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Keywords: metadata; application profiles; semantic profiling; cultural heritage; ontologies; 
semantic web; inference; interoperability. 

Reference to this paper should be made as follows: Koutsomitropoulos, D., Paloukis, G.  
and Papatheodorou, T.S. (2007) ‘From metadata application profiles to semantic profiling: 
ontology refinement and profiling to strengthen inference-based queries on the semantic web’, 
Int. J. Metadata, Semantics and Ontologies, Vol. 2, No. 4, pp.268–280. 

Biographical notes: Dimitrios Koutsomitropoulos is a researcher at the High Performance 
Information Systems Laboratory (HPCLab), University of Patras. He is currently a PhD 
candidate at the Computer Engineering and Informatics Dept. from which he has received an 
MSc and a Computer and Informatics Engineering Diploma. His research interests include 
knowledge discovery, automated reasoning, ontological engineering, metadata integration, 
semantic interoperability and the semantic web. 

George Paloukis is an MSc student at the Computer Engineering and Informatics Dept., 
University of Patras. He is member of the development and administration team of the 
institutional educational digital repository at the University of Patras. His research interests 
include metadata creation and use, metadata technologies and standards for educational 
resources, metadata application profiling and digital repositories. 

Theodore S. Papatheodorou is a Professor at the Computer Engineering and Informatics Dept., 
University of Patras, since 1984 and now he is the chairman of this department. He has received  
a PhD in Computer Science in 1973 and an MSc in Mathematics from Purdue University in 1971 
as well as a BSc in Mathematics from the University of Athens in 1968. He has authored 
hundreds of scientific publications in several areas of computer engineering and computer 
science. Recently, he has also co-authored papers published in the Proceedings of the National 
Academy of Science of USA, on protein folding. 



From metadata application profiles to semantic profiling 269

1 Introduction

Ontologies play a key role in the Semantic Web idea.  
They serve as a means not only for conveying structural 
aspects and high-level data about information, but also for 
providing for its understanding and intelligent manipulation 
by a computer machine. Furthermore, ontologies on the 
Semantic Web are web-accessible and often distributed 
pieces of knowledge, a fact that at its own spawns a 
contemporary and challenging dimension in the way these 
ontologies are to be used, both from a technical as well as 
from a conceptual point of view. 

Ontologies are often designed to depict a specific area of 
human knowledge, known as a knowledge domain. Most of 
the time such domain ontologies try to achieve a twofold 
goal: first, to be as thorough as possible, covering every 
potential aspect of the domain under consideration; and 
second, not to be extremely specific, in a sense that  
would not compromise the most general usefulness of the 
ontology. Besides this, according to Guarino (1998), an 
ontology may only approximate the conceptualisation of the 
domain knowledge. 

The CIDOC Conceptual Reference Model (Crofts  
et al., 2003) is such an ontology that attempts to model the 
knowledge domain of cultural heritage. As of every  
human-conceivable domain, cultural heritage is very hard to 
be accurately modelled. In addition and owing to its nature, 
cultural heritage information are often hidden in libraries 
and museum archives, and when available online are poorly 
or not at all structured. Moreover, the CIDOC-CRM  
has been recently appointed an ISO standard status  
(ISO-21127), a fact that further stresses its importance of 
use as a common conceptual basis between cultural heritage 
applications. 

On the other hand, the Semantic Web comes to offer a 
whole range of tempting possibilities, ranging from web 
knowledge management to semantic resource description  
to distributed knowledge discovery. Then, the elaborate 
representation of knowledge in an ontology combined with 
intelligent reasoning tools determine the extent to which one 
can deduct new and useful knowledge that is implied among 
the ontology lines. 

Using the CIDOC-CRM standard as our conceptual 
basis, we first create its machine meaningful counterpart  
by expressing it in the Web Ontology Language (OWL),  
a W3C standard (Bechhofer et al., 2004). This process does 
not merely amount to a simple syntax transformation. 
Rather, taking advantage of OWL most expressive but, 
simultaneously, decidable (Horrocks and Sattler, 2005) 
structures we also enrich and upgrade the model,  
thus further narrowing the conceptual approximation.  
The method and the lessons learned during both the 
syntactic and the semantic transformation are thoroughly 
documented. 

However, one cannot go forever with this process; there 
is always the danger of rendering the model too specific, 
thus putting its applicability in risk. To avoid this,  
we incorporate the OWL-specific and powerful statements 
in different OWL documents, that involve concrete 

instances of the CRM’s concepts and roles. This approach 
not only demonstrates the distributed knowledge discovery 
capabilities inherent in web ontologies; it also suggests a 
semantically enhanced application-profiling paradigm 
where the separating line between a standard and 
application-specific accuracy is thin and crucial. This kind 
of profiling takes the usual metadata-specific sense, where it 
is seen as an aggregation of disparate metadata elements 
(Duval et al., 2002), a step further: It does not deal so much 
with the horizontal extension of the ontology, but rather 
extends it in a semantic manner, as may be dictated by a 
particular application. 

The next step is to take advantage of this new ontology 
mostly by being able to reap the benefits of our semantic 
extensions. As standard the language and the model  
may be, the process for doing this is not; thus we employ  
a methodology (Koutsomitropoulos et al., 2006) and 
implement a prototype web application, the Knowledge 
Discovery Interface (KDI) to be able to pose more 
expressive, reasoning-based intelligent queries to the  
CRM-profiled form. 

