
11 similarity[i+1]:=0;

Figure 2. The g flow graph

Using the formula (4) and the flow graph g of the module shown in table 1 it is easy to
calculate the cyclomatic complexity V(g) of g, as shown in formula (5). High values of V(g)
normally correspond to complex modules, while small values to less complex ones. A module
having only sequential statements and no control or decision commands would have V(g)=1.

V(g)=16-11+2=7 (5)

Other well-known complexity metrics are the depth of inheritance tree (Bansiya and Davis,
1997) used in object-oriented programming, the method complexity metric (Lorenz and Kidd,
1994), etc. Complexity metrics have been used with success to predict error-prone parts of

225

Pre-print version of the paper published in:
“Strategies for Information Technology Governance”, Wim Van Grembergen (Ed), Idea
Group Publishing, ISBN 1-59140-140-2, Chapter IX, pp. 216-244, 2003.

code, but as discussed in section 3.2 of this chapter their use can be problematic or lead to
false estimations, if they are not conducted in the framework of a complete method.

Finally, as regards the internal data metrics, such as the Data Structure Complexity Metric
(Tsai, Lopez, Rodriguez and Volovik, 1986), or the Number of Abstract Data types, or the
Data Access Metric (Bansiya and Davis, 1997), it is important to note that one of their major
benefits is that they can provide predictions before the completion of a large portion of code,
since in most cases the data structures are known in advance. Data metrics are used to measure
the volume or the complexity of data and data structures used in a module, or modules of
code. The use of data metrics, as well as complexity and size metrics is further discussed in
section 3.2 of this chapter.

As far as internal product metrics in general are concerned, it is important to mention
that one of their major advantages is that there are easy to automate and therefore
data collection can be made in an easy, automated and cost-effective way.
Furthermore, the measurement results can also be analyzed with an automated way
using statistical techniques and thus conclusions can be drawn rapidly. Tools such as
Athena (Tsalidis, Christodoulakis and Maritsas, 1991), QSUP (Xenos, Thanos and
Christodoulakis, 1996), Emerald (Hudepohl, Aud, Khoshgoftaar, Allen, and
Maykand, 1996), GQM automation (Lavazza, 2000), etc. have made internal
measurements very easy to conduct. The screenshot from the metrics form of QSUP
shown in figure 3 is an example of the simple and automated way in which such
measurements can be made.

Presented metrics

Size " Halstead

X LOC ® nl [® Program volume ¥

[~ Empty lines X n2 [~ Program level estim. L

[~ Characters * N1 [~ Language level h

[~ Comment chars x N2 [* Effort E
- [® Yocabulary n [~ Time estimator T

[x Mcl:ahe'§ [® Length N [~ Bug estimator B

Eyclolma_llcvg [~ Length estimator N~

P " B

User-defined metrics

Enable X Metric 1 ™ Metic 2 Stroud rate
MName |1|] f¥g N | | | Bug estim.

Definition | | | | constant Eo

0K I Cancel | Restore default |

Figure 3. A screen shot from QSUP

On the other hand, it should be mentioned that among the disadvantages of internal
product measurements is the fact that they are, in many cases, difficult to interpret. In
other cases, the internal quantities measured are not clearly related to the external
quality characteristics that one wants to assess. Such problems can only be solved in
the framework of a well-defined measurement method that combines internal and
external metrics, as discussed in section 3.2 of this chapter.

226

Pre-print version of the paper published in:
“Strategies for Information Technology Governance”, Wim Van Grembergen (Ed), Idea
Group Publishing, ISBN 1-59140-140-2, Chapter IX, pp. 216-244, 2003.

3.1.2 External metrics

Based on 1SO 9126 (1996) standard, the external factors affecting IT product quality
are Functionality, Usability, Efficiency and Reliability. As far as the definition of
these factors is concerned (Kitchenham and Pfleeger, 1996), functionality refers to a
set of functions and specified properties that satisfy stated or implied needs. Usability
is defined as a set of attributes that bear on the effort needed for the use and on the
individual assessment of such use by a stated or implied set of users. Efficiency refers
to a set of attributes that bear on the relationship between the software’s performance
and the amount of resources used under stated conditions, while reliability refers to a
set of attributes that bear on the capability of software to maintain its performance
level, under stated conditions, for a stated period of time.

External metrics are used to measure directly these four factors or the characteristics
of which these factors are composed. Unlike internal metrics (that measure internal
characteristics of IT products and aim to relate measurements of such characteristics
to these factors), external metrics measure directly these factors or their
characteristics. Such metrics in many cases can be based on subjective estimates.
Among the means employed by external metrics are surveys on user opinion
providing valuable measurements for IT functionality or usability. Measures like
defect reports, or mean time between failures (Fenton and Pfleeger, 1997) are used to
determine IT product reliability, while measures like memory usage are used to
determine efficiency.

As already mentioned, the application of external metrics implies that a certain extent
of subjectivity is involved; even metrics that appear to be objective are often
characterized by some degree of subjectivity. For example, defect reports seem to be
a solid metric that can be used to objectively measure reliability. But the number of
defect reports submitted by a user is influenced by issues such as the time and the
extent of IT product usage, the user experience and even the user’s motivation to edit
and submit a defect report. Therefore, such metrics must be analyzed very carefully
and under a framework that will take under consideration such issues. Among the
external metrics that have to seriously consider the problem of subjectivity are
survey-based external metrics. The following paragraphs, in smaller fonts, are a
technical discussion on the use of questionnaire-based external metrics.

Perhaps the most direct way to measure users’ opinion for an IT product is simply to ask them.
This in most cases is done either by user interviews, or by questionnaire-based surveys.
Interviews may cost significantly higher than surveys —especially in cases that users are
geographically dispread— and in many cases the interviewees’ opinions might affect users’
judgment. On the other hand, as argued by Kaplan, Clark and Tang (1995), surveys allow
focusing on just the issues of interest, since they offer complete control of the questions to be
asked. Furthermore, surveys are quantifiable and therefore are not only indicators in
themselves, but also allow the application of more sophisticated analysis techniques to the
measurements, techniques that are appropriate to organizations with higher levels of quality
maturity.

