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Abstract. The continuous increase of data availability and the need for their
utilization make it imperative to organize them into categories. Recent classifi-
cation problems often involve the prediction of multiple labels simultaneously
applying to a single instance. In this paper, we propose a structured approach for
the implementation and evaluation of multilabel classification tasks in the con-
text of biomedical texts. This involves selecting appropriate datasets and models,
designing experiments, and defining metrics that accurately measure the models’
performance across various aspects of the task. Our results yield notable scores
and conclusions for the behavior of some state-of-the-art language models in spe-
cific data. It is shown that the complexity of biomedical data and the intricacy of
multilabel classification require careful consideration of these models’ capabili-
ties to handle large label spaces, label correlations, and the nuances of biomedical
language.

Keywords: multilabel classification · indexing · transformers · thesauri ·
MeSH · deep learning · biomedicine · PubMed

1 Introduction

Multilabel systems in biomedicine, with the integration of artificial intelligence and
machine learning, display continuous evolution and expansion reflecting the complex
nature of biological systems. One recent perspective is related to the use of transformer
models [1], with studies rendering them capable of analyzing complex data structures by
improving the accuracy of predictions [2]. Examples include the classification of clinical
examinations, pathological conditions, diagnoses as well as multiple classification of
medical texts [3]. These algorithms, with their ability to process big data and extract
deep knowledge, offer significant potential for advancing medical science [4].

The intricacies of multilabel classification stem from the need to accurately assign
multiple, often interrelated, labels to each instance, a task that becomes exponentially
more challenging as the number of labels increases. This challenge is amplified in the
biomedical domain where the accurate classification of data can directly impact the
effectiveness of patient care, disease diagnosis, and the discovery of novel therapeutic
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interventions [5]. Additional challenges posed by the biomedical context include the
high dimensionality of data, the presence of noise and missing values, and the critical
need for interpretable models that can be understood and trusted by practitioners [6].

Despite its significance, multilabel classification of biomedical data is a topic that
has been relatively underexplored in the literature. This gap in research is partly due to
the complexity of the task, which requires sophisticated algorithms capable of handling
large, imbalanced datasets and the intricate correlations between labels [7].

In this paper we provide a comprehensive review of some state-of-the-art (SOTA)
methods in multilabel text classification, with a particular focus on applications in the
biomedical domain, including such language models as BioBERT [8], XLNet [9], Dis-
tilBERT [10], RoBERTa [11], ERNIE [12], and ELECTRA [13]. This review critically
evaluates existing methodologies, highlighting their strengths, limitations, and suitabil-
ity for various types of biomedical data. To our knowledge, there is no systematic review
and evaluation of language models currently in the literature, that specifically addresses
SOTA inmultilabel classification of biomedical data with an increased number of labels.

Moreover, we propose a framework for multilabel classification that leverages the
latest advancements in machine learning, including deep learning and transfer learning,
to address the unique challenges of biomedical data. To this end, we use finetuning
methods and employ metrics putting focus on already trained language models. Our
source code is openly available at: https://github.com/pngsyr/Comparative-analysis-of-
transformers-on-multi-label-pubmed-data.

The rest of this paper is organized as follows: in Sect. 2we review relevant literature in
the field of biomedical multilabel text classification; in Sect. 3 we summarize the models
which we reviewed and evaluated; Sect. 4 presents our methodology and approach, by
outlining the multilabel classification procedure designed, the underlying dataset and
discusses optimizations regarding implementation, training and/or finetuning. Section 5
contains the results of the various experiments and their analysis, while Sect. 6 outlines
our conclusions and future work.

2 Background and Related Work

The landscape of machine learning and its application in classification tasks within
biomedical data has been the focal point of extensive research efforts over the past
several decades. The emergence of sophisticated language models, particularly those
based on deep learning architectures such as transformers [2], has revolutionized natural
language processing (NLP). Adaptations of language models for biomedical tasks have
shown promise, although primarily focusing on single-label classification problems or
on those involving a relatively small number of labels [14].

Multilabel classification represents a significant leap in complexity from traditional
single-label tasks. Most existing work, such as the ensemble method for multilabel clas-
sification [6] and the classifier chains model [15], has focused on scenarios with only
a few labels. These foundational works have been crucial in understanding the intrica-
cies of multilabel classification, including handling label correlations and imbalances.
However, transitioning from single label tomultilabel classification in this context is non-
trivial, necessitating sophisticated approaches to accurately capture and predict multiple
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labels simultaneously [16]. Interdisciplinary approaches are also applied, as highlighted
by recent reviews and studies on deep learning applications in medical imaging and
genomics, and the detection of diseases such as COVID-19 using classification models
[5].