The rest of this paper is organised as follows: First, in 
Section 2, we give an overview of the metadata application 
profiling idea and approaches. Then, in Section 3, we 
introduce the CIDOC Conceptual Reference Model,  
its structure and its semantics. Section 4 presents our 
process of transforming and profiling the CIDOC-CRM, 
pointing out our enhancements and discussing semantic 
profiling; following these are the inferences conducted on 
the CRM using the KDI and their results in Section 5.  
In Section 6, we discuss some previous work on the field of 
knowledge acquisition on the web, including efforts 
focusing on cultural heritage data. Finally, in Section 7,  
we summarise potential future work and the conclusions 
drawn from our approach. 

2 Metadata application profiling 

The need for efficient resource description in electronic 
archives quickly identified the lack of uniform ways for 
representing and maintaining information about resources. 
These pieces of information, known as metadata, would, 
therefore, be organised in concrete metadata schemata 
produced and managed by content authorities, institutions 
and domain experts. The XML language eased this process 
by providing an official syntax for expressing both schemata 
and actual metadata information in machine-readable 
format. 

However, as these schemata tended to proliferate day by 
day, focusing on a particular domain of interest or function, 
there was often the case where a particular developer’s 
needs were not satisfied by any existing schema or some 
elements she may find suitable were scattered over  
various standard implementations. Metadata application 
profiling came then as a natural means to overcome these 
obstacles while respecting the standards raison d’être:
As defined in Duval et al. (2002), application profiling is the 
assemblage of metadata elements selected from one or more 
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metadata schemas and their combination in a compound 
schema. Application profiles provide the means to express 
principles of modularity and extensibility. The purpose of 
an application profile is to adapt or combine existing 
schemas into a package that is tailored to the functional 
requirements of a particular application, while retaining 
interoperability with the original base schemas. 

There are a few ways of developing a particular 
metadata profile (Heery and Patel, 2000): most obvious is to 
include in the same schema selected elements from different 
standards suitable for the particular application. If new 
elements are to be defined, this has to be absolutely 
necessary and the new elements must refer to their own 
namespace. Another technique is to restrict value ranges of 
elements, e.g. provide a specific controlled vocabulary as 
filler to an element or mandate specific formats for values. 
Finally, a profile may refine existing elements defined in 
standards. This may involve, for example, the definition of 
sub-elements that intend to narrow the meaning of a 
definition or introduce some element qualifications. 

Let us briefly examine an application-profiling example 
(Powell and Johnston, 2003): 

<?xml version="1.0"?> 

<record

xmlns="http://example.org/learningapp/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"

xsi:schemaLocation="http://example.org/learn

ingapp/

http://example.org/learningapp/schema.xsd"

xmlns:dc="http://purl.org/dc/elements/1.1/"

xmlns:ims="http://www.imsglobal.org/xsd/imsm

d_v1p2">

<dc:title>

Frog maths 

</dc:title>

<dc:description>

Simple maths games for 5-7 year olds. 

</dc:description>

<ims:typicallearningtime>

<ims:datetime>

0000-00-00T00:15

</ims:datetime>

</ims:typicallearningtime>

</record>

This is an instantiation of mixing Dublin Core elements 
with IMS learning metadata. It is noticeable that the most 
important means for actually implementing an application 
profile are namespaces. In the example above, dc represents 
elements from the Dublin Core set, while ims denotes  
IMS-originating metadata. Namespaces play a crucial role 
not only in identifying provenance of distinct schemata, but 
also as a means to separate and then merge different 
elements and vocabularies. 

It is clear that metadata schemata attempt to capture  
and convey human-conceivable knowledge in the most  

basic unambiguous machine-compatible form: A horizontal 
aggregation of definitions (possibly with sub-elements) with 
specified value restrictions and formats, expressed  
(most often) in XML. Metadata standards are perfectly 
successful in this manner; at the same time, their 
representation of knowledge is considered quite poor and 
distanced from machine-understandability. 

The Semantic Web and its ontologies give the chance of 
more accurate modelling of domain knowledge and thus 
upgrading metadata from a machine-readable to machine-
comprehensible state. In fact, ontologies are metadata 
schemata with precisely defined meaning and richer 
relations between elements and concepts of a conceptual 
model. With this new toolbox at hand, a series of 
possibilities is now opened that may further ease the 
development of enhanced metadata profiles. These include a 
novel method for creating a metadata application profile, 
not just by combining, refining or restricting elements, but 
also by the semantic enhancement of the model, and that is 
exactly what we are trying to do in Section 4. 

3 The CIDOC conceptual reference model 

CIDOC-CRM may be considered as a domain ontology in 
the sense given by Guarino (1998). Thus, it covers only a 
focused area of interest and not the general knowledge.  
In addition, CRM has been designed to be extensible, 
flexible and implementation-independent. As a result, it can 
be easily harmonised with other upper-level ontologies or 
conceptual schemas to serve the modelling tasks of specific 
organisations, as well as the information integration  
needs from conceptually heterogeneous sources (Doerr  
et al., 2003). 

In this section, we give a brief overview of the CRM 
structure, originally introduced in Crofts et al. (2003). Then, 
we discuss its machine-readable implementation(s) and the 
corresponding expressivities it provides for. 

3.1 Conceptual structure 

The CIDOC-CRM can be best described starting with the 
broad classes. These high-level classes are those that 
emerged as a result of the logical grouping of shared 
properties. These groups are concerned with fundamental 
notions such as identification, participation, location, 
purpose, motivation and use. Figure 1 presents an overview 
in which Temporal Entities, and hence events, occupy a 
central place. 

All property paths to dates go through Temporal 
Entities, as do most of the property paths to places. Those 
place properties that bypass temporal entities should be 
understood as short cuts of temporal entities. Similarly, 
actors are only seen as relating material and immaterial 
things (Physical Stuff, Conceptual Objects) through 
Temporal Entities. 