However, the less costly, questionnaire-based surveys have to face problems too. The most

common problem is the low response rate (especially when the means used for the conduction
of the survey are mail, or e-mail); therefore a large number of users is required to guarantee an

227

Pre-print version of the paper published in:
“Strategies for Information Technology Governance”, Wim Van Grembergen (Ed), Idea
Group Publishing, ISBN 1-59140-140-2, Chapter IX, pp. 216-244, 2003.

adequate volume of responses and thus effectiveness of the survey. Furthermore, surveys have
to deal with problems such as the subjectivity of measurements and the frequency of erroneous
responses. Questionnaire-based surveys sent by mail to a number of recipients should follow
guidelines (Lahlou, Van der Maijden, Messu, Poquet and Prakke, 1992) on how the
questionnaire should be structured in order to minimize subjectivity due to misleading
interpretations of questions or choice levels. For example, questionnaires should be well
structured and the questions should follow a logical order, while references to previous
questions should be avoided. Moreover, it is recommended that questions with pre-defined
answers are used instead of open questions, where possible, while concepts such as
probability, which may confuse the user, should be avoided, etc.

Still, due to the nature of surveys, errors are likely to occur. Actually, what is meant by errors,
in this case, are responses not actually representing user opinion. Such errors could occur
because, for example, the user answered the questionnaire very carelessly and made random
choices when confused, or because the user was enthused in the first questions, but lost
interest somewhere in the middle of the questionnaire and thus made some random choices in
order to finish it, or simple because he misunderstood some of the questions and
unintentionally made errors.

A technique for error minimization involving the use of safeguards to detect errors has been
proposed by Xenos and Christodoulakis (1997). A safeguard is defined as a question placed
inside the questionnaire so as to measure the correctness of responses provided by users.
Therefore, safeguards are not questions aiming to measure users’ opinions about the quality of
an IT product, but questions aiming to detect errors. Specifically, safeguards are either
questions that can be answered by only one particular answer and any other answer is
considered as an error, or repeated questions (phrased differently in their second appearance)
placed into different sections of the questionnaire to which exactly the same choices are
offered as candidate answers— or repeated questions with exactly the same phrasing but to
which completely different types of answers are offered. One major advantage of this type of
surveys, which will be further discussed in sub-section 3.2, is the fact that they place focus on
IT user requirements and may aid in calibrating metrics, controlling measurement results, and
providing confidence to both the company and the users.

QWCO, ==

z(Ei] (6)

i=1

Apart from error detection, this technique also weights users’ opinions based on their
qualifications and a metric QWCOs is calculated using formula (6). In this formula, O;,
measures the normalised score of user i opinion, E; measures the qualifications of user i, n is
the number of users who responded to the survey, S; is the number of safeguards that the user i
has replied correctly to, and St is the total number of safeguards included. Since the use of the
QWCUgs technique implies the existence of at least one safeguard in the questionnaire, the
division by St is always valid.

Summarizing, one of the major advantages of external metrics is that they measure
directly the desired external IT product quality characteristics, thus no further analysis
or interpretation is needed. Additionally, external metrics contribute to a great extent
to what is considered to be one of the main goals of IT product quality: user
satisfaction. On the other hand, disadvantages and problems should be taken
seriously under consideration when deciding to use external metrics, the most

228

Pre-print version of the paper published in:
“Strategies for Information Technology Governance”, Wim Van Grembergen (Ed), Idea
Group Publishing, ISBN 1-59140-140-2, Chapter IX, pp. 216-244, 2003.

important of which being that such metrics are not objective and additional effort is
required to ensure their objectivity. Furthermore, they are not as cost effective as
internal measurements and in many cases it is difficult to conduct measurements due
to high error rates especially in cases that error detection techniques have not been
used during measurements.

3.1.3 Correlating metrics to software quality characteristics

In this sub-section the correlation between internal and external metrics is discussed.
Being well aware of the correlation between internal and external measurements, is
essential for defining the goals and the techniques of an overall measurement method
appropriate for the specific needs of an IT developing company and therefore able to
aid towards better IT Governance.

Some interesting results regarding the correlation of internal and external
measurements were derived from a study (Xenos, Stavrinoudis and Christodoulakis
1996), in the framework of which measurements were conducted for 46 IT projects.
Table 2 shows the normalized measurement results of the 46 software products
measured using the aforementioned QWCOs external metric in assenting order —
worst measurements first. The measurements of user perception of IT product quality
were derived from a questionnaire-based survey.

Table 2. External IT Projects Measurements

External Measurement Results for 46 IT Projects
006 | 012 | 012 | 014 | 016 | 0.19 | 0.19 | 021 | 023 | 0.26 | 0.28 | 0.30
030 | 030 | 031 | 033 | 033 | 0.34 | 034 | 0.39 | 040 | 041 | 0.42 | 043
043 | 044 | 045 | 046 | 047 | 048 | 048 | 048 | 051 | 054 | 056 | 0.60
0.60 | 060 | 067 | 075 | 0.76 | 0.78 | 0.80 | 0.86 | 0.88 | 0.94

Table 3. Combined Internal IT Projects Measurements

Combined Internal Measurement Results for same IT Projects
0.581 | 0.965 | 1.545 | 0.742 | 0.444 | 0.727 | 1.223 | 0.694 | 0.780 | 0.660 | 1.043 | 0.693
1.488 | 0.806 | 1.022 | 1.162 | 0.980 | 0.916 | 1.000 | 1.599 | 0.779 | 1.400 | 1.316 | 0.946
1.276 | 1.494 | 0.952 | 0.930 | 0.970 | 1.050 | 1.100 | 0.934 | 1.143 | 1.200 | 1.220 | 1.031
1.434 | 1.234 | 1.996 | 1.428 | 1.358 | 1.826 | 1.493 | 1.750 | 1.730 | 1.785

The internal measurement results relating to the 46 projects of the research —in the
same order as in table 2— are shown in table 3. The internal measurement results are
normalized and were calculated using a formula combining a number of internal
metrics. This combination metrics formula —called CMF- does not measure a
physical product quantity, but combines all internal metric results. Its solid purpose is
to provide a collective mechanism for comparison as shown in equation (7).