There are also approaches for multilabel text classification with a large number of
labels [17]. This studydealswith the analysis of InductiveConformalPrediction (ICP) for
multilabel text classification and presents an approach to address the efficiency problem
when dealing with a large number of distinct labels. By using LP (Label Powerset)-ICP
and p-values, users can reject a large number of labels more easily and be guided to the
appropriate results. Based on this knowledge, a classifier is created, which, based on
semantic data, achieves better results than one that does not.

ML-Net [18] combines a label prediction network with an automatic mechanism for
predicting the number of labels to provide an optimal set of labels. This is achieved by
leveraging both the predicted confidence score of each label and the deep contextual
information (modeled by ELMo) in the intended title. Specifically, ML-Net is evaluated
on 3 independent text corpora in 2 types of text: biomedical literature and clinical notes.
Evaluation metrics such as precision, recall, and F-measure are used for assessment.

Also, actions related to the activation of the researchers’ engagement with methods
of mining specific thematic categories from biomedical texts, such as that of COVID-
19, are important. For example, authors in [19] organized the BioCreative LitCovid
track to identify suitable topics in an automated way. The BioCreative LitCovid dataset,
consisting of over 30,000 articles, was created for training and testing. It is one of the
largest multilabel classification datasets in the biomedical scientific literature. The 19
participating teams managed to achieve a high F1 Score, up to 0.9394.

3 Models for Biomedical Classification

We have selected a range of transformer models for review and comparative evaluation.
This includes general-purpose models like BERT, RoBERTa, and XLNet, alongside
domain-specific models such as BioBERT, and models optimized for efficiency like
DistilBERT and ELECTRA. Each model transforms text into numerical representations
(embeddings) that encapsulate semantic and contextual information, crucial for manag-
ing the textual data’s complexity. Below, a summary of each model and the rationale
behind their effectiveness for multilabel classification problems is provided.

BioBERT is a domain-specific adaptation of BERT (Bidirectional Encoder Repre-
sentations from Transformers) pretrained on large-scale biomedical corpora. It extends
BERT’s capabilities to biomedical texts, significantly improving performance on
biomedicalNLP tasks [8]. BioBERT’s pretraining on biomedical literature (e.g., PubMed
abstracts and PMC articles) makes it uniquely positioned to understand the complex jar-
gon and nuanced meanings in biomedical texts. This enhanced understanding facilitates
the accurate classification of documents into multiple, often closely related, biomedical
categories.

XLNet is a generalized autoregressive pretraining model that outperforms BERT on
variousNLP benchmarks by capturing bidirectional contexts and overcoming limitations
related to BERT’s masked language model approach [9]. XLNet’s ability to model the
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permutation of word sequences allows it to grasp the context better and understand the
intricate relationships between terms in texts. This capability is particularly beneficial
for multilabel classification, where understanding the interplay between multiple topics
or labels within a single document is essential [20, 21].

DistilBERT is a distilled version of BERT that retains most of its predecessor’s
effectiveness while being 40% smaller and 60% faster. It demonstrates that much of
BERT’s performance can be preserved with significantly fewer parameters. Its efficiency
and speed make DistilBERT ideal for multilabel classification tasks where computa-
tional resources are limited. Despite its reduced size, DistilBERT effectively captures
contextual relationships within text, essential for accurately assigning multiple labels
[10].

RoBERTa (Robustly optimized BERT approach) builds upon BERT’s founda-
tions with optimized training approaches, including dynamic masking, which leads to
improved performance across a range of NLP benchmarks [22, 23]. RoBERTa’s opti-
mized training and better handling of context enable more nuanced understanding and
prediction capabilities. This makes it highly effective for multilabel classification tasks,
where distinguishing between subtle differences in text can be crucial for correct label
assignment [11].

ERNIE (Enhanced Representation through Knowledge Integration) is designed to
improve language understanding by incorporating world knowledge and entity informa-
tion into pre-training. This approach allows ERNIE to better understand the semantics
of words and phrases [24]. For multilabel classification, ERNIE’s incorporation of exter-
nal knowledge helps in accurately understanding and classifying texts that may require
domain-specific insights or the recognition of nuanced relationships between entities,
which is often the case in complex datasets [12].