Any instance of a class may be identified by a number 
of appellations. These are the names, labels, titles or other  
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means of identification used in the historical context.  
The ambiguous relation of items to their names is modelled  
as part of the historical process of knowledge acquisition. 
The notion of identification used here should not  
be confused with that of database identifiers in 
implementations of the model, which are not part of the 
ontology. 

Figure 1 A qualitative meta-schema of CIDOC-CRM (see online 
version for colours) 

Source: Doerr (2003) 

All class instances can be refined (specialised) into  
more detailed categories through the use of types. Types 
frequently consist of a range of properties that refer in 
general to things of a certain kind, such as “a dress made for 
a wedding” in contrast to the “dress made for my wedding”. 

CRM properties can be grouped by the following list of 
meta-properties: 

• identification of real-world items by real-world names 

• classification of real-world items 

• part-decomposition and structural properties of 
Conceptual and Physical Objects, Periods, Actors, 
Places and Times 

• participation of persistent items in temporal entities 

• location of periods in space–time and physical objects 
in space 

• influence of objects on activities and products
and vice versa. 

3.2 Implementation and expressivity 

CIDOC-CRM is currently at version 3.4.10 (aka version 4). 
In our work, we used the initial 3.4 version, because this is 
the most up-to-date CRM’s version that maintains a 
machine-readable implementation. Later versions include 
small-scale updates regarding mostly insertion, deletion and 
renaming of concepts and roles in the model. Among its 
implementations, we chose RDF(s), as the semantically 
richest and closest to OWL available format. 

As of January 2005, there exists an OWL transcription 
of the CRM’s RDF document (Balzer, 2006). However,  
this version adds only role-specific constructs (inversion, 
transitivity, etc.) which, semantically, do not exceed OWL 
Lite.

Version 3.4 includes about 84 concepts and 139 roles, 
not counting their inverses (that is, a total of 278 roles) 
(Figure 2). In terms of expressivity, the CRM employs 
structures enabled by RDF(s), which may be summarised as 
follows: 

• concepts as well as roles are organised in hierarchies 

• for every role, concepts are defined that form its 
domain and its range 

• for every role, its inverse is also defined, as a separate 
role, because RDF(s) cannot implicitly express 
inversion relation between two roles 

• there is no distinction between object and data type 
properties (roles) as in OWL; rather, roles that are 
equivalent to data type properties have rdf:Literal
as their range. 

Figure 2 CIDOC-CRM taxonomy as shown by the KDI 
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4 Profiling the CIDOC-CRM 
In the following, we discuss our process of transforming 
CIDOC-CRM in terms first of its syntactic transcription and 
then its semantic enhancement and profiling (Figure 3).  
To create a CIDOC-CRM semantic application profile,  
we follow a twofold approach: first, we transcode it  
in an appropriate and expressive format (namely OWL); 
next, we commence with its actual profiling, first by 
strengthening its intension, i.e., the general knowledge 
about the domain (Nardi and Brachman, 2007) and then  
by refining the model for the needs of a particular 
application. 

Figure 3 The CIDOC-CRM transformation process 

4.1 Transforming syntax 

To transform the ontology to OWL syntax, we initially 
utilised the RACER system (Haarslev and Möller, 2003). 
RACER has the ability to load and process ontologies 
expressed in various formats, including RDF(s) and OWL. 
One can instruct RACER to load TBoxes expressed in 
RDF(s) by using the rdfs-read-tbox-file command. 
Once loaded, the TBox can then be exported to the 
appropriate format by using the save-tbox command 
along with the :syntax parameter. 

Following these steps, we actually received a formal 
OWL document representing correctly the initial  
ontology. However, we discovered that RACER included 
some unnecessary and redundant statements, which,  
in many cases, were semantically overlapping. For example: 

• For every role and concept, RACER included tags from 
the OILed namespace; in particular, RACER added the 
tags oiled:creationDate and oiled:Creator,
which were neither required nor included in the initial 
document. 

• For every concept defined as domain or range, RACER 
used the owl:UnionOf operand, thus expressing these 
restrictions as singleton concept unions (including only 
the concept in particular). 

• The definition of role domains and ranges, even in 
OWL, comes from the RDF(s) namespace 
(rdfs:domain, rdfs:range). RACER, even though  
it maintains these statements, it duplicates them with 
equivalent expressions, which relate to the description 
logics (DL) style of expressing this kind of restrictions. 
These equivalent statements involve number and value 
restrictions and can be represented in OWL. 

This process resulted in transforming the initial 60 KB file 
to a 478 KB OWL document. We, therefore, opted for the 
manual transcription of the RDF(s) document, during which 
common expressions between RDF(s) and OWL were 
preserved (e.g., rdfs:subClassOf and rdf:resource),
while we replaced some namespace prefixes and  
updated the terminology used (e.g., owl:Class

instead of rdfs:Class and owl:ObjectProperty or 
owl:DataTypeProperty instead of rdf:Property).
In this manner, the CRM syntactical transformation phase 
was completed, resulting in a 63  document, named 
cidoc_crm_v3.4.owl. 

4.2 Semantic intension and refinement 

The second phase of CRM-upgrading process included its 
semantic augmentation with OWL-specific structures up to 
the OWL DL level, so as to enable a satisfactory level of 
reasoning, as well as its completion with some concrete 
instances. Table 1 summarises the expressivity gains of the 
semantic profiling technique on the CRM. 

