
Shortest Path Queries in Digraphs
of Small Treewidth ?

Shiva Chaudhuri and Christos D. Zaroliagis

Max-Planck-Institut für Informatik, Im Stadtwald, D-66123 Saarbrücken, Germany
E-mail: {shiva, zaro}@mpi-sb.mpg.de

Abstract. We consider the problem of preprocessing an n-vertex di-
graph with real edge weights so that subsequent queries for the shortest
path or distance between any two vertices can be efficiently answered.
We give algorithms that depend on the treewidth of the input graph.
When the treewidth is a constant, our algorithms can answer distance
queries in O(α(n)) time after O(n) preprocessing. This improves upon
previously known results for the same problem. We also give a dynamic
algorithm which, after a change in an edge weight, updates the data
structure in time O(nβ), for any constant 0 < β < 1. The above two al-
gorithms are based on an algorithm of independent interest: computing
a shortest path tree, or finding a negative cycle in linear time.

1 Introduction

Finding shortest paths in digraphs is a well-studied and important problem
with many applications, especially in network optimization (see e.g. [1]). The
problem is to find paths of minimum weight between vertices in an n-vertex,
m-edge digraph with real edge weights (Section 2). In the single-source problem
we seek such paths from a specific vertex to all other vertices and in the all-pairs
shortest paths (apsp) problem we seek such paths between every pair [1].

For general digraphs the best algorithm for the apsp problem takes O(nm +
n2 log n) time [14]. An apsp algorithm must output paths between Ω(n2) vertex
pairs and thus requires this much time and space. A more efficient approach is to
preprocess the digraph so that subsequently, queries can be efficiently answered.
A query specifies two vertices and a shortest path query asks for a minimum
weight path between them, while a distance query only asks for the weight of
such a path. This approach is particularly promising when the digraph is sparse
i.e. m = O(n). An interesting subclass of sparse digraphs, namely outerplanar
digraphs, has been intensively studied. In [12] it was shown that after O(n)
preprocessing, a shortest path or distance query is answered in O(L+log n) time
(where L is the number of edges of the reported path). In [8], a different approach
reduces the distance query time to O(log n) (with the same preprocessing time).
Recently, in [13], the distance query time is improved to O(α(n)), where α(n)

? To appear in Proc. 22nd ICALP’95. This work was partially supported by the EU
ESPRIT Basic Research Action No. 7141 (ALCOM II).

is the inverse of (the well-known) Ackermann’s function and is a very slowly
growing function.

Another important subclass of sparse graphs is the class of graphs with
bounded treewidth. The study of graphs using the treewidth as a parameter
was pioneered by Robertson and Seymour [17] and continued by many others
(see e.g. [3–5]). Roughly speaking, the treewidth of a graph G is a parameter
which measures how close is the structure of G to a tree. (A formal definition
is given in Section 2.) Graphs of treewidth t are also known as partial t-trees
and have at most tn edges. In [6], the same bounds as in [8] are achieved for the
above problem on digraphs with treewidth at most 2. Classifying graphs based
on treewidth is useful because diverse properties of graphs can be captured by a
single parameter. For instance, the class of graphs of bounded treewidth includes
series-parallel graphs, outerplanar graphs, graphs with bounded bandwidth and
graphs with bounded cutwidth [3, 5]. Thus giving efficient algorithms parameter-
ized by treewidth is an important step in the development of better algorithms
for sparse graphs.

In this paper we consider the above problem for digraphs of small treewidth.
Our main result is an algorithm that, for digraphs of constant treewidth, after
O(n) preprocessing answers a distance query in O(α(n)) time and a shortest
path query in O(Lα(n)) time. This improves the results in [6, 8, 12, 13] in two
ways: it improves the distance query time and applies to a larger class of graphs.
The data structures in [12, 13] are not dynamic, while those in [6, 8] are dynamic.
After a change in the weight of an edge, these data structures can be updated in
O(log n) time. We also give a dynamic data structure that does not achieve this
update bound, but does achieve a sublinear one. In particular, we can perform
updates in O(nβ) time, for any constant 0 < β < 1, maintaining the previous
query times.

We actually show a trade-off between the preprocessing and query times
which is parameterized by the treewidth of the graph and an integer 1 ≤ k ≤
α(n). Specifically, for a digraph of treewidth t and any integer 1 ≤ k ≤ α(n), we
give an algorithm that achieves distance (resp. shortest path) query time O(t4k)
(resp. O(t4kL)). The preprocessing bound required is O(t4n log n), when k = 1,
O(t4n log∗ n), when k = 2, and decreases rapidly to O(t4n) when k = α(n)
(Section 4). We note that graphs of treewidth t may have Ω(tn) edges.