229

Pre-print version of the paper published in:
“Strategies for Information Technology Governance”, Wim Van Grembergen (Ed), Idea
Group Publishing, ISBN 1-59140-140-2, Chapter IX, pp. 216-244, 2003.

CMF =02-4, +02-R+04-V,, +02-T (7)

The metrics that form part of the CMF are the weighed average language level Aya,
the essential size ratio R, the weighed average cyclomatic complexity Vs and the data
structure complexity metric T.

As expected, the external measurements results for the 46 projects followed an almost
normal distribution with mean value 0.437 and standard deviation 0.219, as shown in
figure 4 illustrating the grouped frequency distribution —using a class range of 0.13—
around the marked midpoints.

In a similar manner, the combined internal measurement results are shown in figure 5.
Internal measurements also followed a normal distribution with mean value 1.149 and
standard deviation 0.363, as can be seen in figure 5.

14

12 +

10 +

0 ‘ ‘ ‘ ‘ ‘ ‘
0,05 018 031 044 057 0,70 083 0,96

Figure 4. Distribution of external measurements

12

10 +

0 ‘ ‘ ‘ ‘ ‘ ‘
0,483 0,705 0,927 1,149 1,371 1,593 1,815 2,037

Figure 5. Distribution of internal combined measurements

230

Pre-print version of the paper published in:
“Strategies for Information Technology Governance”, Wim Van Grembergen (Ed), Idea
Group Publishing, ISBN 1-59140-140-2, Chapter IX, pp. 216-244, 2003.

The preparatory work described above provided a uniform manner to represent
external and internal IT product quality measurements, and consequently the
examination of the correlation was feasible. The scatter plot in figure 6 illustrates the
correlation of internal and external measurements for these 46 IT projects. The
horizontal line represents the measurements conducted using the external metrics
while the vertical line the measurements conducted using the internal metrics.
Projects are marked as points in the coordinates for each measurements line. The
diagonal line —also called correlation line— represents the way in which correlation
would be illustrated, if the two measurement methods were 100% correlated.

1,0
09 |
08+
07 1
06 |
05+
04 1
031
021
011
0,0

CMF

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0
QWCOs

Figure 6. Correlation among internal and external measurements

Points marked below the correlation line represent measurements that produced a
higher score when external metrics of IT product quality were conducted, compared
to their low internal measurements score. Namely points below the correlation line
represent IT projects that, despite their low internal measurements score, produced
higher external metrics scores, i.e. the end-user perception of quality was not as low
as expected based on the internal metrics results. On the other hand, points marked
above the correlation line are measurements that produced lower score when external
metrics were conducted, compared to their high internal measurements score.
Namely, these points represent IT projects that, despite their high score in internal
measurements, users perception for quality was not equally high.

As made evident by the scatter plot of figure 6, only a very small number of projects
fail the internal quality measurements and still achieve high external measurements
scores; very few points are marked below the correlation line and no points are
marked in great distance below this line. On the contrary, many points are marked
just over the correlation line and even further above. This easily leads to the
conclusion that satisfaction of internal quality standards —as measured using internal
metrics— does not guarantee a priori success in meeting customers’ perception of
quality —as measured using external metrics. IT products that receive high scores in
an internal measurements program are not always likely to received high user
acceptance.

231

Pre-print version of the paper published in:
“Strategies for Information Technology Governance”, Wim Van Grembergen (Ed), Idea
Group Publishing, ISBN 1-59140-140-2, Chapter IX, pp. 216-244, 2003.

3.1.4 Problems and issues using metrics in small and medium size IT companies

Although in major IT developing companies metrics are most often an integral part of
IT development process aiming at better IT Governance, this is rarely the case in
small or medium size software development companies where no or very few
software measurements are included in the development process. This is either due to
lack of awareness of metrics and measurement methods, or due to the belief that
measurements are impractical for small or medium size software development
companies, cost too much and should always be conducted within a quality assurance
framework available only in larger companies. This is partially true, since “measuring
in the small” —a common expression for measurements in small and medium size
companies— had to overcome several problems. However, it is just as true —as
discussed further in this sub-section, as well as in sub-section 3.2— that measuring in
the small is feasible and practical and all the problems can be overcome. Moreover,
the use of metrics entails a great number of benefits for the small and medium IT
developing companies that will implement them.

As already mentioned, small software developing companies willing to incorporate
the application of metrics in their IT development process will often have to confront
a number of problems and limitations. One of them lies on the fact that most small
companies do not base software development on a standard. The lack of a standard
framework that will constitute a guide for the use of metrics, often leads to the
conclusion that measurements are a luxury that they cannot afford. High cost is also
an important reason why such companies often resist the application of new methods,
tools, technologies and developing standards.

Furthermore, it should be considered that the majority of small companies operates
under tremendous pressure. Given the limitations of their resources, they cannot
afford a failure. Time is very critical and, since reaching a maturity level is a long-
term commitment, this commitment is overlooked due to constant “fire fighting’. The
developing methods are in most cases ad hoc and chaotic and even in the cases of
successfully completed projects, a major problem is the inability to repeat successful
practices. Moreover, roles in small software development companies are sometimes
unclear. There is no clear distinction between process and product engineers, or
project management and development. The lack of formal development methods
often results in unavailability of project records —historical data of any kind, not
necessarily measurement data— and process documentation. The processes are kept in
the minds of the development engineers and consequently, are not documented in
order to become common practice for every company employee.

Summarizing, the lack of a standard framework for measurements, the lack of formal
development methods, the necessity for everyday ‘fire fighting’, as well as the lack of
time to keep records are the basic limitations relating to the use of metrics in small IT
developing companies.