This has been conducted in two steps: first, we added 
expressions that pertain to the model itself, so as to better 
capture intended meaning of properties and classes by 
taking advantage of OWL vocabulary. Second, added 
further subclasses and semantic constraints on them that 
actually profile the model for the specific case of paintings 
and painters in general. As an application scenario, we have 
chosen to model facts from the life and work of the Dutch 
painter Piet Mondrian. Let us examine these steps in detail: 

4.2.1 Core intension strengthening 

In this step, we do not add any new classes or entities that 
extend the CRM. Instead, we try to better approximate the 
core model’s conceptualisation by using OWL statements 
that allow for its more precise implementation. In particular: 

• we modelled minimum and maximum cardinality 
restrictions by using unqualified number restrictions 
(owl:minCardinality, owl:maxCardinality)

• we modelled inverse roles, using the owl:inverseOf
operand

• we included a symmetric role example, using the 
rdf:type=“&owl;Symmetric” statement. 

To a certain extent, adding cardinality constraints to 
properties may be considered a profiling act, since the 
model clearly specifies that these quantifiers are provided 
only for semantic clarification. Nevertheless, by doing this 
we achieve the shift of intended meaning from inside  
text notes and annotations to a semantic commitment. 
Please also note that RDF(s) being CRM's favoured 
implementation, there is no way to express such constraints. 
For the purpose of our work, we have not exhaustively 
quantified the CRM properties, but applied constraints to 
some ones, used and instantiated in our Mondrian example. 
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Clearly, the additions above actually refine the core 
model, either if this is intended in its specification or not. 
Profiling in this way, therefore, achieves to expand the 
intensional knowledge of the schema using constructs and 
means provided only in a Semantic Web infrastructure. 

4.2.2 Application refinement 

During this step, we create some specific CRM concept and 
role instances pertaining to our particular application.  
We also include axiom and fact declarations that only OWL 
allows to be expressed, as well as new roles and concepts 
making use of this expressiveness. 

• we added the classes: ‘Painting’ as subclass of CRM’s 
‘Visual_Item’, ‘Painting_Event’, a subclass of 
‘Creation_Event’ and ‘Painter’ a subclass of ‘Person’ 

• we added a data type property ‘hasURL’ as a sub-
property of ‘has_current_location’ 

• we semantically characterised the above concepts  
based on existential and universal quantification, by 
using the owl:hasValue, owl:someValuesFrom
and owl: allValuesFrom expressions, which 
ultimately enable more complex inferences. 

For example (see also Section 5): 

<owl:Class rdf:ID="Painter"> 

<rdfs:subClassOf

rdf:resource="&crm;E21.Person"/>

<owl:equivalentClass>

<owl:Restriction>

<owl:onProperty

rdf:resource="&crm;P14B.performed"/>

<owl:someValuesFrom

rdf:resource="#Painting_Event"/>

</owl:Restriction>

</owl:equivalentClass>

</owl:Class>

Table 1 Expressivity gains of semantic profiling on the CIDOC-CRM specific to OWL 

Construct used Example Inferences supported 
Intension strengthening (crm_core_profile.owl)

Discover relation inconsistencies Cardinalities <owl:cardinality rdf:datatype =

"&xsd;nonNegativeInteger">4
</owl:cardinality>

Infer instance equality  
(when cardinality = 1) 

Inverse roles <owl:ObjectProperty
rdf:about="&crm;P7F.took_place_at">

<owl:inverseOf
rdf:resource="&crm;P7B.witnessed"/>

</owl:ObjectProperty>

Discover relations between 
instances 

Symmetric roles <owl:SymmetricProperty
rdf:about="&crm;P139F.has_alternative_form">
</owl:SymmetricProperty>

Discover relations between 
instances 

Application refinement (crm_paint_profile.owl)
Perform datatype reasoning Concrete domains (data types) <owl:DatatypeProperty rdf:ID="hasURL">

<rdfs:subPropertyOf rdf:resource= 
"&crm;P55F.has_current_location"/>
<rdfs:range rdf:resource= 
"http://www.w3.org/2000/01/rdf-schema#
Literal"/>

</owl:DatatypeProperty>

Retrieve URI resources 

Existential quantification <owl:Restriction>
<owl:onProperty
rdf:resource="&crm;P94F.has_created"/>
<owl:someValuesFrom
rdf:resource="#Painting"/>
<rdfs:subClassOf
rdf:resource="#Painting_Event"/>

</owl:Restriction>

Define artificial classes and infer 
membership of instances based on 
their relations 

Universal quantification <owl:Restriction>
<owl:onProperty
rdf:resource="&crm;P94F.has_created"/>
<owl:allValuesFrom rdf:resource="#Painting"/>

</owl:Restriction>

Infer instance relations based on 
their membership to the artificial 
class 

Infer class membership 
Discover relations between 
instances 

Nominals <owl:Restriction>
<owl:onProperty
rdf:resource="&crm;P2F.has_type"/>
<owl:hasValue
rdf:resource="#painting_composition"/>

</owl:Restriction>

Infer instance equality 
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This fragment defines a new class, namely ‘Painter’ and 
states that a ‘Painter’ is any ‘Person’ that has ‘performed’  
at least one ‘Painting_Event’. Then, we can instantiate 
Mondrian as follows: 

<crm:E21.Person rdf:ID="Mondrian"> 

<crm:P14B.performed>

<Painting_Event rdf:ID="Mondrian's 

Composition"/>

</crm:P14B.performed>

</crm:E21.Person>

Given the ‘Painter’ class definition, it is straightforward for 
a Semantic Web reasoner to infer that ‘Mondrian’ is indeed 
a painter. 

This is another direction of semantic profiling: we added 
new elements bearing their own namespace, but then  
we semantically entangled them with each other and with 
the model’s own definitions, thus imposing semantic 
refinements for our own specific case. 