ELECTRA trains a more sample-efficient pre-training task called replaced token
detection, rather than themasked languagemodel usedbyBERT. It distinguishes between
“real” and “fake” input tokens, which leads to more efficient learning. ELECTRA’s effi-
ciency in learning representations makes it suitable for multilabel classification, espe-
cially in scenarios where the dataset is vast or complex. Its unique approach to under-
standing context through the identification of token replacements allows it to accurately
capture the nuances necessary for assigning multiple labels [13].

Each of these models brings distinct advantages to the task of multilabel classifica-
tion, leveraging their architectural innovations and trainingmethodologies to understand
and process the complexities of language. Their effectiveness in biomedical contexts,
particularly, underscores the importance of sophisticated NLP techniques in handling
the multifaceted nature of biomedical data classification [25].
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4 Methodology

4.1 Dataset

The dataset1 consists of 50,000 biomedical articles from the PubMed library, which have
been organized by domain experts for accurate annotation into 10–15 types of MeSH
(Medical Subject Headings) labels. A sample of this dataset is depicted in Fig. 1.

Title abstractText meshMajor pmid meshid meshroot A B C D E F G H I J L M N Z

0

Expression of
p53 and
coexistence of
HPV in pr...

Fifty-four
paraffin
embedded
tissue sections
f...

['DNA Probes,
HPV', 'DNA,
Viral',
'Female', 'H...

8549602

[['D13.444.600.
223.555',
'D27.505.259.
750.600....

['Chemicals
and Drugs
[D]',
'Organisms
[B]', '...

0 1 1 1 1 0 0 1 0 0 0 0 0 0

1

Vitamin D status
in pregnant
Indian women
acro...

The present
cross-sectional
study was
conducte...

['Adult',
'Alkaline
Phosphatase',
'Breast Feed...

21736816

[['M01.060.116'
],
['D08.811.277.
352.650.035'],.
..

['Named
Groups [M]',
'Chemicals
and Drugs
[D]'...

0 1 1 1 1 1 1 0 1 1 0 1 1 1

2
[Identification of a
functionally
important di...

The
occurrence of
individual
amino acids
and d...

['Amino Acid
Sequence',
'Analgesics,
Opioid', ...

19060934

[['G02.111.570.
060',
'L01.453.245.6
67.060'], [...

['Phenomen
a and
Processes
[G]',
'Information
S...

1 1 0 1 1 0 1 0 0 0 1 0 0 0

Fig. 1. A sample of the PubMed dataset with label data.

Each entry in the dataset consists of the paper Title, the abstractText, which includes
a summary of the topics mentioned in the specific paper, themeshMajor, which includes
keywords related to the paper and help in searching based on these keywords, as well as
thepmid,which is a unique identifier for eachpaper found in thePubMed library. It should
be noted that the MeSH IDs are labels that are organized hierarchically in four levels,
starting from the most general to the most specific ones. The first level corresponding
to the most general topics (mesh-roots), consists of 14 labels, which correspond to the
letters [‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘I’, ‘J’, ‘L’, ‘M’, ‘N’, ‘Z’]. The second,
third, and fourth levels become increasingly specialized, focusing on a specific disease
or condition. The mesh-roots, on the other hand, include the root tags in combination
with the lexical representation of their category. The dataset has been preprocessed to
flatten the deeper levels and map them to their respective roots. Therefore, there are
the tags previously described, where each paper that includes a corresponding tag is
marked with 1, otherwise, with 0 (one-hot encoding). In addition to this preprocessing,
the dataset is shuffled and split 80/20 for training-finetuning and testing, respectively.

4.2 Implementation

The implementation environment used is Google Colab. The process begins with loading
a pre-trained transformermodel, whoseweights have been trained on large text databases

1 https://huggingface.co/datasets/owaiskha9654/PubMed_MultiLabel_Text_Classification_Dat
aset_MeSH.

https://huggingface.co/datasets/owaiskha9654/PubMed%5FMultiLabel%5FText%5FClassification%5FDataset%5FMeSH
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and have already acquired a significant degree of language understanding. The dataset
is transformed to align with the format required by each pretrained model. This includes
the tokenization process, where the text is broken down into units (tokens), padding that
enhances the data to have a uniform length, removing stop words, and encoding that
converts the tokens into numeric values. A max_length of 128 has been specified for the
tokenizer, with padding and truncation enabled, to ensure comparable finetuning of all
pretrained models and align to the relative size of the abstracts contained in the dataset.
Each example corresponds to multiple labels, and this requires specific management in
the preparation of the labels. A summary of the implementation workflow is presented
in Fig. 2.