On the other hand, small IT developing companies enjoy a number of benefits that are
very helpful for the application of a measurements program. A fact that has not been
stressed enough, but is true in most cases, is that the human resources of small

232

Pre-print version of the paper published in:
“Strategies for Information Technology Governance”, Wim Van Grembergen (Ed), Idea
Group Publishing, ISBN 1-59140-140-2, Chapter IX, pp. 216-244, 2003.

software companies comprise skilled, well educated and usually experienced
engineers. This statement is based on the fact that in small companies the engineers
are usually the same people who decided to take the risk of founding the company,
and these people are, in most cases, experienced in the field of software engineering,
or else they would not risk in a field for which they have little knowledge. Such
engineers —although in many cases are obliged to use ad hoc methods for developing
a project— already have the knowledge and the experience to acknowledge why
metrics will improve their development process and what the benefits of a
measurements program are. As a result, they are usually capable of selecting
themselves the appropriate for their IT projects metrics and stay committed to them,
not feeling that metrics are simply part of a process that has been enforced on them,
which is often the case with employees in larger companies.

Another benefit of small software developing companies is the enhanced internal
communication. While large companies spend a lot of management time and effort to
select proper communication approaches and organize and reinforce internal
communication processes, in small companies good internal communication is an
everyday reality. Thus, internal distribution of data —among which is measurement
data— is facilitated, while there is no need for complex communication procedures.
Even more important than internal communication, however, is enhanced external
communication. While in large companies there is no direct communication between
product engineers and the customer, in small companies communication with the
customer is far more direct. There are no intermediates between the customer and the
developers and in most cases, this improves significantly the level of communication,
despite the informality and lack of a communication method. This fact facilitates the
collection of external measurements and their direct exploitation.

Another benefit regarding the use of metrics in small companies is that the difference
of belief-systems of product engineers, i.e. software developers and developer
managers, and process engineers, i.e. software quality engineers, quality assurance
engineers, process improvement specialists and change agents, reported (Mackey,
2000) for large IT development companies is not a problem in small and medium
ones. Specifically, one of the major problems when implementing metrics is that
processes and actions initiated by process engineers tend to be underestimated by
product engineers and considered as bureaucratic slowdown of their work. In small
and medium IT developing companies, where engineers play multiple roles —since
they are mainly product engineers but also have to consider process improvement- it
IS easier to use metrics and appreciate their value.

Finally, it should be stressed that the collection and use of historical data, required for
measurements, is facilitated thanks to the small size of the company, the few years of
operation —in most cases— and the employment of the same individuals for a long
period of time, which is also common in most cases. It is easier for personnel to note
improvement owed to the use of metrics in practice and be convinced to use them.
Realizing day after day in practice the real benefits of using metrics and achieving
product and process improvement is much more convincing that just reading about it
in impersonal reports —which might be the case in large companies. Therefore, despite

233

Pre-print version of the paper published in:
“Strategies for Information Technology Governance”, Wim Van Grembergen (Ed), Idea
Group Publishing, ISBN 1-59140-140-2, Chapter IX, pp. 216-244, 2003.

of what is currently believed, small companies have many reasons motivating them to
incorporate metrics in their IT developing process. Recommendations regarding the
use of metrics in such small and medium size IT developing companies are discussed
in the following sub-section.

3.2 Solutions and Recommendations

This sub-section discusses solutions and recommendations for dealing with the issues,
controversies and problems presented in the preceding section. Firstly, practical
guidelines are presented relating to how both internal and external measurements can
aid towards better 1T governance within a rigorous framework combining them into a
complete measurement method, applicable for IT developing companies. Then, the
application of this method in small and medium IT companies is discussed, while
suggestions are made on how the problems analyzed in the preceding section can be
overcome. Finally, this sub-section closes with a discussion on how metrics can be
used in accordance with SPC so as to aid towards better IT Governance.

3.2.1 Combining internal and external metrics into a measurement method

As already mentioned in the previous sections, internal and external measurements
must be conducted under a well-defined framework with precise goals. Before
selecting the appropriate metrics for any IT project, it is necessary that all metrics
available for use in the IT developing company have been collected and documented
in detail in the company’s quality manual. This manual is a basic component of the
metrics application process and includes the metrics, the measurement techniques as
well as guidelines for the application of metrics, the data analysis and the corrective
actions required for improving the IT developing process. It should also be mentioned
that the quality manual includes all metrics that are available regardless of how many
times they have been used, or the availability of measurements data from past IT
development projects.

Then, for each IT project, a set of metrics appropriate for this particular project is
selected from the quality manual. The criteria on which the selection of metrics is
based are the particular quality factors that the IT project places emphasis on. This set
of metrics is documented —using the guidelines available in the quality manual- and
consists the quality plan of the IT project. Thus, a project quality plan should include
all the metrics, measurement guidelines and goals applicable for the IT project. It is
self-evident that the project plan of a specific IT project may be entirely different
from another project’s plan and may use a completely different set of metrics. The
selection of the appropriate metrics and measurement techniques is performed by the
IT developing company quality manager in cooperation with the project manager and
—if necessary— with the members of the development team. In most cases, the analysis
of historical data and measurements collected from similar projects can prove to be
very helpful for the definition of the project quality plan. Figure 7 presents an
illustration of the above procedure.

234

Pre-print version of the paper published in:
“Strategies for Information Technology Governance”, Wim Van Grembergen (Ed), Idea
Group Publishing, ISBN 1-59140-140-2, Chapter IX, pp. 216-244, 2003.

Project Plan

applicable for
project 1

Quality Manual
Project Plan

metrics,
guidelines, applicable for
measurement project 2
techniques,
data analysis :
methods e
[]

Project Plan

applicable for
project N

Figure 7. Selection of metrics for each IT project

The quality plan of each project includes internal metrics so as to provide an easy and
inexpensive way to detect possible causes for low IT product quality, as this might be
perceived by the end-users, and take early corrective action. Including internal
metrics in the quality plan will help in preventing failures and non-conformities. For
achieving better results, it is recommended that every quality plan includes a
combination of internal metrics. For example, high complexity measurements relating
to a module are not necessarily an indication of bad practice and low quality, but if
combined with additional measurements indicating a large volume of code and low
data complexity, then this could be considered as an indication that problems might
occur during testing or even after project delivery and that early corrective action
should be taken.