4.3 A semantic profiling technique 

The above discussion introduces the process of creating 
semantic application profiles and suggests a universal 
paradigm for Semantic Web metadata applications. 
Although we applied this technique specifically on  
CIDOC-CRM, it can easily be seen that it fits any other 
domain of interest. As shown in Figure 4, independently of 
the domain chosen, one has first to consider a suitable 
machine-readable implementation for the model, which for 
the time being is offered by the OWL specifications. 

Figure 4 A process for developing semantic application profiles 
(see online version for colours) 

Given a proper syntax, it is worth examining the 
possibilities of better capturing the intensional knowledge of 
the model, taking advantage of any particular vocabulary 
the representation language may offer. In this way, the 
conceptualisation of the model is strengthened and its 
potential ensured. 

At some point, the initial model may be found 
inadequate for the specific application needs. As is the case 
with traditional metadata profiling, other ontological and 
metadata schemata may have to be considered and mixed 

with the original, thus revisiting the initial step. In addition, 
one can devise appropriate constructs to narrow the 
semantics of the intended application. 

One of the main concerns when developing an 
application profile is to ensure that the source schema is not 
affected and its general applicability maintained. To achieve 
this, in addition to namespaces, OWL provides an  
explicit inclusion mechanism through the <owl:imports>
statement. In our case, we chose to include our  
semantic ornaments in three new OWL documents,  
namely: crm_core_profile.owl for the core intension, 
crm_paint_profile.owl for the application refinement and 
mondrian.owl as the instantiation of the above.1 In this way, 
we preserve the original model and we also show Semantic 
Web capabilities for ontology integration and distributed 
knowledge discovery. 

Backward compatibility of the original model is also an 
important consideration that may be dealt with, using this 
approach. In its efforts to bring the Dublin Core Metadata 
Set to the Semantic Web reality, the Dublin Core Metadata 
Initiative (DCMI) is facing such a problem: By defining DC 
elements as RDF properties and assigning them restrictions, 
legacy metadata may appear invalid in the context of 
inferencing applications (Nilsson and Baker, 2007), as is the 
case for example with dc:creator and dc:contributor.
To overcome this obstacle, the DCMI charter seems to 
follow a similar tactic (Nilsson et al., 2007): Semantically 
profile the DC model by defining domains and ranges and 
then maintain compatibility by using imports and separating 
namespaces. Of course, the DCMI group is more decisive in 
that it intends to fully refine the model and not just profile it 
for a particular application. 

5 Results 

In the following, we present the results from some 
experimental inference actions conducted on the  
CRM-profiled OWL form, so as to evaluate the ‘semantic 
performance’ of our profiling technique. To conduct these 
inferences, we use our KDI, which is briefly presented first. 

The point is to investigate how much powerful 
reasoning (in terms of expressivity) is enabled with the use 
of the semantic profile, compared with the original model. 
To this end, it is worth noting that all of the inferences 
presented are unique, in the sense that they are possible only 
because of the involvement of the profile. 

We conclude the results with a concrete usage case 
scenario, in which the user, through a series of inferences,  
is lead to the discovery and retrieval of an actual web 
resource.

Inferences performed can be divided into two 
categories: Positive inferences where, based on the concept 
and role axioms as well as the ontology facts, we conclude 
new, not explicitly expressed facts, and negative inferences
where, based on the ontology axioms and facts, we detect 
unsatisfiability conditions on concepts and instances. 

For every example, we give the OWL fragment where 
the inference is based on, and we graphically explain the 
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reasoning process in terms of DL formalism. To save space, 
instead of full namespaces we use the prefix &crm; for 
entities originating from the cidoc_crm_v3.4.owl document, 
&crm_p; for entities belonging to cidoc_paint_profile.owl 
and the default prefix ‘#’ for entities coming from the 
mondrian.owl document (which includes the others). 
Relationships and assertions that hold in these results are 
also depicted graphically according to the following legend: 
a box denotes an instance, a circle stands for a concept, a 
headed arrow between instances i1, i2 a relation R < i1, i2 >, 
an arrow between concepts a subsumption relationship 
towards the direction of the arrow and an arrow between an 
instance and a concept denotes a membership (‘isA’) 
relationship. 

5.1 The Knowledge Discovery Interface 

The KDI is a web application, providing intelligent query 
submission services on web ontology documents. We use 
the word Interface to emphasise the fact that the user is 
offered a simple and intuitive way to compose and submit 
queries. In addition, the KDI interacts with RACER to 
conduct inferences. The interface design follows the 
traditional three-tier model, with an important variation: 
Where a database server would be typically used, we now 
use a knowledge base management system (Figure 5).  
Note that each of the three levels may be physically located 
on different computer systems. 

Figure 5 The three tiers of the Knowledge Discovery Interface 
(see online version for colours) 

The interface can load OWL documents that are available 
either on the local file system, or on the internet.  
A temporary copy of every document is stored locally on 
the application server and is then loaded by the knowledge 
base server (RACER). RACER creates and stores in 
memory an internal model for every ontology that it 
classifies. Classification takes place once for every ontology 
during its initial loading. Furthermore, other documents 
imported by the ontology may be loaded too. 

The interface business logic was implemented using the 
Java programming language, as well as JSP, JavaBeans and 
Java Servlets technologies. Tomcat (version 5.0) was  

used as an application server. Business logic is mostly 
responsible for document loading, proper rendering of the 
ontological information to the user, composition and 
submission of queries and formulation of the results. 
Ontological data and reasoning results are fetched by 
interacting with RACER over the TCP/IP protocol.  
This interaction is greatly facilitated through the JRACER 
API. The latter has been modified in places, mainly in 
regard to the processing of web documents links and to the 
processing of synonym concepts. 