Concerning the single-source problem, most algorithms either construct a
shortest path tree rooted at a given vertex, or find a negative weight cycle. Con-
structing a shortest path tree is often easier when the digraph has non-negative
edge weights. For general digraphs with non-negative real edge weights the best
algorithm takes O(m + n log n) time [14] to construct the shortest path tree.
If the digraph contains negative real edge weights, then one needs O(nm) time
to either construct a shortest path tree, or find a negative weight cycle [1]. For
outerplanar digraphs, in O(n) time, a shortest path tree can be constructed [8,
11], or a negative cycle can be found [15]. For planar digraphs with positive real
edge weights, an O(n) time algorithm is given in [16]. With negative but integer
weights, the same paper gives an O(n4/3 log n) time algorithm which constructs

a shortest path tree, or finds a negative cycle. In the case of negative real edge
weights, the results for planar digraphs in [9, 10], imply an algorithm that in
O(n

√
log log n) time either computes a shortest path tree, or decides that the

graph contains a negative cycle. (We note that this algorithm does not find the
cycle.) The best algorithm to construct a shortest path tree, or find a negative
cycle in a planar digraph takes (in the worst case) O(n1.5 log n) time [15].

We also give here an O(n) time algorithm that, for digraphs of constant
treewidth, either constructs a shortest path tree or finds a negative cycle (Section
3). This generalizes the results in [15] for outerplanar digraphs. To the best of
our knowledge, this is the most general class of graphs for which the complexity
of computing a shortest path tree matches that of finding a negative cycle.

All of our algorithms start by computing a tree-decomposition of the input
digraph G. The tree decomposition of a graph with constant treewidth can be
computed in O(n) time [4]. The main idea behind our algorithms is the following.
We define a certain value for each node of the tree-decomposition of G, and
an associative operator on these values. We then show that the shortest path
problem reduces to computing the product of these values along paths in the tree-
decomposition. Algorithms to compute the product of node values along paths in
a tree are given in [2, 7]. Our preprocessing vs. query time trade-off arises from
a similar trade-off in [2, 7]. The dynamization of our data structures is based
on the above ideas and on a graph partitioning result which is of independent
interest. Due to space limitations some proofs have been shortened or omitted.

2 Preliminaries

In this paper, we will be concerned with finding shortest paths or distances
between vertices of a directed graph. Thus, we assume that we are given an
n-vertex weighted digraph G, i.e. a digraph G = (V (G), E(G)) and a weight
function wt : E(G) −→ IR. We call wt(u, v) the weight of edge 〈u, v〉. The weight
of a path in G is the sum of the weights of the edges on the path. For u, v ∈ V (G),
a shortest path in G from u to v is a path whose weight is minimum among all
paths from u to v. The distance from u to v, written as δ(u, v) or δG(u, v), is
the weight of a shortest path from u to v in G. A cycle in G is a (simple) path
starting and ending at the same vertex. If the weight of a cycle in G is less than
zero, then we will say that G contains a negative cycle. It is well-known [1] that
shortest paths exist in G, iff G does not contain a negative cycle.

For a subgraph H of G, and vertices x, y ∈ V (H), we shall denote by δH(x, y)
the distance of a shortest path from x to y in H. A shortest path tree rooted at
v ∈ V (G), is a tree such that ∀w ∈ V (G), the tree path from v to w is a shortest
path in G from v to w.

Let G be a (directed or undirected) graph and let W ⊆ V (G). Then by
G[W] we shall denote the subgraph of G induced on W . Let V1, V2 and S be
disjoint subsets of V (G). We say that S is a separator for V1 and V2, or that S
separates V1 from V2, iff every path from a vertex in V1 (resp. V2) to a vertex in
V2 (resp. V1) passes through a vertex in S. Let H be a subgraph of G. A cut-set

for H is a set of vertices C(H) ⊆ V (H), whose removal separates H from the
rest of the graph.

Definition 1. Let H be a digraph, with V1, V2 and U a partition of V (H) such
that U is a separator for V1 and V2. Let H1 and H2 be subgraphs of H such that
V (H1) = V1 ∪ U , V (H2) = V2 ∪ U and E(H1) ∪ E(H2) = E(H). We say that
H ′

1 is a graph obtained by absorbing H2 into H1, if H ′
1 is obtained from H1 by

adding edges 〈u, v〉, with weight δH2(u, v) or δH(u, v), for each pair u, v ∈ U . (In
case of multiple edges, retain the one with minimum weight.)

Absorbing preserves distances in a digraph, as the following lemma shows.
This allows us to absorb the subgraph on one side of the separator and restrict
our attention to the remaining subgraph, which maybe is smaller.

Lemma 1. Let H, H1,H2 and H ′
1 be as in Definition 1. Then, for all x, y ∈

V (H ′
1), δH′

1
(x, y) = δH(x, y).

Proof. It is enough to show that δH(x, y) ≤ δH′
1
(x, y) and δH′

1
(x, y) ≤ δH(x, y).