A project quality plan should also include external metrics —applied during alpha or
beta testing and post shipment— so as to measure external quality factors.
Occasionally external metrics could be used in order to test the soundness of the
internal metrics and measurements results and even to calibrate internal metrics. Such
calibrations must be reflected with the appropriate changes in the quality manual.

It must be noted that the successful selection of metrics and measurement techniques
to be included in the IT developing company quality manual is very dependent on
company maturity. The adoption of sophisticated techniques and complex metrics by
a company might prove to be ineffective, if it is not supported by years of experience
with metrics and measurements and large volumes of data from past project
measurements. IT developing companies should always keep this fact in mind and set
feasible measurement goals not aiming too high at the early stages of metrics
application.

235

Pre-print version of the paper published in:
“Strategies for Information Technology Governance”, Wim Van Grembergen (Ed), Idea
Group Publishing, ISBN 1-59140-140-2, Chapter IX, pp. 216-244, 2003.

3.2.2 Application of metrics in small and medium size IT companies

As regards small and medium size IT developing companies, it should be stressed that
metrics can be used without causing a major increase in the development cost. For
example, communication costs, which should be included in any cost estimation
relating to quality, are high in larger companies but minimal in small ones. Moreover,
a large number of metrics and tools are freely available, thus minimizing the cost of
using metrics. Of course, it is important to note that metrics can help small IT
developing companies to improve process efficiency, product quality and reach a
higher level of maturity. It is suggested that metrics are used with a standard in mind.
This does not imply that a small company should attempt to obtain an 1SO9001
certification or a high level CMM assessment by using metrics. However, it is
suggested that the IT company should attempt to build a quality manual based on a
standard and introduce metrics into specific project quality plans following the
guidelines of this standard. The primary goal should be the improvement of product
quality and process efficiency by the use of metrics and a future goal might be the
certification. In case that the certification is achieved, it is not advisable to use it for
marketing reasons only, such as promotional purposes, as often is the case, but
mainly for improvement. Furthermore, it is recommended that the standard’s
guidelines are adopted step by step while the use of metrics, in the early stages of
introduction of measurements in the company, should be limited to a selected set of
well-known metrics, metrics that as Kautz (1999) said “must make sense for small 1T
companies”.

The use of metrics in small and medium size companies should be based on each
company’s specific needs. A good approach would be to start with a method such as
the GQM (Solingen and Berghout, 1999), by selecting very few metrics at first, based
on specific and well-defined goals. Existing data that require little effort to collect
(such as size measurements, testing time, data from the customers) should be
collected and exploited. Experience reports (Grable, Jernigan, Pogue and Divis, 1999)
have shown that similar metrics have been used with success in small IT projects
aiding towards better IT Governance. However, it should always be kept in mind that
the main idea of metrics is to measure only what actually helps towards well-defined
goals and is achievable considering time and personnel limitations. In the same way,
the use of free methods and tools is advisable only provided that their selection is
based on real company needs and not on the fact that they are free. Perhaps, the most
important suggestion regarding the use of metrics is to rely on small companies’
benefits —as presented in the preceding section— and take advantage of them as much
as possible. For example, good external communication can significantly aid in better
and easier collection of external product measurements. Engineers playing both roles
of product and process engineer have the advantage of being in the position to
interpret various internal and external metric results and at the same time benefit from
process improvement to achieve more effective product development process.

Finally, especially for small and medium size IT developing companies, it must be
noted that commitment is the most critical factor that determines success or failure of
a measurement program. It is better to set minor goals and use very few metrics at

236

Pre-print version of the paper published in:
“Strategies for Information Technology Governance”, Wim Van Grembergen (Ed), Idea
Group Publishing, ISBN 1-59140-140-2, Chapter IX, pp. 216-244, 2003.

first, increasing them progressively, rather than define an ambitious measurement
program that will be abandoned later on, when the first need for “fire fighting’ will
occur and preoccupy everyone. If commitment to metrics weakens, it is usually
difficult to revive. Small IT development companies making limited use of metrics,
based on their particular needs and aiming towards process improvement according to
a chosen standard, have a lot to gain from this effort.

3.2.3 Using metrics within a SPC framework

As mentioned in previous sections, the use of statistical process control techniques to
monitor if a process is in control —so as to implement corrective measures, if the
process has become out of control, or simply to use data relating to past performance
to predict future behavior- is feasible only if internal metrics are available to be used
as basis for the application of SPC. These internal metrics are used to measure
essential characteristics of the IT developing process.

It should be stressed that the selection of internal metrics is very important for the
proper application of SPC techniques. On the other hand, examples of models that
have failed to predict process behavior have been reported (Adams, 1984) and based
on these examples the inclusion of internal metrics in such models was criticized
(Fenton and Neil, 1999); specifically, it was argued that external metrics are the only
true indicators of process performance. It is indisputable that external metrics are the
final indicators of process performance, but such metrics cannot be available in the
early phases of IT process development, where predictions need to be made. This
luck of external metrics leads to the use of internal ones as well as the use of SPC
techniques to monitor the IT development process. Of course, it goes without saying
that the selection of the proper metrics to measure statistical relationships is a very
important task and thus should be made very carefully and should always be verified
by using external metrics. This is the proper way to apply SPC techniques, as
discussed in the following examples.

As Florac and Carleton (1999) mention, the control chart, already presented in section
2, is an ideal tool for analyzing process behavior, because it measures process
performance over time and provides an operational definition of stability and
capability. It is a fact that IT developing companies are beginning to appreciate the
value that control charts add to IT Governance, by providing quantitative insights of
the behavior of their IT development processes. Using control charts, it is easy to
monitor when a metric exceeds the preset limits, which is interpreted that the IT
developing process has become out of control and therefore immediate corrective
action should be taken to eliminate abnormalities. A more technical discussion of the
use of such charts follows.