The user interacts with the client front-end, where the 
appropriate JSP pages are rendered by the browser. 
Communication with the application layer is conducted over 
the HTTP protocol, using forms. At the same time, servlets 
are used for the administration of multiple user requests and 
for controlling simultaneous access. Furthermore, when a 
loaded ontology is not used any more, it is erased from 
memory to improve the utilisation of system resources.  
For a further description of the KDI, the reader is referred to 
Koutsomitropoulos et al. (2006). 

5.2 Positive inferences 

The following code is a fragment from mondrian.owl stating 
that a ‘Painting_Event’ is in fact a ‘Creation_Event’ that 
‘has_created’ ‘Painting’ objects only: 

<owl:Class rdf:ID="Painting_Event"> 

<rdfs:subClassOf

rdf:resource="&crm;E65.Creation_Event"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty

rdf:resource="&crm;P94F.has_created"/>
<owl:allValuesFrom

rdf:resource="#Painting"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<Painting_Event rdf:ID="Creation of 

Mondrian's composition"> 

<crm:P94F.has_created

rdf:resource="#Mondrian's composition"/> 

</Painting_Event>

The above fragment is graphically depicted in the left part 
of Figure 6. Creation of ‘Mondrian’s Composition’ (i1) is an 
explicitly stated ‘Painting_Event’ that ‘has_created’ (R)
‘Mondrian’s Composition’ (i2). Now, asking the KDI to 
infer ‘what is a painting?’ it infers that i2 is indeed a 
painting (right part of Figure 6), correctly interpreting the 
value restriction on role R.

As simple as it may seem, this is indeed a very  
powerful inference. Without the value restriction on role 
‘has_created’, the ‘Mondrian’s Composition’ is just an 
instance of the world, i.e. it can be a book, a chair, a man or 
a time-period. It is just because of this restriction, apparent 
only in OWL DL, and thus made possible to express  
only after creating our semantic application profile, that 
‘Mondrian’s Composition’ is discovered to be a ‘painting’ 
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and not anything else. In the next example, however, 
‘Mondrian’s Composition’ is clearly stated to be a 
‘painting’ from the beginning. 

Figure 6 Inference example using value restriction (see online 
version for colours) 

Let us now examine another example that involves  
the use of nominals (Horrocks and Patel-Schneider, 2003).  
The following fragment from Mondrian.owl states  
that a ‘Painting’ is a ‘Visual_Item’ that its ‘Type’ is 
‘Painting_Composition’. 

<owl:Class rdf:ID="Painting"> 

<owl:subClassOf

rdf:resource="&crm;E36.Visual_Item"/>

<owl:equivalentClass>

<owl:Restriction>

<owl:onProperty

rdf:resource="&crm;P2F.has_type"/>
<owl:hasValue

rdf:resource="#painting_composition"/>

</owl:Restriction>

</owl:equivalentClass>

</owl:Class>

<crm:E55.Type

rdf:ID="painting_composition"/>

<Painting rdf:ID="Mondrian's composition" /> 

The above fragment is graphically depicted in the left part 
of Figure 7. 

Figure 7 Inference example using existential quantification and 
nominals (see online version for colours) 

‘Mondrian’s Composition’ (i1) is explicitly declared as a 
‘Painting’ instance, which in turn is defined as a hasValue
restriction on ‘has_type’ (R). ‘Painting_Composition’ (i2) is 
declared as a ‘Type’ object. While the fact that ‘Mondrian’s 
Composition’ ‘has_type’ ‘Painting’ is straightforward, the 
KDI is unable to infer so and returns null when asked  
“what is the type of Mondrian’s composition?” (right part of 
Figure 7). 

This example clearly demonstrates how difficult is for 
RACER as well as for every other current DL-based system 
to reason about nominals. Given the {i2} nominal, RACER 
creates a new synonym concept I2 and makes i2 an instance 
of I2. It then actually replaces the hasValue restriction with 
an existential quantifier on concept I2 and thus is unable to 
infer that R(i1, i2) really holds.2

5.3 Negative inferences 

In CRM, temporal events may have a time-span.  
Naturally, a ‘Person’ cannot have a time-span, unless it is 
also a ‘Temporal Entity’. In the following, we state  
that ‘Persons’ and ‘Temporal Entities’ are disjoint concepts 
and we attempt to define the class of ‘Painters with  
time-span’. 

<owl:ObjectProperty rdf:ID="P4F.has_time-

span">

<rdfs:domain

rdf:resource="#E2.Temporal_Entity"/>

</owl:ObjectProperty>

<owl:Class

rdf:about="&crm;E2.Temporal_Entity">

<owl:disjointWith

rdf:resource="&crm;E21.Person"/>

</owl:Class>

<owl:Class rdf:about="#Painter"> 

<rdfs:subClassOf

rdf:resource="&crm;E21.Person"/>

</owl:Class>

<owl:Class rdf:ID="Painter_with_time-span"> 

<rdfs:subClassOf rdf:resource="#Painter"/> 

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty

rdf:resource="&crm;P4F.has_time-span"/>

<owl:someValuesFrom

rdf:resource="&crm;E52.Time-Span"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

The above fragment is graphically depicted in Figure 8.  
A ‘Painter with time-span’ is defined as a ‘Painter’  
(known subclass of ‘Person’) that ‘has time-span’  
some ‘Time-Span’ instances. However, individuals who 
‘have time-span’ are required to belong to the ‘Temporal 
Entity’ class, as dictated by the corresponding domain 
restriction. Therefore, apart from being a ‘Person’,  
a ‘Painter with time-span’ must also be a ‘Temporal Entity’. 
On the other hand, ‘Persons’ and ‘Temporal Entities’ are 
disjoint, so their intersection represents the bottom  
(always empty) concept. Thus, a ‘Painter with Time-Span’ 
can never exist, as its class is inferred to be equivalent  
to the bottom concept. The KDI correctly detects the 
unsatisfiability of this class by pointing it out with red 
colour in the taxonomy. 
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Figure 8 Detecting unsatisfiable concepts (see online version
for colours) 

5.4 A usage scenario 

In the following, we present a usage scenario, benefiting 
from our approach and involving the semantic application 
profile developed in Section 4 that deals with the world of 
painters and paintings. To do this, we link the ontologies to 
actual digital resources, using URI references inside the 
created OWL documents, thus imitating a virtual digital 
collection. These resources include digital surrogates of 
Mondrian’s paintings. 