Call an edge 〈u, v〉 in H ′
1 an H2-edge if it has weight δH2(u, v) and an H-edge if

its weight is δH(u, v).
Case 1: δH(x, y) ≤ δH′

1
(x, y). Consider a shortest path from x to y in H ′

1. Con-
struct a walk from x to y in H by replacing, in the above path from H ′

1, all
H2-edges by a path in H2 of the same weight and all H-edges by a path in H
of the same weight (both of which exist, by construction). Now this walk has
weight δH′

1
(x, y) and a shortest path in H ′

1 from x to y cannot weight more.
Case 2: δH′

1
(x, y) ≤ δH(x, y). Consider a shortest path from x to y in H. Find all

maximal (w.r.t. the number of edges) subpaths that are contained in H2. These
paths must start and end in vertices in U . Let W be the weight of one such path
(in H2) from u to v, u, v ∈ U . Then H ′

1 has an edge 〈u, v〉 with weight either
δH2(u, v) or δH(u, v), both of which are at most W . Construct a path from x to
y in H ′

1 by replacing each such subpath by the corresponding H2-edge or H-edge
in H ′

1. The resulting path has weight at most δH(x, y). ut
A tree-decomposition of a (directed or undirected) graph G is a pair (X, T)

where T = (V (T), E(T)) is a tree and X is a family {Xi|i ∈ V (T)} of subsets
of V (G), such that ∪i∈V (T)Xi = V (G) and also the following conditions hold:

– (edge mapping) ∀(v, w) ∈ E(G), there exists an i ∈ V (T) with v ∈ Xi and
w ∈ Xi.

– (continuity) ∀i, j, k ∈ V (T), if j lies on the path from i to k in T , then
Xi ∩ Xk ⊆ Xj , or equivalently: ∀v ∈ V (G), the nodes {i ∈ V (T)|v ∈ Xi}
induce a connected subtree of T .

The treewidth of a tree-decomposition is maxi∈V (T) |Xi| − 1. The treewidth
of G is the minimum treewidth over all possible tree-decompositions of G.

Fact 1 [4] (a) For all constant t ∈ IN , there exists an O(n) time algorithm
which tests whether a given n-vertex graph G has treewidth ≤ t and if so, out-
puts a tree-decomposition (X, T) of G with treewidth ≤ t, where |V (T)| = n− t.

(b) We can, in O(n) time, convert (X,T) into another tree-decomposition (Xb, Tb)
of G with treewidth t, where Tb is a binary tree and |V (Tb)| ≤ 2(n− t).

Part (b) of the above fact follows by the usual binarization of an arbitrary
tree. We will use this in Section 5. Given a tree-decomposition of G, we can
quickly find separators in G, as the following proposition shows.

Proposition 1. [17] Let G be a graph and let (X,T) be its tree-decomposition.
Also let e = (i, j) ∈ E(T) and let T1 and T2 be the two subtrees obtained by
removing e from T . Then Xi ∩Xj separates ∪m∈V (T1)Xm from ∪m∈V (T2)Xm.

3 Constructing a shortest path tree

Call a tuple (a, b, c) a distance tuple if a, b are arbitrary symbols and c ∈ IR.
For two distance tuples, (a1, b1, c1), (a2, b2, c2), define their product (a1, b1, c1)⊗
(a2, b2, c2) = (a1, b2, c1 + c2) if b1 = a2 and as nonexistent otherwise.

For a set of distance tuples, M , define minmap(M) to be the set {(a, b, c) :
(a, b, c) ∈ M and ∀(a′, b′, c′) ∈ M if a′ = a, b′ = b, then c ≤ c′}, i.e. among
all tuples with the same first and second components, minmap retains only the
tuples with the smallest third component.

Let M1 and M2 be sets of distance tuples. Define the operator ◦ by M1◦M2 =
minmap(M), where M = {x⊗ y : x ∈ M1, y ∈ M2}. It is not difficult to show
that ◦ is an associative operator.

Let G be a digraph with real edge weights. Note that in the above definition,
if M1 and M2 have tuples of the form (a, b, x) where a, b ∈ V (G) and x is the
weight of a path from a to b, then M1 ◦M2 computes tuples (a, b, y) where y is
the (shortest) distance from a to b using only the paths represented in M1 and
M2.

For X,Y ⊆ V (G), not necessarily distinct, define P (X,Y) = {(a, b, δG(a, b)) :
a ∈ X, b ∈ Y }. We will write S(X) for P (X, X). (By definition, S(X) contains
tuples (x, x, 0), ∀x ∈ X.)

Definition 2. Let G be an n-vertex weighted digraph without negative cycles and
let (X, T) be a tree decomposition of G, with treewidth t. Then, for i ∈ V (T), we
define γ(i) = S(Xi).

The following lemma shows that we can compute δ(a, b) by computing the
product of the γ values on the path in T between nodes i and j such that a ∈ Xi

and b ∈ Xj .