Based on the main idea of the control chart illustrated in figure 2, a number of control chart
variations exist that can be used to monitor IT development process depending on the type of
data measured. For individuals or attributes of data —such as counts related to occurrences of
events or sets of characteristics— the most appropriate are XmR control charts. In XmR charts
the middle bar, called Xbar, represents the mean value of the measured item. The mRbar is the
mean value of the absolute differences of successive pairs of data. The upper control limit

237

Pre-print version of the paper published in:
“Strategies for Information Technology Governance”, Wim Van Grembergen (Ed), Idea
Group Publishing, ISBN 1-59140-140-2, Chapter IX, pp. 216-244, 2003.

UCL and the lower control limit LCL in XmR control charts are fixed straight lines and the
values of these lines can be calculated using formulas (8) and (9). Further details on how to
develop and use XmR control charts can be found in (Florac, and Carleton, 1999). Other than
the formulas used to calculate the acceptable limits, namely the limits within which
measurements should fall in order for the process to be considered in control, the XmR control
charts are similar to the control chart example presented in figure 2.

UCL = Xbar + 2.66 - mRbar (8)

LCL = Xbar — 2.66 - mRbar (9)

Figure 8 is an XmR chart illustrating the results of 20 inspecting sessions using the metric LOC
per inspection person hour. An inspecting session is a formal review process conducted by a
number of experienced code reviewers. The ‘inspection person hour’ stands for the number of
reviewers multiplied by the number of the hours that the session lasted. Assuming that the 20
measurements collected are: 42, 55, 41, 50, 37, 17, 22, 44, 63, 68, 30, 42, 51, 62, 38, 34, 55,
39, 27, 49, the Xbar represents the average of all measurements, therefore, Xbar = 43.30. In a
similar manner, mRbar is calculated as the average of the absolute differences of the 19
successive pairs of data, therefore mRbar = 15.21. Using formulas (8) and (9), UCL and LCL
are calculated respectively: UCL = 83.76 and LCL = 2.84. Using the aforementioned
calculations and a typical spreadsheet it is easy to monitor this IT process and to create the
XmR control chart of figure 8. In this example the monitored process is in control, since all
measurements fall within UCL and LCL and there are no indications of non-random behavior.

When the measured item is a variable —as in the case of observations of continuous
phenomena or counts that describe size or status— then the appropriate type of control charts
for monitoring purposes are the u-charts. In this case, the upper and lower control limits (UCL
and LCL) vary depending on each measurement, since the last measurement affects the limits
and leads to the calculation of new ones. In the example illustrated in figure 8, a u-chart is
used to monitor the testing process and measures the number of defects per LOC reported
during a typical testing session. The session is typical in the sense that it is well planned and
took place regularly and in a manner similar to the previous sessions. The center line is called
Ubar and represents the number of defects reported during the testing session divided by the
number of LOC examined. The upper and lower control limits are calculated using formulas

(10) and (11).
UCL =Ubar +3-.| 22T (19)
LOC

Ubar
ocC

LCL =Ubar —-3-

(11)

To create a u-chart is very simple and can be done using a typical spreadsheet such as the one
used to create the u-chart of figure 9. It should be noted that for using the u-chart it is
necessary to receive measurement data on a regular basis. SPC techniques cannot be applied
with few sets of data received sporadically over time, in a non-periodical manner. More
important than regularity in data receipt is the issue of data homogeneity. This applies to all
variations of control charts, since in order to use control charts data must be homogeneous.
For example, the u-chart of a LOC metric based on the data received from the testing sessions
of two different programming languages will not provide any valuable results; in this case, the
IT development process can only be monitored using two different control charts. Similarly,
when the testing sessions include re-testing of some modules, again, two different control

238

Pre-print version of the paper published in:
“Strategies for Information Technology Governance”, Wim Van Grembergen (Ed), Idea
Group Publishing, ISBN 1-59140-140-2, Chapter IX, pp. 216-244, 2003.

charts are required, since it is expected that re-testing sessions will result in lower rates than
the previous testing sessions resulting in abnormal variation of the Ubar measurements.
Consequently, the use of two control charts (one for testing sessions and one for re-testing
sessions) is necessary to ensure measurements validity.

| —e—Values ------ Vbar ——UCL ---LCL |

Figure 8. An XmR chart of LOC per person hours spent during formal inspection sessions

—a— Ubar —O0—UCL
0,06 -
0,05 -
0,03 -
0,02 -
0,00 T
1 2 3 456 7 8 91011121314 1516 17 18 19 20 21 22 23 24

Figure 9. A u-chart of defects per LOC reported during regular testing sessions

The example of the u-chart of figure 9 is based on data from a past IT project. The LCL is not
calculated or illustrated, since it is not applicable for the particular case. The testing sessions
do not include any re-test of revised code. Of course, in another case in the formulas (10) and
(11), the upper and lower control limits would have been calculated using another metric
instead of the number of defects divided by LOC.

The main purpose of control charts is to help in the detection of variations in the
measured IT process. Variations can be common-cause variations or assignable-cause
variations (Florac, Carleton and Barnard, 2000). Common-cause variations are
normal and rather expected variations caused by regular interaction among process
components of the IT development process such as people, machines, material, tools,
environment and methods. Such variations usually cause measurements to fluctuate
within acceptable limits. Assignable-cause variations, on the other hand, are caused

239

Pre-print version of the paper published in:
“Strategies for Information Technology Governance”, Wim Van Grembergen (Ed), Idea
Group Publishing, ISBN 1-59140-140-2, Chapter IX, pp. 216-244, 2003.

by events that are not part of the normal IT development process and indicate
abnormal or sudden changes to one or more basic process components. In the
majority of cases, assignable-cause variations cause measurements to fall out of the
acceptable limits. Removing all assignable causes and preventing their reoccurrence
will lead to a stable and predictable IT development process.