BioBERT, XLNet,

DistilBERT, RoBERTa,

ERNIE, ELECTRA

Adjust

Training

Parameters

FineTuning

Evaluation

(F1-Score, Flat Accuracy)

Pubmed Data Preparation

Adjust

Model

Architecture

Load

Model

Tokenizer

Load

Pretrained

Model

Fig. 2. Implementation workflow.

The loss function used for training isBinaryCross-Entropy, as it can handle instances
where each example belongs to more than one category. Sigmoid activation is applied
to the model output to calculate probabilities for each label. In each training epoch,
loss and gradients are calculated for various batches of data, and the model parameters
are updated accordingly. Also, the model is evaluated on the validation data set. During
validation,metrics such as the F1 Score and FlatAccuracy help to understand themodel’s
performance (see Sect. 4.3).

The finetuning process is adopted to help preserve the knowledge the model has
already acquired. In this approach, the model is trained in phases. Initially, layers that
are added specifically for the downstream task of sequence classification are trained,
while the rest of the layers of the pre-trained model remain frozen. This helps preserve
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the knowledge the model has already acquired. As training progresses, the frozen layers
can gradually be unfrozen, allowing for further adaptation and improvement of themodel
to the task data. Finetuning occurs for a limited number of epochs (up to 12) on 80%
of the dataset, allowing for further adaptation and improvement of the model to fit our
specific task, while paying attention to preserving pretrained knowledge and monitoring
critical performance metrics. As our focus is to assess the value of already pretrained
models, we keep finetuning to as low as 12 epochs that are found to have a uniform
impact on performance increase across all models.

4.3 Metrics

The F1 Score is the harmonic mean of precision and recall, calculated using the for-
mula: F1 Score= 2 * (Precision * Recall)/(Precision+ Recall). Precision measures the
accuracy of the positive predictions made by the model, i.e., the proportion of correctly
predicted positive instances out of all instances predicted as positive. Recall measures
the model’s ability to identify all relevant instances, i.e., the proportion of correctly pre-
dicted positive instances out of all actual positive instances. It ranges from 0 to 1, where
a higher value indicates better model performance in terms of both precision and recall.
In the specific multilabel classification problem, we calculate precision, recall, and F1
Score for each label separately, and then compute the average F1 Score across all labels.

Flat Accuracy is a simpler measure of overall correctness which calculates the per-
centage of correctly classified instances out of all instances. In the context of multilabel
classification, Flat Accuracy measures the proportion of instances where all predicted
labels match exactly with the actual labels, regardless of the order or combination of
labels. It provides a straightforward assessment of the model’s performance in correctly
predicting all labels for each instance.

To sum up, the F1 Score provides a balanced evaluation of precision and recall
for each label separately, while Flat Accuracy provides a simple measure of overall
correctness by considering all predicted labels collectively. Both metrics offer valuable
insights into the performance of a multilabel classification model.

5 Evaluation

5.1 Configuration

For the purposes of evaluation, we use the validation dataset, which consists of 10,000
PubMedpapers out of the total 50,000papers, i.e. 20%of the original dataset.Weevaluate
the models on the validation dataset to assess their performance for the downstream
task of sequence classification. We calculate F1 Score and Flat Accuracy based on the
predictions generated by the model. We also utilize wandb.ai (Weights&Biases) library
and environment for logging support and visualization of model training and evaluation
metrics.

We load transformer models directly through HuggingFace using the Transformers
library. In all cases we resort to the base variants for performance reasons.

We experiment with hyperparameter tuning, model architectures, and training strate-
gies to optimize the model’s performance further. For example, we use variable weight
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decay and employ the AdamW optimizer for training [26], an improvement over Adam
that avoids the negative effect on the decay rate. We iterate on the training process based
on insights gained from monitoring and analysis. All experiments are conducted on T4
GPU with 16GB of RAM made available by the Colab environment.

5.2 Results and Discussion

In the following, we report on the results of our experiments for the 6 language models
surveyed. Figure 3 shows the values for Flat Accuracy with respect to the number of
training epochs (1 to 12). Likewise, Fig. 4 contains the values for the F1 Score.