Lemma 2. Let G, (X,T) and γ(i), for i ∈ V (T), be as in Definition 2. Let
v1, . . . , vp be a path in T . Then γ(v1) ◦ . . . ◦ γ(vp) = P (Xv1 , Xvp).

Proof. It is not hard to show, from the definitions of P (X,Y) and of ◦, that
P (X, Y) ◦ P (Z, W) = {(x,w, d) : x ∈ X, w ∈ W, d is the weight of the shortest
x to w path that includes a vertex in Y ∩ Z (this vertex may be x or w)}.

We prove the lemma by induction on p. If p = 1, then the lemma holds
by the definition of γ(v1). If p > 1, then by the inductive hypothesis, γ(v1) ◦
. . . ◦ γ(vp−1) = P (Xv1 , Xvp−1). By definition, γ(vp) = S(Xvp

). By Proposition
1, all paths from a vertex in Xv1 to a vertex in Xvp include a vertex from
Xvp−1 ∩ Xvp . Hence, by the characterization above, P (Xv1 , Xvp−1) ◦ S(Xvp) =
{(x, y, δG(x, y)) : x ∈ Xv1 , y ∈ Xvp

} = P (Xv1 , Xvp
). ut

The following lemma shows that we can efficiently compute the γ values for
each node of a tree-decomposition. The algorithm repeatedly shrinks the tree,
by absorbing the subgraphs corresponding to leaves. When the tree is reduced
to a single node, the algorithm computes γ using brute force, for this node, since
the distances are preserved during absorption. Then, it reverses the shrinking
process and expands the tree, using the γ values already computed to compute
γ values for the newly expanded nodes.

Lemma 3. Let G be an n-vertex weighted digraph and let (X, T) be the tree
decomposition of G, of treewidth t. For each pair u, v such that u, v ∈ Xi for
some i ∈ V (T), let Dist(u, v) = δ(u, v) and Int(u, v) = x where x is some
intermediate vertex on a shortest path from u to v. (If wt(u, v) = δ(u, v), then
Int(u, v) = null.) Then in O(t4n) time, we can either find a negative cycle in
G, or compute the values Dist(u, v) and Int(u, v) for each such pair u, v.

Proof. Initially all the values Dist(u, v) are set to ∞ and Int(u, v) to null. We
give an inductive algorithm.

We use induction on |V (T)|. Choose a leaf, l, of T . Run the Bellman-Ford
algorithm on G[Xl] in time O(t4). If G[Xl] contains a negative cycle, it will
be found, so henceforth assume that G[Xl] does not contain a negative cycle.
Update the values for pairs u, v ∈ Xl as follows: if the weight of the shortest
path found is less than the current value of Dist(u, v), then set Dist(u, v) to the
new value and Int(u, v) to any intermediate vertex on the shortest path found.
If wt(u, v) is equal to the weight of the shortest path found, then set Int(u, v) =
null.

If |V (T)| = 1, we are done. Otherwise remove l from T and call the resulting
tree T ′. Let V ′ = ∪i∈V (T ′)Xi and construct G′ by absorbing G[Xl] into G[V ′],
where the weight of each added edge 〈u, v〉 is δG[Xl](u, v). Then, for any vertices
u, v ∈ V ′, δG′(u, v) = δG(u, v), by Lemma 1. In particular, if G contains a
negative cycle, so does G′. Note that (X − Xl, T

′) is a tree-decomposition for
G′. Inductively run the algorithm on G′. If a negative cycle is found in G′, then
a negative cycle in G can be found by replacing any edges added during the
absorption by their corresponding paths in G[Xl]. Hence, we may assume that
G′ does not contain a negative cycle.

For a, b ∈ V ′, Dist(a, b) = δG′(a, b) = δG(a, b), as desired. If Int(a, b) = x 6=
null, then x is an intermediate vertex on a shortest a to b path in G′ and
hence also in G, as desired. If Int(a, b) = null, then 〈a, b〉 is a shortest path
in G′. If wt(a, b) > Dist(a, b), then this edge must have been added during the
absorption. Correct the value Int(a, b) by setting it to some intermediate vertex

on the corresponding a to b shortest path found in G[Xl]. After this, all Int
values are correct for a, b ∈ V ′.

Construct a digraph G′′ by absorbing G[V ′] into G[Xl], with each added edge
〈u, v〉 having weight δG(u, v). By Lemma 1, δG′′(x, y) = δG(x, y), ∀x, y ∈ Xl. Run
the Bellman-Ford algorithm on G′′ to recompute all pairs shortest paths. Update
the values Dist(a, b) and Int(a, b) for a, b ∈ Xl as before.