In order to statistically monitor the IT development process, one can choose from a
number of internal metrics to be included in the model. This section presented a few
examples of the application of SPC techniques contributing to the exploitation of past
process performance to predict future behavior and detect abnormalities in the IT
process. Using such techniques allows better control of the IT development process
and therefore helps towards better IT Governance. For better results, as already
discussed, one must always combine such techniques with external measurements
under a measurements framework.

4. Future Trends

For about three decades now, metrics are used for the estimation of product related
issues (such as product size, required effort, time required for testing, etc.) for early
detection and prevention of problems during development and for product assessment
after product release. More recently, during the past decade, the use of metrics for
statistically controlling IT development process was proposed.

Although, both these practices were proved to be successful in practice and aided
significantly towards better IT Governance, the benefits from the use of metrics are
not commonly recognized. This is partly due to the lack of awareness of metrics in
small and medium size IT developing companies. Although, in major IT companies
metrics are extensively used, in many cases, small and medium ones are not even
aware of the prospect and benefits of using metrics. However, this is constantly
changing. More and more small and medium size IT developing companies become
aware of product metrics and process control. Besides, the adoption of standards such
as 1S0O9001, or assessment in CMM higher levels, has contributed to this change
since both standards are encouraging the use of IT metrics.

Another issue that is expected to change in the near future is the availability of more
sophisticated tools. Although many measurements tools are available, using a number
of metrics, there are not many tools available yet that use past projects’ measurement
data in combination to current project data in order to aid in decision making.
Combining metrics with decision support techniques, or methods for resolving
uncertainty will lead to the development of valuable tools that will aid towards 1T
Governance. A recent approach towards this direction (Fenton, Krause and Neil,
2002) is using IT metrics and Bayesian networks for effective IT Governance,
especially for risk management, by automatically predicting defects in the released IT
product. One of the benefits of such models is that they allow reasoning in both
forward (used for prediction of future behavior) and backward direction (used for

240

Pre-print version of the paper published in:
“Strategies for Information Technology Governance”, Wim Van Grembergen (Ed), Idea
Group Publishing, ISBN 1-59140-140-2, Chapter IX, pp. 216-244, 2003.

assessment of best practices or analysis of problematic practices and definition of
revisions and corrective actions that need to be taken).

Finally, another future goal is related to the expansion of open source systems. An
ambitious plan would be to use metrics for defining measurable goals related to
source code modules available for inclusion in open source IT projects and therefore
to define a set of standards that will determine the quality of such code. Selecting the
appropriate set of metrics for open source modules and setting up the standards for
such a measurements program is a difficult and ambitious future goal due to the
particularities of open source development and the lack of formal management
structure.

5. Conclusion

This chapter introduced the reader to software metrics that are used to provide
knowledge about different elements of IT projects. It presented internal metrics that
can be applied prior to the release of the IT product to provide indications relating to
quality characteristics, and external metrics applied after IT product delivery to give
information about user perception of product quality. It also analyzed the correlation
among internal and external metrics and discussed the way in which such metrics can
be combined into a measurements program. Emphasis was placed on small and
medium size IT developing companies and how such companies can overcome
problems relating to the application of metrics. Finally, the use of metrics within a
statistically controlled IT development process was discussed.

Software metrics can be used to measure various factors related to IT product
development. These factors include estimation, early detection and prevention of
problems, product assessment, etc. Their utilization within a measurements
framework in combination to the use of automated tools can aid towards IT
development process control and better IT Governance, regardless of the IT
developing company size.

References

Adams, E. (1984). Optimizing Preventive Service of Software Products. IBM
Research Journal. 28 (1). 2-14.

Albrecht, A.J. (1979). Measuring Application Development Productivity.
Proceedings of IBM Applications Development Symposium. Monterey. CA. 83-92.

Arthur, L. (1985). Measuring Programmer Productivity and Software Quality. Wiley-
Interscience.

Bansiya, J., & Davis, C. (1997). Using QMOOD++ for object-oriented metrics.
Automated Metrics and Object-Oriented Development. Online Dr. Dobb's Journal.

241

Pre-print version of the paper published in:
“Strategies for Information Technology Governance”, Wim Van Grembergen (Ed), Idea
Group Publishing, ISBN 1-59140-140-2, Chapter IX, pp. 216-244, 2003.

Boehm, B.W. (1989). Software Risk Management. Los Alamos: IEEE Computer
Society Press.

Burr, A., & Owen, M. (1996). Statistical Methods for Software Quality. Thompson
Computer Press.

DeMarco, T. (1982). Controlling Software Projects. New York: Yourdon Press.

Deming, W. (1986). Out of the Crisis. Cambridge: MIT Center for Advanced
Engineering Study.

Fenton, N., Krause, P., & Neil, M. (2002). Software Measurement: Uncertainty and
Causal Modeling. IEEE Software. 19 (4). 116-122.

Fenton, N.E., & Neil, M. (1999). A Critique of Software Defect Prediction Research.
IEEE Transactions on Software Engineering. 25 (5). 675-689.

Fenton, N.E., & Pfleeger, S.L. (1997). Software Metrics: A Rigorous & Practical
Approach (2" ed.). London: International Thomson Computer Press.

Fitzsimmons, A., & T. Love, T. (1978). A Review and Evaluation of Software
Science. Computing Surveys. 10.

Florac, W.A., & Carleton, A.D. (1999). Measuring the Software Process: Statistical
Process Control for Software Process Improvement. Addison-Wesley. Mass.

Florac, W.A., Carleton, A.D., & Barnard, J.R. (2000). Statistical Process Control:
Analyzing a Space Shuttle Onboard Software Process. IEEE Software. 17 (4). 97-105.

Funami, Y., & Halstead, M. (1976). A Software Physics Analysis of Akiyama's
Debugging Data. Symposium on Computer Software Engineering. Polytechnic
Institute of New York. 133-138.