We show how, through a series of inferences, the KDI 
can assist the user in discovering useful textual information 
as well as digital content (a digital image). In this scenario, 
taken for granted is of course the fact that the resources to 
be discovered are not fully described, i.e., there are  
missing parts in the discovery path to be filled in by 
inferences. It is evident that this situation, reproduced here, 
is representative of the semi-structured and incomplete 
(although proliferative) nature of web-distributed 
information and metadata. 

As the detailed description of the user interaction with 
the KDI is out of the scope of this paper, we mainly stick to 
the inferences carried out and provide, for compactness, the 
DL counterpart of the ontology fragments involved in each 
of them. 

Suppose first that our art-inclining user knows that a 
famous artistic movement existed, called ‘De Stijl’ but does 
not know much about it. First, she asks the KDI to find what 
‘isA’ ‘De Stijl’, in other words, to perform instance 
checking on it (Table 2). 

Because of the property domain restriction, ‘De Stijl’ is 
inferred to be a ‘Group’; so who were its members?  
The KDI is asked to return the inverse relation on 
“P107B.is_current_or_former_member_of” using ‘De Stijl’ 
as the argument (Table 3). 

Mondrian turns out to be a notable member of De Stijl, 
owing to the inverseOf declaration in the core profile.  

Our user knows Mondrian is an artist, but what has he dealt 
with? Is he a sculptor, a musician or a painter? 

Table 2 “What is De Stijl”? 

OWL document Snippet in DL syntax 
mondrian.owl &crm;P107B.is_current_or_former_ 

member_of (#Mondrian, #De Stijl) 
cidoc_crm_v3.4.owl &crm;P107B.is_current_or_

former_member_of.&crm;E74.Group
Query submission and answer
Instance |#De Stijl| 

Role isA

Result |&crm;E74.Group|

|&crm;E39.Actor|

|&crm;E77.Persistent_Item|

|&crm;E1.CRM_Entity|

Table 3 “Who are the members of De Stijl?” 

OWL document Snippet in DL syntax 

mondrian.owl &crm;P107B.is_current_or_former_ 
member_of (#Mondrian, #De Stijl) 

cidoc_crm_v3.4.owl  &crm;P107B.is_current_or_ 
former_member_of—  &crm;P107F. 
has_current_or_former_member

Query submission and answer
Instance |#De Stijl| 

Role |&crm;P107F.has_current_

or_former_member|

Result |#Mondrian|

As shown in Table 4, after a rather complex reasoning 
process, that also involves nominals, Mondrian is indeed 
found to be a ‘Painter’. “Creation of composition1” has 
been ‘carried_out_by’ Mondrian and in turn ‘has_created’ 
composition1, which ‘has_type’ ‘painting_composition’. 
Because of this and the nominal restriction on ‘has_created’ 
(similarly to Figure 7), composition1 is inferred to be a 
member of the ‘Painting’ class and so “Creation of 
composition1” is a ‘Painting_Event’. Moreover, a ‘Painter’ 
is defined as a ‘Person’ who has ‘performed’ at least one 
‘Painting_Event’ and ‘carried_out_by’ is the inverse of 
“performed”, thus the conclusion follows. 

Notice that nowhere in the ontology Mondrian is 
characterised as a ‘Painter’. Without this reasoning path,  
he would just be an untyped resource/instance. In addition, 
all these details are withheld from the user. 

Having found out his occupation, she now wants to 
know more about his works. She clicks on the result and the 
class ‘Painter’ is selected in the hierarchy. This has the 
effect that the roles available are reduced to only the most 
relevant ones, that is, the properties that have the selected 
class or its subsumers in their domain, displayed in a depth 
first search manner. 
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Table 4 “What is Mondrian’s occupation?” 

OWL document Snippet in DL syntax 
crm_core_profile.owl &crm;P14F.carried_out_by-

&crm;P14B.performed
crm_paint_profile.owl #Painting &crm; 

P2F.has_type.{#painting_composition} 

&crm;P94F.has_created.#Painting
#Painting_Event

#Painter &crm;P14B.performed.#
Painting_Event
&crm;P94F.has_created (#Creation of 
composition1, #composition1) 

mondrian.owl &crm;P2F.has_type (#composition1, 
&crm_p;painting_composition) 
&crm;P14F.carried_out_by (#Creation 
of composition1, #Mondrian) 

Table 4 “What is Mondrian’s occupation?” (continued)

Query submission and answer 

Instance |#Mondrian|

Role |isA|

Result |&crm_p;Painter|

...

...

Based on the assertions shown in Table 4, the user  
finds out that composition1 is related to Mondrian and  
that it is a ‘Painting’, a defined subclass of ‘Visual_Item’. 
So, where it can be seen? An inverse relation query  
on “shows_visual_item” reveals the file name “gray-lt-
brown.jpg”. Seeking for the file’s location is straightforward 
using the ‘hasURL’ data type property that returns a 
clickable link, which, if followed, results in Figure 9. 