For a, b ∈ Xl, Dist(a, b) = δG′′(a, b) = δG(a, b) as desired. For a, b ∈ V ′ ∩Xl,
Int(a, b) is not changed since Dist(a, b) is already δG(a, b). If either a or b does
not belong to V ′ ∩Xl, Int(a, b) = an intermediate vertex on a shortest path in
G′′ and hence in G, or Int(a, b) = null in which case wt(a, b) = δG(a, b). Thus,
the values computed are correct for all pairs a, b which completes the induction.
The time analysis follows easily. ut

Therefore, we can assume in the following that G does not contain a negative
cycle. We will now briefly describe how a shortest path tree, rooted at a given
vertex s, is computed. Perform a DFS of T starting at vertex i, where s ∈ Xi,
storing at each vertex j ∈ V (T) the product of the γ values on the path from
i to j. Let y ∈ V (G) and let j ∈ V (T) such that y ∈ Xj . By Lemma 2, the
value stored at vertex j during the DFS, is P (Xi, Xj) which contains the tuple
(s, y, δ(s, y)). This implies that for each y ∈ V (G), we have the distance δ(s, y).
Having the distances, we construct the actual tree by performing a kind of BFS
(starting at s) in G based on these distances. Hence, we conclude:

Theorem 1. Let G and (X, T) be as in Definition 2. Let s ∈ V (G). In O(t4n)
time we can compute a shortest path tree rooted at s.

4 Shortest path and distance queries

For a function f let f (1)(n) = f(n); f (i)(n) = f(f (i−1)(n)), i > 1. Define
I0(n) = dn

2 e and Ik(n) = min{j | I
(j)
k−1(n) ≤ 1}, k ≥ 1. The functions Ik(n)

decrease rapidly as k increases; note, for example, that I1(n) = dlog ne and
I2(n) = log∗ n. Finally, define α(n) = min{j | Ij(n) ≤ j}. The following theorem
was proved in [2, 7].

Theorem 2. Let • be an associative operator defined on a set S, such that for
q, r ∈ S, q • r can be computed in O(m) time. Let T be a tree with n nodes such
that each node is labelled with an element from S. Then: (i) for each k ≥ 1,
after O(mnIk(n)) preprocessing, the composition of labels along any path in the
tree can be computed in O(mk) time; and (ii) after O(mn) preprocessing, the
composition of labels along any path in the tree can be computed in O(mα(n))
time.

We use this in the proof of the following.

Theorem 3. For any integer t and any k ≥ 1, let G be an n-vertex weighted
digraph of treewidth at most t, whose tree-decomposition can be found in T (n, t)

time. Then, the following hold: (i) After O(t4nIk(n) + T (n, t)) time and space
preprocessing, distance queries in G can be answered in time O(t4k). (ii) After
O(t4n + T (n, t)) time and space preprocessing, distance queries in G can be
answered in time O(t4α(n)).

Proof. First, we compute the tree-decomposition (X, T) of G. By Lemma 3,
we compute values Dist(u, v) for u, v such that u, v ∈ Xi for some i ∈ V (T).
From these values, we can easily compute γ(i), ∀i ∈ V (T). By Theorem 2 we
preprocess T so that product queries on γ can be answered. Given a query,
u, v ∈ V (G), let i, j be vertices of T such that u ∈ Xi and v ∈ Xj . We ask
for the product of the γ values on the path between i and j. By Lemma 2, the
answer to this query contains the information about δ(u, v). The bounds follow
easily by the ones given in Theorem 2 and by the fact that the composition of
any two γ values can be computed in O(t4) time. ut
Theorem 4. For any integer t and any k ≥ 1, let G be an n-vertex weighted
digraph of treewidth at most t, whose tree-decomposition can be found in T (n, t)
time. Then, the following hold: (i) After O(t4nIk(n)+T (n, t)) preprocessing, we
can answer shortest path queries in G in time O(t5kL), where L is the length
of the reported path. (ii) After O(t4n + T (n, t)) preprocessing, we can answer
shortest path queries in G in time O(t5α(n)L), where L is the length of the
reported path.

Proof. We first compute a tree decomposition (X,T) of G. In the preprocessing
phase, we compute the following data structures. Using Lemma 3, we compute
the values Dist(u, v) and Int(u, v), for all pairs u, v ∈ Xi, for some i ∈ V (T).
From the Dist values, we compute γ(i), ∀i ∈ V (T). We use Theorem 3 to com-
pute a data structure in O(t4nIk(n)) (or in O(t4n)) time so that distance queries
can be answered in time O(t4k) (or O(t4α(n))). Root the tree T arbitrarily. De-
fine, for each vertex v ∈ V (G), h(v) to be the tree node i such that v ∈ Xi

and i is the closest such node to the root of the tree. Preprocess T so that h(v)
can be found in constant time. Such a preprocessing can easily be done with,
say, a DFS of T . Further, preprocess T so that lowest common ancestor (LCA)
queries can be answered in constant time. Clearly, the time for the preprocessing
is dominated by the time required by Theorem 3.