Overall, flat accuracy appears low, indicating the hardness of the problem but also
the coarse and penalizing nature of the metric: Even if a single bit is wrong the whole
sample is considered misclassified.

Most models show an increase in accuracy as the steps progress, which is to be
expected, as the models learn from the data (Fig. 3). However, there are some fluctua-
tions, which could be due to various factors such as learning rate adjustments or dataset
problems. Models such as ERNIE, BioBERT and RoBERTa perform the best in terms
of accuracy being twice as accurate as their counterparts and display higher peaks; this
may indicate that they have the potential to achieve higher but may require more tuning
or specific conditions to maintain peak performance.

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6 7 8 9 10 11 12

#epochs

Accuracy ERNIE DistilBERT BioBERT

ELECTRA XLNet RoBERTa

Fig. 3. Flat Accuracy results on the validation set wrt to training epochs.

In terms of the F1 Score, BioBERT appears to outperform all others, closely followed
by RoBERTa and ERNIE (Fig. 4). It also exhibits consistently high precision and recall
over almost all classes (not shown in the figure). This is possibly due to the model’s
adjustment and pretraining on domain-specific data i.e., biomedical texts. RoBERTa and
ERNIE on the other hand exhibit comparably high F1 Scores, but their lack of specific
pretraining lowers slightly precision and recall for some of the classes. Pretraining bias,
if any, to the specific dataset tends to fade out however, after 6–7 finetuning cycles.
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ELECTRA, XLNet and DistilBERT also perform well, but face challenges for specific
classes and may require further finetuning and dataset balancing.

0.75

0.8

0.85

0.9

1 2 3 4 5 6 7 8 9 10 11 12

#epochs

F1-score ERNIE DistilBERT BioBERT

ELECTRA XLNet RoBERTa

Fig. 4. F1 Score results on the validation set wrt to training epochs.

In Table 1, we present the overall results for train loss, F1 Score and Flat Accuracy
on the validation set for each model.

Table 1. Training results

Models Train loss Val F1 Score Val Flat Accuracy

ERNIE 0.2075 0.8618 0.2031

DistilBERT 0.3098 0.8139 0.1093

BioBERT 0.1989 0.8700 0.1875

ELECTRA 0.3411 0.8390 0.1093

XLNet 0.3381 0.8175 0.0781

RoBERTa 0.2566 0.8638 0.2187

As expected, BioBERT emerges as the top-performing model, closely followed by
RoBERTa and ERNIE combining precision and accuracy. These models consistently
show improvement in performance as finetuning progresses, indicating their capability
to learn and adapt effectively to the data, regardless of their pretraining corpora. Also, the
importance of dataset choice in achieving good results is highlighted. The appropriately
sized dataset from PubMed, coupled with advanced transformer models, contributes
significantly to the models’ ability to generalize and perform well on multilabel classifi-
cation tasks. The findings suggest that transformer models, when applied to biomedical
text data like PubMed, have the potential to deliver high-quality results.
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6 Conclusions and Future Work

Correctly predicting labels and tags for biomedical data is critical for various biomedi-
cal applications such as document classification, information retrieval, and knowledge
extraction from scientific literature. At the same time, this task is far from trivial and can
be costly, inefficient and error-prone. In view of the recent concerns and mishaps inflict-
ing global health its importance is even more stressed. In this paper we have reviewed
and evaluated a set of prominent language models that can alleviate the burden over the
shoulders of experts. Our results suggest that transformer models demonstrate effective-
ness in handling multilabel classification tasks on PubMed data; even more so when no
domain-specific pretraining is required to produce adequate results, thus highlighting
the versatility of transformer models in processing biomedical text.

Future research could extend to crafting hybrid models, merging for example ERNIE
and BioBERT’s strengths, leveraging BioBERT’s biomedical expertise and ERNIE’s
adaptability across diverse data contexts. Delving into dimensionality reduction algo-
rithms and data visualization techniquesmight yield deeper insights into biomedical arti-
cle structures and limits of existing models, possibly leading to innovative pre-training
strategies. Conducting experiments to assess model performance across various biomed-
ical text types, such as clinical trials or review articles, could enhancemodel applicability.
As biomedical informatics continues to evolve, continual evaluation and enhancement
of machine learning models will be pivotal for field advancement.
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