Figure 9 Web resource retrieval using datatype properties 

6 Related work 

Even though the idea of the Semantic Web has only  
recently begun to standardise, the need for inference-based 
extraction and intelligent behaviour on the internet has long 
been a research goal. As expected, there have been some 
efforts in that direction. Such efforts include ontology 
description languages, inference engines and systems and 
implementations, based on them. 

Simple HTML Ontology Extension (SHOE) (Heflin  
et al., 1998; Luke et al., 1996) was initially developed as an 
extension to HTML. It enables webpage authors to annotate 
their web documents with machine-readable knowledge.  
In that way, these documents can be more efficiently 
retrieved by knowledge-based search engines and then 
manipulated by agents. Although SHOE has a number of  
features, some of which are not present in other languages 

(e.g., n-ary relations), it lacks the expressiveness needed by 
the Semantic Web (for example, see Gomez-Perez and  
Corcho, 2002). 

Knowing the constraints of knowledge discovery in a 
random environment like the internet, and taking into 
account the advantages of information retrieval, recent 
research has tried to combine these two approaches. 
OWLIR (Shah et al., 2002), for instance, is a system 
conducting retrieval of documents that are enriched with 
mark-up in RDF, DAML+OIL or OWL. A text-editing and 
extraction system is used to enrich the documents, based on 
an upper-level ontology. This extra information is processed 
by a rule-based inference system. Search is conducted using 
classical retrieval methods; however, the results are refined 
using the inference system outputs. 

The TAP framework (Guha and McCool, 2003)  
seeks as well to improve the quality of search results by 
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utilising the semantic relationships of web documents  
and entities. However, no inference takes place here. 
Instead, the RDF/OWL documents are treated as  
structured metadata sets. These sets can be represented as 
directed graphs, whose edges correspond to relations, and 
vertices correspond to existing internet resources.  
This representation is conducted based on the information of 
a local knowledge base. 

Among the CRM applications, its use by the Artequakt 
system appears to be the most relevant to our work  
(Alani et al., 2003). Artequakt tries to alleviate the task of 
knowledge base maintenance by following an automated 
knowledge extraction approach. Artequakt applies natural 
language processing on web documents to extract 
information about artists and the artistic world and populate 
its knowledge base. Stored knowledge is then used for the 
automatic production of personalised biographies for artists. 
The CIDOC-CRM is used as the ‘conceptual schema’ for 
the information that needs to be extracted from the 
documents and stored in the knowledge base. Nevertheless, 
it should be noted that no inference – and thus knowledge 
discovery – takes place. 

The Sculpture project (http://www.sculpteurweb.org)
aims also at creating a semantic layer on top of a digital 
library of 3D cultural objects. Object properties  
and characteristics are organised with respect to the 
CIDOC-CRM ontology. Reasoning takes place within 
classifying agents that, when properly trained, are able to 
classify the objects in the ontology structure. 

The Wine Agent system (Hsu and McGuinness, 2003) 
was developed as a demonstration of the knowledge 
discovery capabilities of the Semantic Web. This  
system uses a certain domain ontology written in 
DAML+OIL/OWL and performs inferences on it. The Wine 
Agent employs a first-order logic theorem prover (JTP). 

Finally, a common motivation for our semantic profiling 
technique shares the approach of expressing application 
profiles with the OWL/XDD language (Ratanajaipan et al., 
2006). By combining OWL constructs with rule-based 
expressions in XML syntax, it is claimed that application 
profiles with fine-grained semantic constraints may be 
represented. This method is then applied to define already 
modelled application domains, like for example the Dublin 
Core Library Application Profile (DC-Lib). 

7 Conclusions and future work 

In this paper, we attempted to deploy a working platform 
upon which we experimented with the application of 
Semantic Web techniques and ideas on the cultural heritage 
domain. Concurrently, we suggested a practice that can 
easily be followed in any other domain of interest. 

First, we have shown the Semantic Web capabilities for 
knowledge discovery with web ontologies. We conducted 
and presented a series of successful experimental results 
possible only after aligning our ontological model to the 
Semantic Web standards. A side-product of this process  

is the strengthening of the argument that OWL and its  
most expressive decidable subset, OWL DL, may be 
recommended for modelling domain metadata and be 
fruitful in that way. 

At the same time, we have documented a procedure for 
knowledge acquisition which, having the CIDOC-CRM  
as a starting point, can be likewise applied in any  
other knowledge domain. To ensure feasibility and  
re-productivity, we developed and utilised suitable technical 
means for this, namely the KDI, as a proof-of-concept. 

Doing so, we elaborated a novel technique for creating 
metadata application profiles, by taking advantage of the 
Semantic Web toolbox. This technique involves semantic 
enrichment of the metadata model and then deepening of its 
structures and definitions in accordance with specific needs. 

A possible combination of semantic profiling with 
traditional metadata profiling practices like namespace 
inclusion and merging may be worth examining as future 
work. The combination, for example, of a CRM profile with 
a flat metadata schema (e.g., Dublin Core) should allow for 
the interchangeable use of both their element sets, provided 
this is done in a semantically consistent and productive 
manner, i.e., simple metadata elements are not treated 
naively as annotations. 

To this end, of particular interest is looking into the 
upcoming OWL 1.1 specification (Cuenca Grau et al., 2006) 
and especially its concept of punning as a meta-modelling 
principle, based on which a name definition may  
have variable semantic interpretation depending on the 
ontological context. 
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Notes
1All documents are available under http://ippocrates.hpclab. 
ceid.upatras.gr:8998/SWapp/

2Clearly, a direct in-memory implementation, being interfaced  
by the appropriate OWL API, such as the ones provided by 
FaCT++ and Pellet would allow a successful answer to this kind 
of queries. 