Let the query be for the shortest path between u and v. We first show that
it is sufficient to consider the case when h(u) is a descendant of h(v) in T , or
vice versa. Suppose h(u) and h(v) are not descendants of each other. Then let
i be the LCA of the two. By Proposition 1, a shortest path from u to v passes
through some vertex z 6= u, v in Xi, and δ(u, v) = δ(u, z) + δ(z, v). By O(t)
queries, we can find this vertex z and then find the shortest paths from u to z
and from z to v, and h(u) and h(v) are both descendants of h(z).

Therefore, assume h(u) is a descendant of h(v). (A similar argument holds
when h(v) is a descendant of h(u).) The query algorithm first checks if u and
v both belong to Xi, for some i ∈ V (T). In particular, if there exists such an
Xi, then u and v appear together in Xh(u). If they do, then, if Int(u, v) = null,
the algorithm returns the edge 〈u, v〉. If Int(u, v) = x 6= null, the algorithm

recursively queries for the shortest paths from u to x and from x to v, and
returns the concatenation of these two paths. Therefore, assume that u and v
do not appear together in any Xi. Let p be the parent of h(u) in T . Then, by
Proposition 1, there exists a vertex z ∈ Xp such that a shortest path from u to
v passes through z, hence, δ(u, v) = δ(u, z) + δ(z, v). (Note that z may be v.)
This vertex can be found with O(t) distance queries. The algorithm recursively
queries for the shortest paths from u to z and from z to v, and returns the
concatenation of these two paths.

A simple induction shows that the query algorithm returns a path in O(t5kL)
(or O(t5α(n)L)) time, where L is the number of edges of the reported path. ut

Hence, the results claimed in the Introduction, for digraphs of constant
treewidth, are now immediate from Fact 1 and Theorems 3 and 4.

5 Dynamization

In this section we shall give our dynamic data structures and algorithms. The
following lemma about graph partitions plays a key role. (The proof is omitted
for lack of space.)

Lemma 4. Given an n-vertex digraph G, a binary tree-decomposition of G of
treewidth t and a positive integer 1 ≤ m ≤ n, we can, in O(t2n) time, divide
G into q ≤ 16n/m subgraphs H1, . . . ,Hq, and construct another subgraph H ′

such that: (i) Hi has at most tm vertices and a cut-set C(Hi) of size at most
3t; (ii) H ′ is the induced subgraph on vertices ∪q

i=1C(Hi), augmented with edges
〈x, y〉, x, y ∈ C(Hi) for each 1 ≤ i ≤ q; and (iii) we have a binary tree decom-
position of treewidth t for each Hi and a binary tree decomposition for H ′ of
treewidth 3t.

Our dynamic algorithm works as follows. Using the above Lemma, it divides
the digraph into subgraphs with disjoint edge sets and small cut-sets, and con-
structs another (smaller) digraph – the reduced digraph – by absorbing each
subgraph. The sizes of the subgraphs are chosen so that the subgraphs and the
reduced digraph both have size roughly

√
n. The algorithm then constructs a

query data structure for each subgraph and for the reduced digraph. Queries can
be efficiently answered by querying these data structures. Since the edge sets are
disjoint, a change in the weight of an edge affects the data structure for only one
subgraph. Then the data structure of this subgraph is updated. This may result
in new distances between vertices in its cut-set, which appear in the reduced di-
graph as changes in the weights of edges between these cut-set vertices. Since the
cut-set is small, the weights of only a few edges in the reduced digraph change.
The data structure for the reduced digraph is updated to reflect these changes.
Thus an update in the original digraph is accomplished by a small number of
updates in subgraphs of size

√
n. This idea is recursively applied below to further

reduce the update time.

Let Dyn(G, P, U,Q) be a dynamic data structure for a digraph G, where
O(P) is the preprocessing time and space to be set up, O(Q) is the time to
answer a distance query and O(U) is the time to update it after the modification
of an edge-weight.

Theorem 5. For all positive integers t, r, given an n-vertex weighted digraph
G, and a binary tree-decomposition of G of treewidth t, we can construct the
following dynamic data structures: (i) Dyn(G, crt3n, c2rt2n(1/2)r−1

, c2rt2α(n));
and (ii) Dyn(G, crt3nIk(n), c2rt2n(1/2)r−1

, c2rt2k), where c = 3r+2t.

Proof. We shall prove part (i). Part (ii) can be proved similarly. We use induction
on r. For r = 1, the basis is given by the static data structure of Theorem 3,
with updates implemented by simply recomputing the data structure.

We use the notation D(G,n, r, t) for Dyn(G, crt3n, c2rt2n(1/2)r−1
, c2rt2α(n)).

Assume that the theorem holds for any r′ < r. We show how to construct
D(G,n, r, t).