Gibbs, W. (1994). Software’s Chronic Crisis. Scientific American. 271 (3). 86-95.

Grable, R., Jernigan, J., Pogue, C., & Divis, D. (1999). Metrics for Small Projects:
Experiences at the SED. IEEE Software. 16 (2). 21-28.

Halstead, M. (1977). Elements of Software Science. North Holland: Elsevier
Publications.

Hansen, W. (1978). Measurement of the Program Complexity by the Pair
(Cyclomatic Number, Operator Count). ACM SIGPLAN. 13.

Henry, S., & Kafura, D. (1981). Software Structure Metrics based on Information
Flow. IEEE Transactions on Software Engineering. SE-7 (5). 510-518.

Hudepohl, J.P., Aud, S.J., Khoshgoftaar, T.M., Allen, E.B., & Maykand, J. (1996).
Emerald: Software Metrics and Models on the Desktop. IEEE Software. 13 (5). 56-
60.

ISO9001: Quality Management and Quality Assurance Standards. (1991).
International Standard ISO/IEC 9001.

1ISO9126: Information technology. Evaluation of software. Quality characteristics
and guides for their use. (1996). International Standard. ISO/IEC 9126.

242

Pre-print version of the paper published in:
“Strategies for Information Technology Governance”, Wim Van Grembergen (Ed), Idea
Group Publishing, ISBN 1-59140-140-2, Chapter IX, pp. 216-244, 2003.

Joergensen, A. (1980). A Methodology for Measuring the Readability and
Modifiability of Computer Programs. BIT Journal. 20. 394-405.

Kaplan, C., Clark, R., & Tang, V. (1995). Secrets of Software Quality. New York:
McGraw Hill.

Kautz, K. (1999). Making Sense of Measurement for Small Organizations. IEEE
Software. 16 (2). 14-20.

Kitchenham, B., & Pfleeger, S. (1996). Software Quality: The Elusive Target. IEEE
Software. 13 (1). 12-21.

Lahlou, S., Van der Maijden, R., Messu, M., Poquet, G., & Prakke, F. (1992). A
Guideline for Survey - Techniques in Evaluation of Research. Blussels: ESSC-EEC-
EAEC.

Lavazza, L. (2000). Providing Automated Support for the GQM Measurement
Process. IEEE Software. 17 (3). 56-62.

Lorenz, M., & Kidd, J. (1994). Object-Oriented Software Metrics. New York:
Prentice Hall.

Mackey, K. (2000). Mars versus Venus. IEEE Software. 17 (3). 14-16.

McCabe, T. (1976). A Software Complexity Measure. IEEE Transactions in Software
Engineering. SE-2 (4). 308-320.

McCall, J.A., Richards, P.K., & Walters, G.F. (1977). Factors in Software Quality.
(Vols I, 11, 111). US Rome Air Development Center Reports NTIS AD/A-049. 14-55.

McGarry, F., & Decker, B. (2002). Attaining Level 5 in CMM Process Maturity.
IEEE Software. 19 (6). 87-96.

Miller, A., & Ebert, C. (2002). Software Engineering as a Business. IEEE Software.
19 (6). 18-22.

Montgomery, D.C. (1991). Introduction to Statistical Quality Control. (2™ ed.). New
York: John Wiley & Sons.

Paulk, M.C., Curtis, B., Chrissis, M.B. & Weber, C.V. (1993). Capability Maturity
Model for Software (Version 1.1). Pittsburgh: Carnegie Mellon University — Software
Engineering Institute: Technical Report. CMU/SEI-93-TR-024.

Putnam, L., & Myers, W. (1992). Measures for Excellence. Cambridge: Yourdon
Press.

Ragland, B. (1995). Measure, Metric or Indicator: What’s the Difference? Crosstalk.
8.

Shepperd, M., & Ince, D. (1990). The Use of Metrics in the Early Detection of Design
Errors. Proceedings of Software Engineering.

Solingen, R., & Berghout, E. (1999). The Goal Question Metric Method. McGraw
Hill.

243

Pre-print version of the paper published in:
“Strategies for Information Technology Governance”, Wim Van Grembergen (Ed), Idea
Group Publishing, ISBN 1-59140-140-2, Chapter IX, pp. 216-244, 2003.

Stamelos, 1., & Angelis, L. (2001). Managing Uncertainty in Project Portfolio Cost
Estimation. Information & Software Technology. Elsevier Publications. 43 (13). 759-
768.

Tsai, W.T., Lopez, M.A., Rodriguez, V., & Volovik, D. (1986). An Approach to
Measuring Data Structure Complexity. Compsac86. 240-246.

Tsalidis, C., Christodoulakis, D., & Maritsas, D. (1991). Athena: A Software
Measurement and Metrics Environment. Software Maintenance Research and
Practice.

Van Grembergen, W. (2002). Introduction to the Minitrack: IT Governance and its
Mechanisms, Proceedings of the 35th Hawaii International Conference on System
Sciences (HICSS), IEEE.

Weller, E.F. (2000). Practical Applications of Statistical Process Control. IEEE
Software. 17 (3). 48-55.

Xenos, M., & Christodoulakis, D. (1994). An Applicable Methodology to Automate
Software Quality Measurements. IEEE Software Testing and Quality Assurance
International Conference. New Delhi. 121-125.

Xenos, M., & Christodoulakis, D. (1997). Measuring Perceived Software Quality.
Information and Software Technology Journal. Butterworth Publications. 39 (6). 417-
424,

Xenos, M., Stavrinoudis, D., & Christodoulakis D. (1996). The Correlation Between
Developer-oriented and User-oriented Software Quality Measurements (A Case
Study). Proceedings of the 5th European Conference on Software Quality. EOQ-SC.
Dublin: Ireland. 267-275.

Xenos, M., Thanos, P., & Christodoulakis, D. (1996). QSUP: A Supporting
Environment for Preserving Quality Standards. Proceedings of the 6th International
Conference on Software Quality. Dundee Scotland. 146-154.

244