Use Lemma 4 (with parameter m = 8
√

n) to divide G into subgraphs H1, . . . , Hq,
q ≤ 2

√
n, each with at most 8t

√
n vertices and construct H ′ which has at most

(3t)2
√

n vertices. Define Gi to be Hi with all edges joining pairs of vertices
in its cut-set deleted. Define G′ to be H ′ with edges 〈x, y〉 weighted δGi(x, y)
for each pair x, y ∈ C(Gi), 1 ≤ i ≤ q. Replace multiple edges by the edge
of minimum weight. Note that G′ is exactly the graph obtained by absorb-
ing G1, G2, . . . , Gq into the rest of the graph. By Lemma 1, it follows that
δG′(x, y) = δG(x, y), ∀x, y ∈ V (G′).

Let u ∈ V (Gi), v ∈ V (Gj) − V (Gi). Then, any path from u to v must pass
through a vertex in each of the cut-sets of Gi and Gj . Then we have δG(u, v) =
min{δGi(u, x) + δG′(x, y) + δGj (y, v) : x ∈ C(Gi), y ∈ C(Gj)}. Similarly, for
u, v ∈ V (Gi), we have δG(u, v) = min{δGi(u, v),min{δGi(u, x) + δG′(x, y) +
δGi(y, v) : x, y ∈ C(Gi)}}. If we are able to make queries of the form δGi(x, y)
and δG′(x, y), the above directly yields a query algorithm for any pair of vertices
x, y.

Write ni for |V (Gi)| and n′ for |V (G′)|. Note that Lemma 4 also gives us a
tree-decomposition of treewidth t for each subgraph Gi, and a tree-decomposition
of treewidth 3t for G′. Thus we can inductively construct D(Gi, ni, r − 1, t) for
each 1 ≤ i ≤ q, which enables us to answer queries of the form δGi(x, y), and
D(G′, n′, r− 1, 3t) which enables us to answer queries of the form δG′(x, y). The
data structure D(G,n, r, t) is the union of the above data structures.

The update procedure is the following: note that E(Gi) ∩ E(Gj) = ∅, i 6= j
and E(Gi)∩E(G′) = ∅, i.e. each edge of G belongs to exactly one of the Gi’s or to
G′. Suppose the cost of an edge belonging to Gi is changed. Then, we update the
data structure for Gi. This may result in new values for δGi(x, y), x, y ∈ C(Gi).
We query the updated data structure for δGi(x, y), x, y ∈ C(Gi) and change
the weights of the corresponding edges of G′, updating the data structure for
G′ after each change. That the procedure is correct follows from the fact that
changing the cost of an edge in Gi does not change δGj (x, y), x, y ∈ C(Gj)
when j 6= i. Thus, after we change, in G′, the cost of edges 〈x, y〉, x, y ∈ C(Gi),

we have δG′(u, v) = δG(u, v), u, v ∈ V (G′), again, by repeated applications of
Lemma 1. After the last update, the data structure for G′ yields correct distances
in G, between vertices in V (G′). Now suppose we change the cost of an edge
belonging to G′. Then the distances δGi(x, y) do not change. Thus, in this case,
we simply update the data structure for G′. This completes the description of
the preprocessing and update algorithms.

Let the time taken for preprocessing, querying and updating D(G, n, r, t) be
P (r, t)n, Q(r, t)α(n) and U(r, t)n(1/2)r−1

, respectively. Writing N = max{ni :
1 ≤ i ≤ q}, we have the following recurrences:

P (r, t)n ≤ t4n +
q∑

i=1

P (r − 1, t)N + P (r − 1, 3t)n′

Q(r, t)α(n) ≤ (3t)2[2Q(r − 1, t)α(N) + Q(r − 1, 3t)α(n′)]

U(r, t)n(1/2)r−1 ≤ U(r − 1, t)N (1/2)r−2
+

(3t)2[Q(r − 1, t)α(N) + U(r − 1, 3t)(n′)(1/2)r−2
]

The terms in the recurrence for P (r, t)n are for constructing the Gi’s and
G using Lemma 4, for constructing D(Gi, ni, r − 1, t) for each Gi and for con-
structing D(G′, n′, r− 1, 3t). The terms in the recurrence for Q(r, t)α(n) are for
the two queries in Gi and Gj and for the query in G′, which have to be made
for each pair of vertices, one in the cut-set of Gi and one of Gj . The terms in
the update recurrence are for updating Gi, and then updating the edges in G′

between vertices in the cut-set of Gi.
By construction, n′, N ≤ 8t

√
n. The sum of the number of vertices in each

Gi cannot exceed the number of vertices in the initial tree decomposition, so∑q
i=1 ni ≤ 2tn. Making these substitutions in the above recurrences and esti-

mating gives:

P (r, t)n ≤ t4n + 2tnP (r − 1, t) + 8t
√

nP (r − 1, 3t) ≤ 9tP (r − 1, 3t)n
Q(r, t)α(n) ≤ (3t)2[2Q(r − 1, t)α(8t

√
n) + Q(r − 1, 3t)α(8t

√
n)]

≤ 3(3t)2Q(r − 1, 3t)α(n)

U(r, t)n(1/2)r−1 ≤ U(r − 1, t)(8t
√

n)(1/2)r−2
+ (3t)2[Q(r − 1, t)α(8t

√
n)

+U(r − 1, 3t)(8t
√

n)(1/2)r−2
] ≤ (3t)216tU(r − 1, 3t)n(1/2)r−1

It is easily verified that the claimed bounds satisfy the recurrences above.
Thus we can construct D(G, n, r, t), completing the induction. ut

The next theorem follows directly from Fact 1 and Theorem 5 with r =
1− log β.

Theorem 6. Let k ≥ 1 be any constant integer and let 0 < β < 1 be any
constant. Given an n-vertex weighted digraph G of constant treewidth, we can
construct: (i) Dyn(G,n, nβ , α(n)); and (ii) Dyn(G,nIk(n), nβ , k).

The algorithms described above give answers to distance queries only. They
can be modified to answer path queries as well, in time O(kL) (or O(Lα(n))).
Also, before running our update procedure after a change in the weight of an
edge, we have to ensure that this change does not create a negative cycle in G.
This can be easily tested as follows. Let 〈u, v〉 be an edge with weight wt(u, v)
and let wt′(u, v) be its new weight. Clearly, the new weight wt′(u, v) creates a
negative cycle in G iff δG(v, u)+wt′(u, v) < 0. This test takes time proportional
to that of finding δG(v, u) and hence does not affect our update bound.

Acknowledgement. We would like to thank Hans Bodlaender for many inter-
esting discussions concerning the treewidth of graphs.

References

1. R. Ahuja, T. Magnanti and J. Orlin, “Network Flows”, Prentice-Hall, 1993.
2. N. Alon and B. Schieber, “Optimal Preprocessing for Answering On-line Product

Queries”, Tech. Rep. No. 71/87, Tel-Aviv University, 1987.
3. S. Arnborg, “Efficient Algorithms for Combinatorial Problems on Graphs with

Bounded Decomposability - A Survey”, BIT, 25, pp.2-23, 1985.
4. H. Bodlaender, “A Linear Time Algorithm for Finding Tree-decompositions of

Small Treewidth”, Proc. 25th ACM STOC, pp.226-234, 1993.
5. H. Bodlaender, “A Tourist Guide through Treewidth”, Acta Cybernetica, Vol.11,

No.1-2, pp.1-21, 1993.
6. H. Bodlaender, “Dynamic Algorithms for Graphs with Treewidth 2”, Proc. 19th

WG’93, LNCS 790, pp.112-124, Springer-Verlag, 1994.
7. B. Chazelle, “Computing on a Free Tree via Complexity-Preserving Mappings”,

Algorithmica, 2, pp.337-361, 1987.
8. H. Djidjev, G. Pantziou and C. Zaroliagis, “On-line and Dynamic Algorithms

for Shortest Path Problems”, Proc. 12th STACS, 1995, LNCS 900, pp.193-204,
Springer-Verlag.

9. E. Feuerstein and A.M. Spaccamela, “Dynamic Algorithms for Shortest Paths in
Planar Graphs”, Theor. Computer Science, 116 (1993), pp.359-371.

10. G.N. Frederickson, “Fast algorithms for shortest paths in planar graphs, with ap-
plications”, SIAM J. on Computing, 16 (1987), pp.1004-1022.

11. G.N. Frederickson, “Planar Graph Decomposition and All Pairs Shortest Paths”,
J. ACM, 38(1991), pp.162-204.

12. G.N. Frederickson, “Searching among Intervals and Compact Routing Tables”,
Proc. 20th ICALP, 1993, LNCS 700, pp.28-39, Springer-Verlag.

13. G.N. Frederickson, “Using Cellular Graph Embeddings in Solving All Pairs Short-
est Path Problems”, accepted in J. of Algorithms, 1994.

14. M. Fredman and R. Tarjan, “Fibonacci heaps and their uses in improved network
optimization algorithms”, J. ACM, 34(1987), pp. 596-615.

15. D. Kavvadias, G. Pantziou, P. Spirakis and C. Zaroliagis, “Efficient Sequential
and Parallel Algorithms for the Negative Cycle Problem”, Proc. 5th ISAAC, 1994,
LNCS 834, pp.270-278, Springer-Verlag.

16. P. Klein, S. Rao, M. Rauch and S. Subramanian, “Faster shortest-path algorithms
for planar graphs”, Proc. 26th ACM STOC, 1994, pp.27-37.

17. N. Robertson and P. Seymour, “Graph Minors II: Algorithmic Aspects of
Treewidth”, J. Algorithms, 7(1986), pp.309-322.

